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Abstract: Metagenomic data compression is very important as metagenomic projects are facing
the challenges of larger data volumes per sample and more samples nowadays. Reference-based
compression is a promising method to obtain a high compression ratio. However, existing microbial
reference genome databases are not suitable to be directly used as references for compression due to
their large size and redundancy, and different metagenomic cohorts often have various microbial
compositions. We present a novel pipeline that generated simplified and tailored reference genomes
for large metagenomic cohorts, enabling the reference-based compression of metagenomic data. We
constructed customized reference genomes, ranging from 2.4 to 3.9 GB, for 29 real metagenomic
datasets and evaluated their compression performance. Reference-based compression achieved
an impressive compression ratio of over 20 for human whole-genome data and up to 33.8 for all
samples, demonstrating a remarkable 4.5 times improvement than the standard Gzip compression.
Our method provides new insights into reference-based metagenomic data compression and has a
broad application potential for faster and cheaper data transfer, storage, and analysis.

Keywords: metagenomics; sequence data; reference-based compression

1. Introduction

Metagenomics is one of the most important methods of microbiome research, which
uses genomic strategies to investigate the genetic composition and functional patterns
of all microorganisms present in specific environmental samples [1]. Over the years,
several large-scale collaborative microbiome projects have been initiated, including the well-
known Human Microbiome Project (HMP) and the Earth Microbiome Project (EMP) [2,3],
the Metagenomics of the Human Intestinal Tract (MetaHIT) for gut microbiota [4], and
the TARA Oceans Project for marine microorganisms [5]. These projects usually use
non-targeted shotgun sequencing strategies to obtain higher taxonomic resolution and
more detailed functional information about the genome, resulting in the generation of
massive sequencing data. As of October 2022, the Human Microbiome Project Data Portal
(https://portal.hmpdacc.org/) (accessed on 1 October 2022) contains 31,596 samples from
18 studies, with a 48.54 TB file volume of data. The expansion of project size and the
growth of data volume poses a challenge in terms of computation, as there may not be
enough resources to store and process data. This underscores the importance and urgency
of developing methods to compress metagenomic data efficiently.

Several data compression strategies have been developed and can be divided into
reference-free and reference-based methods. Reference-free methods compress raw se-
quencing data based on their natural statistics. Redundant DNA sequences are identified
as far as possible and then processed using general compression methods such as Gzip and
Bzip2 [6–9]. Reference-based methods exploit similarities between reads and a reference
genome, which usually maps the target sequence to the reference genome and stores the
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information needed to reconstruct the sequence: position in the reference genome and
differences [10–14]. Due to the high similarity among genomes of homologous species,
reference-based compression usually achieves high compression ratios, but this approach
strongly relies on high-quality reference genomes.

There are many challenges in the reference-based compression of metagenomic se-
quencing data. Unlike classical genomic samples, metagenomic samples consist of many
different organisms, resulting in a lack of universal reference genomes among samples.
The microbial composition of cohorts may vary considerably as different studies have
various technical approaches to sample collection and sequencing. In addition, microbial
reference genomes are often stored in integrated microbial databases, such as the NCBI ref-
erence sequence database (RefSeq) [15], iMicrobe [16], EBI Metagenomics [17], IMG/M [18],
and MG-RAST [19]. Nevertheless, these databases have extremely large data volumes
and a high redundancy of genomes, which inevitably consume significant computational
resources and time costs when used as reference genomes for compression.

In this work, we propose a scheme for the construction of lightweight and cohort-
specific reference genomes. By overcoming the limitations of existing approaches and
utilizing cohort-specific reference genomes, we achieve significant improvements in com-
pression ratios and storage efficiency. Our results on diverse habitats demonstrate the
effectiveness and applicability of our pipeline for enhancing the performance of reference-
based compression tools and reducing storage costs.

2. Materials and Methods
2.1. Cohort Description

Studies from January 2015 to October 2022 with paired-end shotgun metagenomic
sequencing on human gut, mouth, skin, vaginal, soil, marine, freshwater, and wastewater
samples were searched on the National Center for Biotechnology Information (NCBI). In
total, 29 studies with a sample size greater than 100 and data sizes greater than 100 GB
of published metagenomic datasets were included (Table 1). Two hundred samples were
randomly selected from each dataset (all were included if sample size < 200). The details of
the total 5669 samples of all datasets are reported in Supplementary Table S1. Metagenomic
datasets were locally downloaded from the European Nucleotide Archive (ENA) via the
Aspera ascp command line client (v3.9.1). Sequencing depth distributions within these
datasets are shown in Figure S1.

