Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Healthy Subjects
2.2. Genomic DNA Isolation
2.3. Genotyping of P2RX7 (rs1718119 and rs2230912) SNPs
2.4. In Silico Functional Analysis
2.5. Expression QTLs
2.6. Statistical Analysis
3. Results
3.1. Association between P2RX7 Polymorphisms and OT Susceptibility
3.2. In Silico Analysis
3.3. Expression QTLs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, R.; Peng, J.; Mohsin, M.; Huang, X.; Lin, X.; Aguilar-Marcelino, L.; Huang, Z.; Yin, G. Construction and Evaluation of the Toxoplasma Gondii DNA Vaccine Targeting DEC-205. Pak. Vet. J. 2022, 42, 256–260. [Google Scholar] [CrossRef]
- Mathison, B.A.; Pritt, B.S. The Landscape of Parasitic Infections in the United States. Mod. Pathol. 2023, 36, 100217. [Google Scholar] [CrossRef] [PubMed]
- Roe, K. A Latent Pathogen Infection Classification System That Would Significantly Increase Healthcare Safety. Immunol. Res. 2023, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Arantes, T.E.F.; Silveira, C.; Holland, G.N.; Muccioli, C.; Yu, F.; Jones, J.L.; Goldhardt, R.; Lewis, K.G.; Belfort, R. Ocular Involvement Following Postnatally Acquired Toxoplasma Gondii Infection in Southern Brazil: A 28-Year Experience. Am. J. Ophthalmol. 2015, 159, 1002–1012.e2. [Google Scholar] [CrossRef] [PubMed]
- De-La-Torre, A.; López-Castillo, C.A.; Gómez-Marín, J.E.; Publishers, M.; All, L.; De-La-Torre, A.; López-Castillo, C.A.; Gómez-Marín, J.E. Incidence and Clinical Characteristics in a Colombian Cohort of Ocular Toxoplasmosis. Eye 2009, 23, 1090–1093. [Google Scholar] [CrossRef]
- Kijlstra, A.; Petersen, E. Epidemiology, Pathophysiology, and the Future of Ocular Toxoplasmosis. Ocul. Immunol. Inflamm. 2014, 22, 138–147. [Google Scholar] [CrossRef]
- Naranjo-Galvis, C.A.; De-la-Torre, A.; Mantilla-Muriel, L.E.; Beltrán-Angarita, L.; Elcoroaristizabal-Martín, X.; McLeod, R.; Alliey-Rodriguez, N.; Begeman, I.J.; de Mesa, C.L.; Gómez-Marín, J.E.; et al. Genetic Polymorphisms in Cytokine Genes in Colombian Patients with Ocular Toxoplasmosis. Infect. Immun. 2018, 86, e00597-17. [Google Scholar] [CrossRef]
- Ngô, H.M.; Zhou, Y.; Lorenzi, H.; Wang, K.; Kim, T.-K.; Zhou, Y.; Bissati, K.E.; Mui, E.; Fraczek, L.; Rajagopala, S.V.; et al. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer. Sci. Rep. 2017, 7, 11496. [Google Scholar] [CrossRef]
- Jamieson, S.E.; Cordell, H.; Petersen, E.; McLeod, R.; Gilbert, R.E.; Blackwell, J.M. Host genetic and epigenetic factors in toxoplasmosis. Mem. Inst. Oswaldo. Cruz. 2009, 104, 162–169. [Google Scholar] [CrossRef]
- Soare, A.Y.; Freeman, T.L.; Min, A.K.; Malik, H.S.; Osota, E.O.; Swartz, T.H. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. MMR 2021, 85, e00055-20. [Google Scholar] [CrossRef]
