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Abstract: Background: Nontuberculous mycobacteria (NTM) are ubiquitous. NTM can affect different
organs and may cause disseminated diseases, but the pulmonary form is the most common form.
Pulmonary NTM is commonly seen in patients with underlying diseases. Pulmonary Mycobacterium
avium complex (MAC) is the most common NTM disease and M. abscessus (MAB) is the most
challenging to treat. This review is prepared with the following objectives: (a) to evaluate new
methods available for the diagnosis of pulmonary MAC or MAB, (b) to assess advances in developing
new therapeutics and their impact on treatment of pulmonary MAC or MAB, and (c) to evaluate the
prospects of preventive strategies including vaccines against pulmonary MAC or MAB. Methods: A
literature search was conducted using PubMed/MEDLINE and multiple search terms. The search
was restricted to the English language and human studies. The database query resulted in a total
of 197 publications. After the title and abstract review, 64 articles were included in this analysis.
Results: The guidelines by the American Thoracic Society (ATS), European Respiratory Society (ERS),
European Society of Clinical Microbiology and Infectious Diseases (ESCMID), and Infectious Diseases
Society of America (IDSA) are widely applicable. The guidelines are based on expert opinion and
there may be a need to broaden criteria to include those with underlying lung diseases who may
not fulfill some of the criteria as ‘probable cases’ for better follow up and management. Some cases
with only one culture-positive sputum sample or suggestive histology without a positive culture may
benefit from new methods of confirming NTM infection. Amikacin liposomal inhalation suspension
(ALIS), gallium containing compounds and immunotherapies will have potential in the management
of pulmonary MAC and MAB. Conclusions: the prevalence of pulmonary NTM is increasing. The
efforts to optimize diagnosis and treatment of pulmonary NTM are encouraging. There is still a need
to develop new diagnostics and therapeutics.
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1. Background

Nontuberculous mycobacteria (NTM) are vast and include all mycobacteria except
M. tuberculosis (Mtb) and M. leprae. Nontuberculous mycobacteria (NTM) have a lipid-rich
outer membrane generating hydrophobicity and can produce biofilms, thus allowing a
wide variety of hosts within nature [1].

NTM are ubiquitous in nature. Currently, over 190 species of nontuberculous mycobac-
teria (NTM) have been identified [2]. It is believed that NTM infections are acquired from
the environment via inhalation, ingestion and skin contact, which may result in pulmonary
disease, lymphadenitis, skin and soft tissue infections, or disseminated disease. Pulmonary
disease is the most common form of NTM disease in patients who are negative for human
immunodeficiency virus (HIV) [3]. Pulmonary NTM commonly occurs in patients with
underlying lung diseases [4,5]. Disseminated diseases are commonly seen in patients who
are immunocompromised including HIV, immunosuppressive medications, and genetic
defects in Th1 immune responses [6].
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In developed countries where tuberculosis (TB) is well controlled, the prevalence of pul-
monary NTM and the mortality rate associated with NTM infections are increasing [3,7–11]. A
US study of Medicare Part B beneficiaries showed that the prevalence of NTM increased
from 20 to 47 per 100,000 persons between 1997 and 2007, an 8.2% increase per year [7]. A
more recent report estimated that the number of pulmonary NTM cases in the US increased
by at least two-fold between 2010 and 2014 [12]. Data on NTM isolates from pulmonary
samples obtained from 30 countries across six continents in 2008 showed that M. avium
complex (MAC) constituted 37% of isolates in Europe, 52% of in North America and 71%
in Australia [13]. In North America, recent data suggest that MAC and M. abscessus (MAB)
are common causes of pulmonary NTM [14]. Pulmonary MAB is associated with treatment
failure rates exceeding 50%, a rapid decline in lung function, significant morbidity and
mortality [15,16]. Therefore, this review focuses on pulmonary MAC and MAB, and is
prepared with the following objectives: (a) evaluate new methods available for the diagno-
sis of pulmonary MAC or MAB, (b) assess advances in developing new therapeutics and
their impact on treatment of pulmonary MAC or MAB, and (c) evaluate the prospects of
preventive strategies including vaccines against pulmonary MAC or MAB.

