Heterogeneous Habitats in Taiga Forests with Different Important Values of Constructive Species Changes Bacterial Beta Diversity
Abstract
:1. Introduction
2. Material and Method
2.1. Site Description
2.2. Experimental Design and Soil Sample Collection
2.3. Characterization of Soil Physicochemical Properties
2.4. DNA Extraction, PCR Amplification, and Illumina MiSeq Sequencing
2.5. Bioinformatics Analysis and Statistical Processing
3. Results
3.1. Physicochemical Characteristics of Soil in Taiga Forests with Different Important Values
3.2. Distribution Characteristics of Soil Bacterial Community
3.3. Changes of Bacterial Alpha Diversity
3.4. Changes of Bacterial Beta Diversity
3.5. Correlation Analysis between Soil Physicochemical Factors and Soil Bacterial Community
3.6. Soil Bacterial Function Prediction
4. Discussion
4.1. Differences in Soil Physicochemical Properties of Taiga Forests with Different Important Values of Larix gmelinii
4.2. The Heterogeneous Habitat in Taiga Forests Changed the Diversity and Community Composition of Soil Bacteria
4.3. The Heterogeneous Habitat of Taiga Forest Changed the Potential Functional Groups of Soil Bacteria
5. Conclusions
- (1)
- There were heterogeneous habitats in taiga forests with different important values of Larix gmelinii, in which AP content increased significantly as the important value rose, while SOC, MBC, pH, and C/N decreased significantly.
- (2)
- The composition of soil bacterial community in the heterogeneous habitat of taiga forests was similar. Proteobacteria, Actinobacteriota, and Acidobacteriota were the dominant bacterial phyla with no significant difference; Mycobacterium was the dominant bacterial genus, and the relative abundance of each bacterial group was different.
- (3)
- The beta diversity of soil bacterial communities in taiga forests showed highly significant differences, with SOC, C/N, MBC, AP, TN, pH, AN, and WC being important influencing factors for their significant changes.
- (4)
- Chemoheterotrophy and aerobic chemoheterotrophy were the main functional groups of soil bacteria, and the relative abundance of each bacterial functional group was significantly different.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Van Nostrand, J.D.; Deng, Y.; Zhou, J.Z. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Front. Environ. Sci. Eng. China 2011, 5, 1–20. [Google Scholar] [CrossRef]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Gregory Caporaso, J. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef] [PubMed]
- Delmont, T.O.; Prestat, E.; Keegan, K.P.; Faubladier, M.; Robe, P.; Clark, I.M.; Pelletier, E.; Hirsch, P.R.; Meyer, F.; Gilbert, J.A.; et al. Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J. 2012, 6, 1677–1687. [Google Scholar] [CrossRef]
- Checinska Sielaff, A.; Upton, R.N.; Hofmockel, K.S.; Xu, X.; Wayne Polley, H.; Wilsey, B.J. Microbial community structure and functions differ between native and novel (exotic-dominated) grassland ecosystems in an 8-year experiment. Plant Soil 2018, 432, 359–372. [Google Scholar] [CrossRef]
- Wang, S.K.; Zuo, X.A.; Zhao, X.Y.; Awada, T.; Luo, Y.Q.; Li, Y.Q.; Qu, H. Dominant plant species shape soil bacterial community in semiarid sandy land of northern China. Ecol. Evol. 2018, 8, 1693–1704. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Bakker, M.G.; Bradeen, J.M.; Kinkel, L.L. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 2015, 96, 134–142. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Drivers of microbial community structure in forest soils. Appl. Microbiol. Biotechnol. 2018, 102, 4331–4338. [Google Scholar] [CrossRef]
- Urbanová, M.; Šnajdr, J.; Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 2015, 84, 53–64. [Google Scholar] [CrossRef]
- Kumar, M.; Männistö, M.K.; Van Elsas, J.D.; Nissinen, R.M. Plants impact structure and function of bacterial communities in Arctic soils. Plant Soil 2016, 399, 319–332. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, Y.J.; Liu, G.C.; Hu, C.Y.; Wang, X.C.; Yan, G.Y.; Wang, Q.G. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 2021, 161, 108393. [Google Scholar] [CrossRef]
- Li, H.; Ye, D.d.; Wang, X.G.; Settles, M.L.; Wang, J.; Hao, Z.Q.; Zhou, L.S.; Dong, P.; Jiang, Y.; Ma, Z.S. Soil bacterial communities of different natural forest types in Northeast China. Plant Soil 2014, 383, 203–216. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.G.; Jiang, Z.H.; Sun, P.; Xiao, H.L.; Wu, Y.X.; Chen, J.G. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 2019, 651, 2281–2291. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Yu, Q.G.; Wang, H.; Liu, H.H.; Zhao, Y.C.; Xie, X.Y.; Zhang, M.; Geng, W. Effects of plant community and soil properties on soil bacterial community in Bitahai Wetland, Southwest China. Chin. J. Appl. Ecol. 2021, 32, 2199–2208. [Google Scholar]