Table 1. Summary of the metagenomic datasets used in this study.

Habitats BioProject Sample Size Data Size Sample Used in This Study References

Human gut

PRJEB11419 39,038 1003.18 Gb 200 [20]
PRJEB12449 882 371.38 Gb 200 [21]
PRJEB14847 372 1.18 Tb 200 [22]
PRJEB19857 350 520.69 Gb 200 [23]
PRJEB24041 633 480.72 Gb 200 [24]
PRJEB32631 1679 1.34 Tb 200 [25]
PRJEB34871 1197 1.13 Tb 200 [26]
PRJEB39223 2196 2.97 Tb 200 [27]
PRJEB39610 644 974.51 Gb 200 [28]

PRJNA613947 348 871.69 Gb 200 [29]

Human mouth
PRJNA745160 888 657.43 Gb 200 [30]
PRJNA647796 108 219.63 Gb 108 [31]

PRJEB6997 530 2.01 Tb 200 [32]



Microorganisms 2023, 11, 2560 3 of 13

Table 1. Cont.

Habitats BioProject Sample Size Data Size Sample Used in This Study References

Human skin
PRJNA46333 8774 1.87 Tb 200 [33]

PRJNA604820 516 269.29 Gb 200 [34]
PRJNA763232 289 210.76 Gb 200 [35]

Human vagina PRJNA797778 542 649.33 Gb 200 [36]

Soil
PRJEB42019 7557 726.36 Gb 200 [37]
PRJEB24121 290 180.83 Gb 200 [38]
PRJEB44414 195 239.80 Gb 195 [39]

Marine
PRJNA656268 1942 1.16 Tb 200 [40]
PRJNA681031 305 268.79 Gb 200 [41]
PRJEB38290 308 1.11 Tb 200 [42]

Freshwater
PRJNA287840 729 154.65 Gb 200 [43]
PRJNA662092 184 265.07 Gb 184 [44]
PRJNA418866 790 335.47 Gb 116 [45]

Wastewater
PRJNA746354 3188 447.20 Gb 200 [46]
PRJNA801677 2105 452.38 Gb 200 [47]
PRJEB31650 567 689.20 Gb 200 [48]

2.2. Data Pre-Processing and Taxonomic Profiling

Metagenomic sequencing reads were trimmed using fastp (v0.23.1) with a minimum
N base number of 0 (--n_base_limit 0) and minimum read length of 60 (--length_required
60) for trimming. Taxonomic profiles were obtained using the default parameters of
MetaPhlAn3 [49], which uses a database of clade-specific markers to quantify bacteria
constituents at the species and higher taxonomic levels.

2.3. Data Analysis

To evaluate the heterogeneity of different datasets, we performed a CLR transforma-
tion of the species relative abundance data, followed by principal component analysis
(PCA) using the scikit-learn module in Python. For each sample, the proportion of species
that contributed more than 80% to abundance (abundant species) was first calculated. Next,
the richness of the abundant species of various datasets was evaluated using sampling-unit-
based rarefaction and extrapolation curves, which were generated using the first (species
richness, q = 0) Hill number. The rarefaction/extrapolations were computed using the R
package iNEXT (v2.0.12) [50] as the mean of 100 replicate bootstrapping runs to estimate
95% confidence intervals.

2.4. Construction of the Basic Reference Database

We chose MetaPhlAn3 as the basis for the construction of our basic reference database,
as its marker gene database is the largest and most comprehensive available. Compared
with other tools based on marker genes or 16S rRNA, MetaPhlAn3 can detect more mi-
crobial species, including some rare or newly discovered ones [49]. We constructed the
MetaPhlAan3_db_25k database by selecting the best genomes for each species from NCBI
based on the species list of MetaPhlAn3. For each species, we chose representative genomes
or reference genomes if available, or otherwise the highest quality assembled genomes.
We also downloaded some external genomes, which belong to different clades but also
contain MetaPhlAn3 marker genes. These genomes may have acquired marker genes from
different species due to horizontal gene transfer or other mechanisms. We believe that these
genomes are valuable because they can increase the species diversity and coverage of the
basic reference database. For genomes in the form of chromosomes, scaffolds, or contigs,
we removed the gaps in the genomes and concatenated all segments into one complete se-
quence for subsequent alignment and compression. For the MetaPhlAan3_db_25k database,
we collected a total of 25,435 microbial genomes, covering various taxa such as bacteria,
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archaea, and eukaryotes. Similarly, we also constructed the Env_db_6k database, which is
a database containing 6149 reference genomes of environmentally relevant microorganisms.
Compared with the MetaPhlAan3_db_25k database, the Env_db_6k database contains
more environmental microbial species, but it also has some overlaps and crossovers. The
two databases can complement each other in reflecting the diversity and variability of the
microbial community.