2. Methods

A literature search was conducted using PubMed/MEDLINE and multiple search
terms. The search included publication dates 1 January 1980–16 December 2022 and was
restricted to the English language and human studies. A search term ‘pulmonary NTM and
new methods’ revealed 116 publications, pulmonary NTM and new drug 136, pulmonary
NTM and immunotherapy 13, pulmonary NTM and vaccine 46 publications. The database
query resulted in a total of 197 publications. After the title and abstract review, 64 articles
were included in this analysis.

2.1. Risk Factors of Pulmonary NTM

Patients with no identifiable structural lung diseases may develop pulmonary NTM
but pulmonary NTM usually occurs in patients with underlying diseases [17–20]. Cystic
fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are common risk factors
for pulmonary NTM. Other risk factors include old age, non-CF bronchiectasis, interstitial
lung disease (ILD), and immunodeficiency [6,21,22].

CF is the most common genetic disorder in the US and Europe with incidence of
about 1 in 3200 in Caucasians [23]. The incidence is much lower in other races. In the US,
CF occurs in approximately 1:15,000 blacks, 1:35,000 individuals of Asian descent, and
1:10,900 Native Americans [24,25]. In US, there are more than 30,000 individuals with
CF [26]. The number of adults with CF continues to increase, while the number of children
remains relatively stable [26], because advances in medical care have prolonged life in these
patients. With increases in survival the spectrum of life-threatening pulmonary infections
in CF has changed. An extensive literature indicates that pulmonary NTM infections are
becoming common in CF, with prevalence increasing from 10% in children aged 10 years to
more than 30% in adults over 40 years [5]. Pulmonary NTM increases the rate of exacer-
bations in CF threefold [27], and accelerates deterioration of lung function [28–30] more
than other serious CF pulmonary infections such as Pseudomonas and Burkholderia [29].
In addition, pre-transplant pulmonary NTM in CF patients makes post-lung transplant
recovery more challenging [31]. It is likely that susceptibility to pulmonary NTM in CF is
at least partly due to viscous secretions, deceased mucocilliary clearance, mucus tethering,
and impaired innate immunity [32–35]. CF transmembrane conductance regulator (CFTR)
gene modulator therapies have decreased rates of new or recurrent Pseudomonas lung
infection and improved quality of life [36]. To our knowledge, there are no studies on
the impact of CFTR modulator on pulmonary NTM. In fact, the prevalence of pulmonary
NTM has continued to increase even after the wider use of CFTR modulators in the CF
population [36]. CFTR modulators are drugs that act by improving production, intracel-
lular processing, and/or function of the defective CFTR protein. The management may
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include two correctors and a potentiator (e.g., elexacaftor-tezacaftor-ivacaftor) to restore the
function of the mutant CFTR protein more fully [37]. CFTR modulators may prevent lung
damage or improve lung function but there is no evidence supporting reversal of already
damaged bronchi, suggesting that CF patients with structural damage will continue to be
high risk for pulmonary NTM. NTM infection significantly decreases lung function [30].

Chronic obstructive pulmonary disease (COPD) is another common risk factor for
pulmonary NTM. The prevalence of (COPD) in the US adult population ranges from 5.1
to 14% [38–41]. Similar prevalence rates were reported from Canada and Europe with
estimated global prevalence of 13% [42,43]. The prevalence of pNTM in COPD patients is
about 0.7% with a hazard ratio of 15.5 for patients older than 35 years, with a 10× higher
hazard ratio for patients ≥ 65 years old [4]. Pulmonary NTM doubles the rate of severe
exacerbations requiring hospital admissions and leads to a significant deterioration in lung
function [44]. In a population-based study of more than 6 million people, the fully adjusted
hazard ratio for pulmonary NTM was significantly high in COPD (8.7, 95% CI 8.3–9.2) with
incidence rate of 143 per 100,000 person-years compared to 6.6 per 100,000 person-years in
a group without COPD [4].