- Borges Da Silva, H.; Beura, L.K.; Wang, H.; Hanse, E.A.; Gore, R.; Scott, M.C.; Walsh, D.A.; Block, K.E.; Fonseca, R.; Yan, Y.; et al. The Purinergic Receptor P2RX7 Directs Metabolic Fitness of Long-Lived Memory CD8+ T Cells. Nature 2018, 559, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.; Dal Ben, D.; Sarti, A.C.; Giuliani, A.L.; Falzoni, S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017, 47, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G.; Verkhratsky, A. Receptors for Purines and Pyrimidines. In Purinergic Signalling and the Nervous System; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Huang, S.W.; Walker, C.; Pennock, J.; Else, K.; Muller, W.; Daniels, M.J.; Pellegrini, C.; Brough, D.; Lopez-Castejon, G.; Cruickshank, S.M. P2X7 Receptor-Dependent Tuning of Gut Epithelial Responses to Infection. Immunol. Cell Biol. 2017, 95, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Lees, M.P.; Fuller, S.J.; McLeod, R.; Boulter, N.R.; Miller, C.M.; Zakrzewski, A.M.; Mui, E.J.; Witola, W.H.; Coyne, J.J.; Hargrave, A.C.; et al. P2X7 Receptor-Mediated Killing of an Intracellular Parasite, Toxoplasma Gondii, by Human and Murine Macrophages. J. Immunol. 2010, 184, 7040–7046. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, G.; Marques da Silva, C.; de Abreu Moreira-Souza, A.C.; Vommaro, R.C.; Coutinho-Silva, R. Activation of the P2X7 Receptor Triggers the Elimination of Toxoplasma Gondii Tachyzoites from Infected Macrophages. Microbes Infect. 2010, 12, 497–504. [Google Scholar] [CrossRef]
- Di Virgilio, F. Dr. Jekyll/Mr. Hyde: The Dual Role of Extracellular ATP. J. Auton. Nerv. Syst. 2000, 81, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Lucae, S.; Salyakina, D.; Barden, N.; Harvey, M.; Gagné, B.; Labbé, M.; Binder, E.B.; Uhr, M.; Paez-Pereda, M.; Sillaber, I.; et al. P2RX7, a Gene Coding for a Purinergic Ligand-Gated Ion Channel, Is Associated with Major Depressive Disorder. Hum. Mol. Genet. 2006, 15, 2438–2445. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, S.E.; Peixoto-Rangel, A.L.; Hargrave, A.C.; Roubaix, L.A.D.; Mui, E.J.; Boulter, N.R.; Miller, E.N.; Fuller, S.J.; Wiley, J.S.; Castellucci, L.; et al. Evidence for Associations between the Purinergic Receptor P2X 7 (P2RX7) and Toxoplasmosis. Genes. Immun. 2010, 11, 374–383. [Google Scholar] [CrossRef]
- De-la-Torre, A.; Pfaff, A.W.; Grigg, M.E.; Villard, O.; Candolfi, E.; Gomez-Marin, J.E. Ocular Cytokinome Is Linked to Clinical Characteristics in Ocular Toxoplasmosis. Cytokine 2014, 68, 23–31. [Google Scholar] [CrossRef]
- Collins, F.S.; Brooks, L.D.; Chakravarti, A. A DNA Polymorphism Discovery Resource for Research on Human Genetic Variation. Genome Res. 1998, 8, 1229–1231. [Google Scholar] [CrossRef]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [CrossRef]
- Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT Web Server: Predicting Effects of Amino Acid Substitutions on Proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Choi, Y.; Chan, A.P. PROVEAN Web Server: A Tool to Predict the Functional Effect of Amino Acid Substitutions and Indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Calabrese, R.; Fariselli, P.; Martelli, P.L.; Altman, R.B.; Casadio, R. WS-SNPs&GO: A Web Server for Predicting the Deleterious Effect of Human Protein Variants Using Functional Annotation. BMC Genom. 2013, 14 (Suppl. S3), S6. [Google Scholar] [CrossRef]
- Möller, S.; Croning, M.D.R.; Apweiler, R. Evaluation of Methods for the Prediction of Membrane Spanning Regions. Bioinformatics 2001, 17, 646–653. [Google Scholar] [CrossRef]