2.5. Evaluation of Short-Read Sequence Aligners

Ref1000 and a subset of 10 samples from PRJEB11419 were used to evaluate the perfor-
mance of aligners during indexing and alignment. Ref1000 is a collection of 1000 bacterial
genomes randomly selected from the MetaPhlAn3_db_25k database. Details of Ref1000 and
the sample dataset can be found in Tables S2 and S3, respectively. We evaluate the time and
memory consumption of short-read aligners during indexing using one thread. The BWA-
index was run with default parameters because it does not provide a multi-threaded mode.

2.6. Construction of Cohort-Specific Reference Genomes and Compression

We randomly selected 50 samples from each dataset and built the cohort-specific
reference genomes consisting of the top 1000 genome sequences with the highest alignment
rates based on the Met-aPhlAn3_db_25k and Env_db_6k databases. The rest of the samples
in each dataset were used for compression tests. The sequencing data of each sample were
compressed using Genozip (v13.0.20) under both reference-free and reference-based modes,
followed by the calculation of the compression ratio (size of the original FASTQ file/size of
the compressed file). The following parameters were used to obtain the best compression:
“--best=No_REF” for reference-free mode; “—best” and “—pair” for reference-based mode.

3. Results
3.1. Microbiota Composition Analysis of Samples from Various Cohorts

We collected 5669 metagenomic samples from 29 public datasets and divided them into hu-
man and environmental samples based on whether they were collected from human body parts
(gut/mouth/skin/vagina) or environmental materials (soil/marine/freshwater/wastewater).
The detailed information of these datasets is shown in Table 1. All shotgun sequencing data
of human samples were processed with MetaPhlAn3 for quantitative species-level taxonomic
profiling, and then the microbiota composition of samples from various cohorts was evalu-
ated (Figure 1). Compositional PCA for beta diversity showed a high dispersion of the data
(Figure 1A). For gut samples, PCA demonstrated the separation of samples from different
cohorts (PC1: 22.03%, PC2: 4.43%). Samples of the majority of cohorts tended to cluster to the
bottom left or right, indicating inter-cohort similarity in microbiota composition. An exception
was PRJEB14847, samples which were far away from other cohorts and clustered into two
centers, suggesting the existence of within-study clusters. The microbiota composition of mouth
samples showed a high dispersion, with samples from different cohorts clustered separately into
centers. The distribution of skin samples was highly concentrated and had the least variation
across all habitats (PC1: 14.05%, PC2: 5.41%), whereas within-cohort vaginal samples showed a
higher degree of variation, but the PCA ultimately only explains a small amount of the total
variance (PC1: 16.54, PC2: 13.95%). Overall, the separation of samples across cohorts is greater
than the separation within cohorts.