2.2. Diagnosis of Pulmonary NTM

The diagnosis of pulmonary NTM relies on clinical, microbiologic, and radiologic
criteria. Based on the guidelines by American Thoracic Society (ATS), European Respiratory
Society (ERS), European Society of Clinical Microbiology and Infectious Diseases (ESCMID),
and Infectious Diseases Society of America (IDSA), all of the following criteria have to be
met for the diagnosis of pulmonary NTM [45,46]:

1. New or worsening pulmonary symptoms with or without systemic symptoms.
2. New or worsening radiologic findings suggestive of nodular, cavitary opacities on

chest X-ray or bronchiectasis with nodules on computed tomography (CT).
3. Exclusion of other diagnosis.
4. Supportive microbiologic findings including (i) cultures of at least two separate

sputum samples positive for NTM, (ii) culture of bronchial wash or lavage positive
for NTM or (iii) lung histology showing granulomatous inflammation or acid-fast
bacilli (AFB) and at least one positive NTM culture from biopsy or another respiratory
specimen.

Productive cough and shortness of breath are the main presenting symptoms of
pulmonary NTM, and some patients may have fatigue, fever, chest pain and weight
loss [47,48]. Figure 1 shows typical radiologic findings of nodular and fibrocavitary pul-
monary MAC
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Figure 1. Radiologic abnormalities of patients with pulmonary MAC. (A) Chest CT of a 60-year-old
female patient diagnosed of nodular pulmonary MAC. She completed treatment and remained
culture negative for several months. (B,C), a chest X-ray and chest CT of a 60-year-old female patient
recently diagnosed with fibrocavitary pulmonary MAC. Arrows show specific lesions.

The ATS/ERS/ESCMID/IDSA criteria are based on expert opinion, not on high quality
studies. Therefore, it may not be surprising to see some patients with underlying lung
disease treated for pulmonary NTM even when they do not fulfill microbiologic (e.g.,
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having only one culture positive sputum culture) or radiologic criteria (e.g., abnormal
imaging study findings but not nodular, fibrocavitary or bronchiectasis) [48–51]. This
may suggest the need to broaden the criteria for pulmonary disease caused by some of
the NTMs. A retrospective study on 53 patients with and 19 without underlying lung
diseases recommended the definition of definite pulmonary MAC for those who fulfill the
ATS/ERS/ESCMID/IDSA criteria and probable pulmonary MAC for those with a single
culture positive sputum or radiologic abnormalities other than nodular bronchiectasis or
fibrocavitation [49]. The suggestion for classifying patients with pulmonary MAC into
definite and probable groups must be tested on a large number of MAC patients with
known treatment outcomes.

2.3. Clinical Relevance of Drug Susceptibility Testing

Macrolides, rifampin, ethambutol, and aminoglycosides are drugs used for treatment
of pulmonary MAC. The first three drugs are used for all patients and an aminoglycoside
is added for patients with fibrocavitary lesions [46]. In vitro susceptibility is not commonly
done for new patients and only in vitro susceptibility for clarithromycin result has a good
correlation with clinical efficacy [52]. Despite lack of correlation between in vitro suscep-
tibility to some of the MAC drugs and clinical efficacy, it has been shown that high MIC
particularly ≥8 mg/L for rifampin and ethambutol or ≥64 mg/L for aminoglycosides is
associated with treatment failure [53,54]. In vitro testing using macrophages infected with
MAC isolates from patients with disseminated MAC showed some promising results [55].
A decrease in colony forming units by at least one log was predictive of clinical efficacy of
some of the drugs used for MAC [55].

The optimal drugs for treatment of pulmonary MAB are not known [46]. How-
ever, in one study that used combination regimen, treatment success was associated with
in vitro susceptibility to clarithromycin but not with ciprofloxacin, doxycycline, cefoxitin
or amikacin [56].

2.4. Treatment of Pulmonary MAC and MAB

In patients with pulmonary MAC, a susceptibility-based treatment for macrolides and
amikacin is recommended by the ATS/ERS/ESCMID/IDSA guidelines, and it is suggested
that patients with macrolide-susceptible MAC receive a treatment regimen with at least
three drugs (including a macrolide and ethambutol) for at least 12 months after culture
conversion [46]. For patients with cavitary, advanced/severe bronchiectasis or macrolide-
resistant pulmonary MAC addition of amikacin or streptomycin is suggested [46]. The cure
rates of treatment for pulmonary MAC ranges from 55% to 66% [48,57,58].