- Omasits, U.; Ahrens, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive Protein Feature Visualization and Integration with Experimental Proteomic Data. Bioinformatics 2014, 30, 884–886. [Google Scholar] [CrossRef]
- Geourjon, C.; Deléage, G. Sopma: Significant Improvements in Protein Secondary Structure Prediction by Consensus Prediction from Multiple Alignments. Bioinformatics 1995, 11, 681–684. [Google Scholar] [CrossRef]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting Stability Changes upon Mutation from the Protein Sequence or Structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef]
- McCarthy, A.E.; Yoshioka, C.; Mansoor, S.E. Full-Length P2X7 Structures Reveal How Palmitoylation Prevents Channel Desensitization. Cell 2019, 179, 659–670.e13. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, L.R.; Holloway, A.; McRae, A.; Yang, J.; Small, K.; Zhao, J.; Zeng, B.; Bakshi, A.; Metspalu, A.; Dermitzakis, M.; et al. The Genetic Architecture of Gene Expression in Peripheral Blood. Am. J. Hum. Genet. 2017, 100, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Mantilla-Muriel, L.E.; Hernández-de-los-Ríos, A.; Rincón, M.; De-la-Torre, A.; Murillo-León, M.; Cardona, N.; Cesbron-Delauw, M.F.; Mercier, C.; Sepúlveda-Arias, J.C.; Gomez-Marin, J.E. Serotyping, Host Genes and Cytokines Response in Human Ocular Toxoplasmosis. Microb. Pathog. 2020, 148, 104465. [Google Scholar] [CrossRef]
- Gonnord, P.; Delarasse, C.; Auger, R.; Benihoud, K.; Prigent, M.; Cuif, M.H.; Lamaze, C.; Kanellopoulos, J.M. Palmitoylation of the P2X7 Receptor, an ATP-gated Channel, Controls Its Expression and Association with Lipid Rafts. FASEB J. 2009, 23, 795–805. [Google Scholar] [CrossRef]
- Franklin, R.B.; Costello, L.C. The Important Role of the Apoptotic Effects of Zinc in the Development of Cancers. J. Cell Biochem. 2009, 106, 750–757. [Google Scholar] [CrossRef]
- Mammari, N.; Halabi, M.A.; Yaacoub, S.; Chlala, H.; Dardé, M.L.; Courtioux, B. Toxoplasma Gondii Modulates the Host Cell Responses: An Overview of Apoptosis Pathways. BioMed Res. Int. 2019, 2019, 6152489. [Google Scholar] [CrossRef]
- Aponte-Santamaría, C.; Lippok, S.; Mittag, J.J.; Obser, T.; Schneppenheim, R.; Baldauf, C.; Gräter, F.; Budde, U.; Rädler, J.O. Mutation G1629E Increases von Willebrand Factor Cleavage via a Cooperative Destabilization Mechanism. Biophys. J. 2017, 112, 57–65. [Google Scholar] [CrossRef]
- Rocha-Roa, C.; Cossio-Pérez, R.; Molina, D.; Patiño, J.; Cardona, N. In Silico Study of Moxifloxacin Derivatives with Possible Antibacterial Activity against a Resistant Form of DNA Gyrase from Porphyromonas gingivalis. Arch. Oral Biol. 2018, 95, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, C.; Narayanan, R.C.; Sekar, K. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations. ACS Chem. Neurosci. 2021, 12, 2810–2819. [Google Scholar] [CrossRef] [PubMed]
- Robert-Gangneux, F.; Dardé, M.L. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin. Microbiol. Rev. 2012, 25, 264–296. [Google Scholar] [CrossRef] [PubMed]