Abundant species are those that comprise the top 80% of the total abundance in a
sample when ranked by decreasing relative abundance. The proportion of abundant species
of different cohorts was consistently low, with a median of 8.15% to 21.57% (Figure 1B).
This result has been previously observed in other studies, where a small number of species
contributed most of the abundance in the entire microbial community [51,52]. As a function
of sampling effort, the rarefaction/extrapolation (R/E) curve provides the expected number
of observed/predicted abundant species, with the number of abundant species in most
cohorts reaching saturation at 50 samples (Figure 1C).
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Figure 1. Microbiota composition analysis of human samples from various cohorts. (A) PCA demon-
strates the clustering of samples from different cohorts based on the CLR-transformed species rela-
tive abundance data of various cohorts. The diamonds indicate cluster centroids. Number in paren-
theses represents the sample size. (B) Boxplot illustrates the proportion of abundant species in each 
sample. Abundance species are those that made up the top 80% of the total abundance in a sample. 
Each dot represents a sample from that cohort. Outliers are shown as dots beyond the whiskers of 
the boxplot, which reflect samples that deviate significantly from the normal range of abundant 
species proportions. Number in parentheses represents the sample size. (C) Sampling-unit-based 
rarefaction and extrapolation (R/E) curves of abundant species of each cohort. The dots indicate the 
actual number of specimen records and separate the interpolated (solid line) from extrapolated 
(dashed line) regions of each curve. The shaded areas represent 95% confidence intervals (based on 
a bootstrap method with 100 replications). Number in parentheses represents the sample size. 
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discarded: low-quality reads (MAPQ < 5), reads with non-perfect matches (insertion, de-
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Figure 1. Microbiota composition analysis of human samples from various cohorts. (A) PCA
demonstrates the clustering of samples from different cohorts based on the CLR-transformed species
relative abundance data of various cohorts. The diamonds indicate cluster centroids. Number in
parentheses represents the sample size. (B) Boxplot illustrates the proportion of abundant species
in each sample. Abundance species are those that made up the top 80% of the total abundance in
a sample. Each dot represents a sample from that cohort. Outliers are shown as dots beyond the
whiskers of the boxplot, which reflect samples that deviate significantly from the normal range of
abundant species proportions. Number in parentheses represents the sample size. (C) Sampling-unit-
based rarefaction and extrapolation (R/E) curves of abundant species of each cohort. The dots indicate
the actual number of specimen records and separate the interpolated (solid line) from extrapolated
(dashed line) regions of each curve. The shaded areas represent 95% confidence intervals (based on a
bootstrap method with 100 replications). Number in parentheses represents the sample size.

3.2. Workflow of Constructing Reference Genomes for Specific Cohorts

The first step of the analysis workflow is the sequencing quality control to obtain high-
quality reads, followed by the alignment of short reads to the genomes in the basic reference
database (Figure 2). Next, reads that do not meet the post-filtering criteria are discarded:
low-quality reads (MAPQ < 5), reads with non-perfect matches (insertion, deletion, skipped
region, soft clipping, and hard clipping), and reads with more than three mismatches. For
reads that mapped to multiple positions in the reference genome, we only kept records of
the best alignment. Reference genomes were ranked based on the mapping rate (number of
reads mapped to each reference genome/number of total reads), and reference genomes
for each cohort were constructed depending on the number of genomes specified by users.
In brief, users can easily construct cohort-specific reference genomes of any size by simply
providing shotgun sequencing data.
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Figure 2. Workflow of reference genome construction. The next-generation sequencing (NGS) reads
of input samples were trimmed and then mapped to the reference database. Post-alignment filters
were used to remove low-quality reads, characterized by sequencing errors, small variants (indels
and SNPs), and multiple mismatches. Genomes in the reference database were ranked based on
the matching rate, and the final specific reference genome was constructed according to the output
numbers of genomes specified by users.

3.3. Evaluation of Short-Read Sequence Aligners

The construction of cohort-specific reference genomes relies on the alignment of short
sequencing reads to the basic reference database, which necessitates the inclusion of as
many microbial reference sequences as feasible in the database. Large and comprehensive
reference databases require more computational resources, especially memory. Therefore,
we evaluated the performance of three commonly used aligners, Bowtie2 (v2.3.5.1) [53],
BWA (v0.7.17) [54], and Minimap2 (v2.24) [55], during indexing and alignment. Min-
imap2 shows a significant speed advantage as it is about 92 times faster than Bowtie2 and
35 times faster than BWA, but at the cost of high memory usage (Table 2). BWA has the
lowest memory consumption among all aligners, making it superior for indexing large
reference databases.

Table 2. Indexing time and peak memory of indexing for aligners using one thread.

Aligner
Ref1000 (3.8 GB)

Time (s) Mem (GB)

Bowtie2 15,081 10
BWA 5821 6

Minimap2 164 25

Next, we investigated how the aligners scaled with the number of threads by running
them with one, four, and eight threads as multithreading is the standard use case (Figure 3).
The alignment time nearly halves for the aligners when doubling the number of threads,
suggesting that the tools make efficient use of the resources. Minimap2 runs the fastest of
all the aligners, but this advantage diminishes as the number of threads rises. In terms of
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memory usage, Bowtie2 has the lowest peak memory across all experiments. Followed
by this is BWA, whose memory usage is slightly higher than Bowtie2 when using one
thread but increases fast as the number of threads grows. BWA and Bowtie2 are both
BWT-based aligners, whose indices may be shared by multiple tasks to reduce memory
consumption. Minimap2’s memory usage is relatively high compared to memory-efficient
tools Bowtie2 and BWA, which reach a peak memory usage of 15 GB when running
10 tasks simultaneously. In summary, BWA and Bowtie2 may save more memory when
working with large reference genome databases, while Minimap2 is faster when using
small reference databases. A large reference database could be divided into sub-databases
when memory resources are restricted, and our pipeline will automatically integrate the
results after mapping them individually.
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3.4. Construction of Specific Reference Genomes for Each Dataset