The optimal drugs, regimens, and duration of therapy for pulmonary MAB are not
well defined. However, a susceptibility-based treatment for macrolides and amikacin is
recommended [46]. Studies, mainly from South Korea, have shown that clarithromycin-
containing oral regimen with 4–16 weeks of one or two intravenous drugs showed clinical
improvement in 50–97% of patients [56,59,60]. In a retrospective study done on 65 patients
in South Korea, efficacy of a combination regimen including clarithromycin, ciprofloxacin
and doxycycline three-drug treatment with an initial 4-week course of intravenous cefoxitin
and amikacin resulted in clinical improvement in 83% of patients, radiologic improvement
in 74% and microbiologic cure in 58% of patients [56]. In this study, treatment for pulmonary
MAB continued for at least 12 months after sputum culture conversion or a total duration
of 24 months.

2.5. Prospects in Improving Diagnosis and Treatment

Microbiologic criteria for the diagnosis of pulmonary MAC and MAB include culture
of respiratory specimen and histology [46]. In patients with only a single positive sputum
culture or histology showing granuloma with neg cultures, new methods of detecting NTM
infection may help in diagnosis. A dual skin test with MAC sensitin (MAS) and with Mtb
purified protein derivative (PPD) was used for identification of patients with pulmonary
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MAC. MAS skin test with induration size of ≥5 mm larger than induration from PPD had
a specificity of 97% for discriminating pulmonary MAC and TB [61].

Use of a simple and stable antigen for use in serodiagnosis has been explored. Gly-
copeptidolipids (GPL) have been the main focus because of their abundance in NTM
isolates [62]. MAC strains produce highly antigenic and typeable serovar-specific GPLs.
Observational study of anti-GPL on samples from 369 patients with rheumatoid arthritis,
10 with and 359 without pulmonary MAC showed a positive predictive value of 67% and
a negative predictive value of 97%. Pulmonary MAC patients in this study fulfilled the
criteria [63]. Using GPL from 11 reference strains of MAC in pulmonary MAC patients
without rheumatoid arthritis, positive predictive values of 80% for IgG and 89% for IgA
with corresponding negative predictive values of 89% and 97% [64].

Patients with cavitary, advanced/severe bronchiectasis or macrolide-resistant pul-
monary MAC benefit from adding aminoglycosides as part of a treatment regimen [46].
In addition, aminoglycosdies are among the drugs to be considered in other pulmonary
MAC patients who fail treatment. Unfortunately, use of intravenous or intramuscular
aminoglycosides for extended duration is limited by serious side effects [43]. In the last few
years, amikacin liposomal inhalation suspension (ALIS) has been shown to improve culture
conversion in treatment refractory cases of pulmonary MAC [54,65,66]. The new guidelines
now recommend the addition of ALIS in patients with pulmonary MAC pulmonary who
have failed therapy after at least six months of guideline-based therapy [46].

Another approach to improve treatment outcome is finding ways to optimize the use
of existing drugs. A multicenter study on efficacy of a single tablet with fixed dose com-
binations (FDC) of clarithromycin, rifabutin and clofazimine for treatment of pulmonary
MAC with nodular bronchiectasis is underway [67]. FDC may prevent emergence of drug
resistance but may not prevent treatment default associated with drug side effects. In a
recent multicenter study of 297 pulmonary NTM patients, 90 (30.3%) required change in
treatment because of drug side effects [48]. Therefore, simplifying treatment regimens to
minimize the number of drugs helps improve treatment compliance. In a preliminary open-
label study, a two-drug combination with clarithromycin and ethambutol was shown to be
noninferior to a three-drug regimen with addition of rifampin [68]. This has the potential
to decrease drug side effects and challenges arising from drug interactions. Currently a
large randomized controlled trial is undergoing recruitment of 500 participants to study
the benefit of two versus three-antibiotic therapy for MAC disease [69].

There are efforts to develop new drugs for MAC and MAB [70,71]. Part of this effort
relies on testing new drugs developed for TB treatment [70,71]. There are encouraging
results from studies that use cell cultures and small animal but not many have made it
to human trials [72]. Potential candidates include gallium containing compounds. In
mice, compounds containing gallium which interferes with iron metabolism or uptake by
mycobacteria have been shown to have activity against pulmonary MAB [73]. A phase 1b
study on intravenous gallium nitrate in CF colonized with NTM is underway [74].