- Teama, S. DNA Polymorphisms: DNA-Based Molecular Markers and Their Application in Medicine. In Genetic Diversity and Disease Susceptibility; InTech: Vienna, Austria, 2018. [Google Scholar] [CrossRef]
- Gendron, F.P.; Neary, J.T.; Theiss, P.M.; Sun, G.Y.; Gonzalez, F.A.; Weisman, G.A. Mechanisms of P2X7 Receptor-Mediated ERK1/2 Phosphorylation in Human Astrocytoma Cells. Am. J. Physiol. Cell Physiol. 2003, 284, C571–C581. [Google Scholar] [CrossRef] [PubMed]
- Denlinger, L.C.; Fisette, P.L.; Sommer, J.A.; Watters, J.J.; Prabhu, U.; Dubyak, G.R.; Proctor, R.A.; Bertics, P.J. Cutting Edge: The Nucleotide Receptor P2X 7 Contains Multiple Protein- and Lipid-Interaction Motifs Including a Potential Binding Site for Bacterial Lipopolysaccharide. J. Immunol. 2001, 167, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
- Rayah, A.; Kanellopoulos, J.M.; Di Virgilio, F. P2 Receptors and Immunity. Microbes Infect. 2012, 14, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Geistlinger, J.; Du, W.; Groll, J.; Liu, F.; Hoegel, J.; Foehr, K.J.; Pasquarelli, A.; Schneider, E.M. P2RX7 Genotype Association in Severe Sepsis Identified by a Novel Multi-Individual Array for Rapid Screening and Replication of Risk SNPs. Clin. Chim. Acta 2012, 413, 39–47. [Google Scholar] [CrossRef]
- Husted, L.B.; Harsløf, T.; Stenkjær, L.; Carstens, M.; Jørgensen, N.R.; Langdahl, B.L. Functional Polymorphisms in the P2X7 Receptor Gene Are Associated with Osteoporosis. Osteoporos. Int. 2013, 24, 949–959. [Google Scholar] [CrossRef]
- Hejjas, K.; Szekely, A.; Domotor, E.; Halmai, Z.; Balogh, G.; Schilling, B.; Sarosi, A.; Faludi, G.; Sasvari-Szekely, M.; Nemoda, Z. Association between Depression and the Gln460Arg Polymorphism of P2RX7 Gene: A Dimensional Approach. AJMG Part B Neuropsychiatr. Genet. 2009, 150, 295–299. [Google Scholar] [CrossRef]
- Barden, N.; Harvey, M.; Gagné, B.; Shink, E.; Tremblay, M.; Raymond, C.; Labbé, M.; Villeneuve, A.; Rochette, D.; Bordeleau, L.; et al. Analysis of Single Nucleotide Polymorphisms in Genes in the Chromosome 12Q24.31 Region Points to P2RX7 as a Susceptibility Gene to Bipolar Affective Disorder. AJMG Part B Neuropsychiatr. Genet. 2006, 141, 374–382. [Google Scholar] [CrossRef]
- Miller, C.M.; Boulter, N.R.; Fuller, S.J.; Zakrzewski, A.M.; Lees, M.P.; Saunders, B.M.; Wiley, J.S.; Smith, N.C. The Role of the P2X7 Receptor in Infectious Diseases. PLoS Pathog. 2011, 7, e1002212. [Google Scholar] [CrossRef] [PubMed]
- Costa-Junior, H.M.; Vieira, F.S.; Coutinho-Silva, R. C Terminus of the P2X7 Receptor: Treasure Hunting. Purinergic Signal. 2011, 7, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Kopp, R.; Krautloher, A.; Ramírez-Fernández, A.; Nicke, A. P2X7 Interactions and Signaling—Making Head or Tail of It. Front. Mol. Neurosci. 2019, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Y.; Feng, H. P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Curr. Neuropharmacol. 2018, 16, 1282–1295. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.S.; Lodoen, M.B. Mechanisms of Human Innate Immune Evasion by Toxoplasma Gondii. Front. Cell Infect. Microbiol. 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Ching, X.T.; Fong, M.Y.; Lau, Y.L. Evaluation of Immunoprotection Conferred by the Subunit Vaccines of GRA2 and GRA5 against Acute Toxoplasmosis in BALB/c Mice. Front. Microbiol. 2016, 7, 609. [Google Scholar] [CrossRef]