Comprehensive microbial reference databases are essential for the construction of specific
reference genomes; thus, we constructed two microbial reference databases, MetaPhlAn3_db_25k
and Env_db_6k, applicable to human and environmental samples. MetaPhlAn3_db_25k
is a microbial reference database comprising 25,435 bacterial, archaeal, and eukaryotic ref-
erence genomes. As a complement to MetaPhlAn3_db_25k, the Env_db_6k database con-
tains 6149 reference genomes of microorganisms associated with environmental metagenomes
(mainly soil and water). We designated MetaPhlAn3_db_25k as the basic reference database
for human-associated samples and randomly selected 50 samples from each dataset for the
construction of specific reference genomes, as 50 samples might reflect the abundance species
composition of the whole cohort. To identify the optimal number of genome sequences, we in-
vestigated how the mapping rate varied with the number of genomes (Figure S2). The mapping
rate of most cohorts saturated when the number of genomes reached 1000; hence, we output
the top 1000 genomes as the specific reference genome for each dataset. The size of the reference
genome constructed for each dataset ranged from 2.4 to 3.8 GB, which is comparable to the
size of the human genome. For environment-associated samples, both the MetaPhlAn3_db_25k
and Env_db_6k databases were used as the basic reference databases to construct the reference
genomes of 2.8–3.9 GB in size for each dataset.

3.5. Performance of Reference Genome-Based Compression of Each Dataset

We evaluated the performance of reference-based compression using Genozip, a loss-
less compression tool designed for genomic data with both reference-based and reference-
free modes [13]. Genozip was selected for its superior performance in compressing genomic
sequences compared with other methods. Moreover, it supports various input and out-
put formats, such as FASTA, FASTQ, SAM, BAM, CRAM, etc., and provides a series of
extendable downstream analysis tools for high flexibility and convenience. In general,
reference-based compression yielded a higher compression ratio than the general compres-
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sion tool Gzip and the reference-free mode (Figure 4, Table S4). The average compression
ratio of reference-based compression for the total of 2457 human samples is 9.9, which is
2.5 times and 1.6 times better than that of Gzip and reference-free mode, respectively. When
compressed using cohort-specific reference genomes, the compression ratios for all samples
exceeded four, and half of the samples (1401/2457) reached eight. Over 10% (290/2457) of
samples obtained a score of 15, with the best result being 29.4. The average compression
ratio of each cohort ranged from 5.6 to 18.1, with an average improvement of 74–264%
over Gzip (Table S4). The low compression ratios of some datasets were potentially due
to the relatively shallow sequencing depth, such as PRJEB24041 and PRJEB12449 from
the human gut and PRJNA46333 from skin (Figure S1). The average compression ratio
for 1693 environmental samples is 8.2, which is 1.9 times better than that of Gzip and
1.1 times higher than the reference-free method (Table S4). Approximately 7% (120/1693)
of the environmental samples were able to obtain a compression ratio of 15, with the best
result being 33.8. Samples with high compression ratios were mostly from the wastewater
datasets PRJNA80167 and PRJNA746354. The average compression ratios for each dataset
ranged from 5.5 to 17.2, with an average improvement of 49–183% compared to Gzip.
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The gray, blue, and red boxes represent the compression ratios of samples compressed with Gzip,
Genozip without reference, and Genozip with reference, respectively. Compression ratio is defined
as the ratio of the original file size to the compressed file. Outliers are shown as dots beyond the
whiskers of the boxplot.

4. Discussion

Novel reference-based compression tools for genomic data have been developed in
recent years, but their acceptable reference genome size is usually limited, yet sensitive
to the choice of reference genomes [56–58]. To streamline current reference databases and
enhance the compression ratio of metagenomes, we introduce a pipeline for constructing a
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lightweight and cohort-specific reference genome using a small sample size, which can be
used for compressing large cohort samples.