A unique approach that showed some promising results is immunotherapy. In a small
placebo-controlled intramuscular IFN-γ daily for one month and then three times per
week for up to 6 months as adjunct to guideline-based therapy, a more rapid clinical and
radiological responses were seen in patients who received IFN-γ [75]. Nitric oxide (NO),
an important part of the innate immune system with bactericidal activities, has been tried
for treatment of pulmonary MAB [76,77]. The use of inhaled NO by Yaacoby-Bianu et al. in
2018 in two cystic fibrosis patients with pulmonary MAB resulted in a reduction in bacterial
load as measured by quantitative polymerase chain [78]. The use of inhaled NO by Goldbart
et al. in a CF patient with pulmonary MAB showed bacterial growth inhibition as well as
improvement of lung pathology on CT [79]. The observations from these case reports show
that NO is safe and well tolerated and could play a crucial role in the treatment of NTM
pulmonary disease [71,78,79]. Additional trials are investigating treatment outcomes with
intermittent inhaled nitric oxide (NO) in cystic fibrosis versus non-cystic fibrosis patients,
both with pulmonary MAB [80]. Another important immunomodulating therapy that
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attracted some interest is granulocyte-macrophage colony-stimulating factor (GM-CSF).
GM-CSF is produced by different types of cells including T cells, macrophages and alveolar
epithelial cells, and is known to increase the ability of macrophages to control mycobacterial
infection [81]. Inhaled GM-CSF was tested in patients who failed MAC or MAB antibiotic
treatment and helped achieve culture conversion in 5/32 (15.6%) but the culture conversion
was durable after end of guideline-based therapy only in two patients [82]. There is still an
interest to carefully examine the benefits of GM-CSF in treatment refractory pulmonary
NTM cases, particularly MAB [83].

Immunotherapy with BCG has been considered. BCG, the only licensed mycobac-
terial vaccine, live attenuated Mycobacterium bovis is used globally for the prevention of
pulmonary TB. BCG, is known to stimulate innate immunity [84–86] and induces adaptive
immune responses [87]. Long term follow-up studies have demonstrated that BCG provides
durable protection against pulmonary TB as summarized in two recent reviews [88,89].
BCG has also been shown to be effective in preventing infections due to other mycobacteria
including M. leprae, M ulcerans, and strains of M. avium causing NTM lymphadenitis in
children, indicating cross-protective immunity within the genus [90–92]. Our recent study
showed that BCG induces cross-protective immunity to NTM [93]. The use of BCG as
adjunct immunotherapy or prevention of pulmonary MAC and MAB is attractive. One
potential advantage of whole cell vaccines over protein-adjuvant formulations and viral-
vectored constructs is their broad antigen composition, which includes the complete protein
repertoire, lipids, carbohydrates, and other moieties that may be antigenic and induce
donor unrestricted T-cell responses, B-cell responses, and possibly also natural killer and
innate lymphoid cell responses [94]. However, most patients with pulmonary MAC and
MAB have underlying lung diseases and therefore, the use of BCG has a potential of causing
serious BCG lung disease.

3. Conclusions

The prevalence of pulmonary NTM is increasing. The exact reasons for this increase in
prevalence are not known, but medical advances to increase the lifespan of patients with
underlying lung diseases could be one factor. Underlying lung diseases such as CF and
COPD are major risk factors for pulmonary MAC and MAB. ATS/ERS/ESCMID/IDSA
guidelines include recommendations for diagnosis and treatment of pulmonary MAC
and MAB. Despite the guidelines, diagnosis of pulmonary MAC and MAB is challenging.
Similarly, treatment of pulmonary MAC and MAB is complex with high failure rates.
There is a need to improve the diagnosis and treatment of patients with pulmonary MAC
and MAB. Efforts to simplify the treatment regimen for most cases of pulmonary MAC
and findings new therapeutics are encouraging. Two-drug antibiotic regimens, inhaled
amikacin, and immunotherapies have potential for the management of pulmonary NTM.
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