- Amar, D.; Safer, H.; Shamir, R. Dissection of Regulatory Networks That Are Altered in Disease via Differential Co-Expression. PLoS Comput. Biol. 2013, 9, e1002955. [Google Scholar] [CrossRef] [PubMed]
- Hernández-de-los-Ríos, A.; Murillo-Leon, M.; Mantilla-Muriel, L.E.; Arenas, A.F.; Vargas-Montes, M.; Cardona, N.; De-la-Torre, A.; Sepúlveda-Arias, J.C.; Gómez-Marín, J.E. Influence of Two Major Toxoplasma Gondii Virulence Factors (ROP16 and ROP18) on the Immune Response of Peripheral Blood Mononuclear Cells to Human Toxoplasmosis Infection. Front. Cell. Infect. Microbiol. 2019, 9, 413. [Google Scholar] [CrossRef]
- Acosta Davila, J.A.; Hernandez De Los Rios, A. An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of Toxoplasma Gondii and Other Apicomplexan Parasites. Front. Cell. Infect. Microbiol. 2019, 9, 24. [Google Scholar] [CrossRef]
- Torres-Morales, E.; Taborda, L.; Cardona, N.; De-la-Torre, A.; Sepulveda-Arias, J.C.; Patarroyo, M.A.; Gomez-Marin, J.E. Th1 and Th2 Immune Response to P30 and ROP18 Peptides in Human Toxoplasmosis. Med. Microbiol. Immunol. 2014, 203, 315–322. [Google Scholar] [CrossRef]
Polymorphisms | Location | X2 | OR | 95% CI | BONF |
---|---|---|---|---|---|
1718119 | Exon 11 | 0.23 | 1.55 | [0.71–3.35] | 0.55 |
2230912 | Exon 13 | 3.62 | 3.46 | [1.05–11.39] | 0.029 |
SNP ID | Location | Position | Amino Acid Change | PROVEAN Score | SIFT Score | Polyphen-2 Score |
---|---|---|---|---|---|---|
rs1718119 | Exon 11 | 120099486 | A348T | 3.136 Neutral | 0.95 Tolerated | 0.000 Benign |
rs2230912 | Exon 13 | 120106579 | Q460R | −0.855 Neutral | 0.14 Tolerated | 0.005 Probably damaging effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naranjo-Galvis, C.A.; McLeod, R.; Gómez-Marín, J.E.; de-la-Torre, A.; Rocha-Roa, C.; Cardona, N.; Sepúlveda-Arias, J.C. Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia. Microorganisms 2023, 11, 2508. https://doi.org/10.3390/microorganisms11102508
Naranjo-Galvis CA, McLeod R, Gómez-Marín JE, de-la-Torre A, Rocha-Roa C, Cardona N, Sepúlveda-Arias JC. Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia. Microorganisms. 2023; 11(10):2508. https://doi.org/10.3390/microorganisms11102508
Chicago/Turabian StyleNaranjo-Galvis, Carlos A., Rima McLeod, Jorge Enrique Gómez-Marín, Alejandra de-la-Torre, Cristian Rocha-Roa, Néstor Cardona, and Juan Carlos Sepúlveda-Arias. 2023. "Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia" Microorganisms 11, no. 10: 2508. https://doi.org/10.3390/microorganisms11102508
APA StyleNaranjo-Galvis, C. A., McLeod, R., Gómez-Marín, J. E., de-la-Torre, A., Rocha-Roa, C., Cardona, N., & Sepúlveda-Arias, J. C. (2023). Genetic Variations in the Purinergic P2X7 Receptor Are Associated with the Immune Response to Ocular Toxoplasmosis in Colombia. Microorganisms, 11(10), 2508. https://doi.org/10.3390/microorganisms11102508