We collect genome sequences with high mapping rates in the reference database to
create a cohort-specific reference genome, as the mapping rate has a positive correlation
with the compression ratio for samples within the same cohort. Nevertheless, it should be
noted that high mapping rates may not necessarily result in high compression rates when
comparing across cohorts. This result is predictable as the reference genome only impacts
the compression of nucleotide sequences, while the actual compression also includes header
lines and quality scores. Quality scores occupy a significant chunk of the storage space and
are more difficult to compress compared with other components of FASTQ files [59]. The
coverage and depth of each contig can be shown by the extension tools of Genozip, which is
a valuable feature that may simplify our pipeline for the construction of reference genomes.
Unfortunately, we were unable to test this feature using either MetaPhlAn3_db_25k or
Env_db_6k reference databases due to the limits of the free edition of Genozip regarding the
size of the reference genome. In addition to the mapping rate, other factors such as the loca-
tion, host information, and collection method of the samples may also affect the quality and
compression efficiency of the constructed reference sequences. However, some metadata
(e.g., host information and collection methods) are difficult to access due to inconsistencies
in the metadata formats of different public platforms, which poses challenges for further
analysis and comparison. We encourage future researchers to provide richer metadata
information when uploading data to facilitate subsequent analysis and comparison.

Our findings indicate that environmental samples have lower species richness and
less compression improvement than human samples when using reference genomes, as
illustrated in Figure S3. This highlights the diversity and complexity of environmental
microbiome communities, and the lack of adequate and comprehensive reference genomes
for less-studied microbial species. To enhance the quality of reference genomes and im-
prove habitat specificity, minimizing genomic redundancy and developing habitat-specific
reference databases have proven effective. Notably, several well-curated reference genome
datasets of the human microbiome have been developed in recent years, including those
from low-abundance and unculturable bacteria, enriching the current reference catalog for
the human microbiome [60–62]. Efforts have also been made to develop habitat-specific
reference databases for environmental metagenomes. For example, Choi et al. developed
RefSoil, a curated reference database of soil microbial genomes, and extended it to in-
clude plasmids of soil microorganisms as the RefSoil+ database [63,64]. Klemetsen et al.
constructed the marine prokaryotic genome databases MarRef and MarDB using non-
redundant genome and metagenome datasets obtained from ENA and NCBI [65]. These
habitat-specific databases have facilitated the classification and analysis of metagenomic
samples, and as these specific databases continue to be expanded and improved on, refer-
ence genomes constructed using our pipeline will become more targeted.

In summary, our work offers fresh ideas for reference-based compression and the
construction of cohort-specific reference genomes. With approximately 2–4 GB of reference
genomes, we achieved impressive compression ratios of 5.5–18.1 (1.5–3.6 times better than
Gzip) across 29 datasets, with significant savings in storage space and cost. This is especially
beneficial for large-scale genomic projects that generate and store massive amounts of data.
Our method reduces the I/O time for large files and improves the efficiency and scalability
of genomic data processing and analysis pipelines. Furthermore, our approach is adaptable
to improvements in storage systems, which can enhance data access speed. This, in turn,
facilitates rapid data retrieval and sharing among researchers and clinicians.

While our method has demonstrated impressive advantages in reference-based com-
pression, it is important to acknowledge its limitations and consider future directions for
improvement. Although the size of the microbial reference genome is already approaching
that of the human genome, there is still potential for further compression by removing
redundant regions based on their coverage degree. It is also important to test our method
on third-generation sequencing data, which may have different characteristics and require-
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ments for compression compared to NGS short reads. A significant challenge is to improve
the availability and quality of reference genomes in the database, especially for less-studied
microbial species, which may affect the compression efficiency for samples collected from
environmental sources. As genome databases continue to evolve and improve, we an-
ticipate that the quality and specificity of cohort-specific databases will enhance, further
strengthening the effectiveness and applicability of our method.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms11102560/s1, Figure S1: Kernel distribution estimation plot
of sequence depths within each dataset used in this study; Figure S2: Variation in the mapping rates of
various datasets with the number of genomes; Figure S3: Scatter plot of species richness and compression
ratio for 29 datasets; Table S1: Metadata of metagenomic samples used in this study; Table S2: Summary
of 1000 bacterial reference genomes (Ref1000); Table S3: Metadata of samples used to evaluate the
performance of short-read aligners; Table S4: Summary of reference genomes and compression ratio for
each dataset.
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