- Cheng, Z.C.; Wu, S.; Du, J.; Liu, Y.Z.; Sui, X.; Yang, L.B. Reduced arbuscular mycorrhizal fungi (AMF) diversity in light and moderate fire sites in Taiga forests, Northeast China. Microorganisms 2023, 11, 1836. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, Y.Q.; Ma, D.L.; Song, D.D.; Liu, L. Vertical distribution of bacterial community diversity in the Greater Khingan Mountain permafrost region. Ecol. Evol. 2022, 12, e9106. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Wang, L.L.; Ma, X.Y.; Shi, F.X.; Wang, X.W.; Ren, J.S.; Jiang, L.; Hou, A.X.; Song, C.C. Effects of plant community diversity on soil microbial functional groups in permafrost peatlands of Greater Khingan Mountains, Northeast China. Wetl. Ecol. Manag. 2022, 30, 595–606. [Google Scholar] [CrossRef]
- Sui, X.; Li, M.S.; Frey, B.; Wang, M.Y.; Weng, X.H.; Wang, X.; Chen, F.Y.; Li, X.D.; Du, Z.; Yang, L.B.; et al. Climax forest has a higher soil bacterial diversity but lower soil nutrient contents than degraded forests in temperate northern China. Ecol. Evol. 2022, 12, e9535. [Google Scholar] [CrossRef]
- Meng, M.; Wang, B.; Zhang, Q.L.; Tian, Y. Driving force of soil microbial community structure in a burned area of Daxing’anling, China. J. For. Res. 2021, 32, 1723–1738. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Yang, L.B.; Wu, S.; Zhou, T. Warming changes the composition and diversity of fungal communities in permafrost. Ann. Microbiol. 2023, 73, 7. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, J.; Deng, H.B.; Cui, G.F. Variations of population structure and important value of the main edificators along the elevation gradient on the northern slope of Changbai Mountain. J. For. Res. 2003, 14, 117–121. [Google Scholar] [CrossRef]
- Shang, W.; Wu, X.D.; Zhao, L.; Yue, G.Y.; Zhao, Y.H.; Qiao, Y.P.; Li, Y.Q. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai-Tibet Plateau. Catena 2016, 137, 670–678. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, Z.C.; Yu, Z.Q.; Shen, G.F.; Cheng, H.F.; Tao, S. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. Sci. Total Environ. 2020, 747, 141358. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.X.; Wang, M.C.; Zhang, W.; Ni, Z.; Hashidoko, Y.S.Y.K.; Shen, W.J. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci. Total Environ. 2018, 624, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Seaton, F.M.; George, P.B.L.; Lebron, I.; Jones, D.L.; Creer, S.; Robinson, D.A. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biol. Biochem. 2020, 144, 107766. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Kooch, Y.; Rostayee, F.; Hosseini, S.M. Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena 2016, 144, 65–73. [Google Scholar] [CrossRef]
- Li, J.B.; Luo, C.L.; Zhang, D.Y.; Cai, X.X.; Jiang, L.F.; Zhao, X.; Zhang, G. Diversity of the active phenanthrene degraders in PAH-polluted soil is shaped by ryegrass rhizosphere and root exudates. Soil Biol. Biochem. 2019, 128, 100–110. [Google Scholar] [CrossRef]
- Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
- Uriarte, M.; Turner, B.L.; Thompson, J.; Zimmerman, J.K. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: A neighborhood approach. Ecol. Appl. 2015, 25, 2022–2034. [Google Scholar] [CrossRef]
- Xia, S.W.; Chen, J.; Schaefer, D.; Detto, M. Scale-dependent soil macronutrient heterogeneity reveals effects of litterfall in a tropical rainforest. Plant Soil 2015, 391, 51–61. [Google Scholar] [CrossRef]
- Yu, Q.G.; Hu, X.; Ma, J.W.; Ye, j.; Sun, W.C.; Wang, Q.; Lin, H. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil Tillage Res. 2020, 196, 104483. [Google Scholar] [CrossRef]
- Högberg, M.N.; Högberg, P.; Myrold, D.D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 2007, 150, 590–601. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.D.; Peng, Y.; George, T.S.; Feng, G. Closing the loop on phosphorus loss from intensive agricultural soil: A microbial immobilization solution? Front. Microbiol. 2018, 9, 104. [Google Scholar] [CrossRef]
- Anzuay, M.S.; Frola, O.; Angelini, J.G.; Ludueña, L.M.; Fabra, A.; Taurian, T. Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis 2013, 60, 143–154. [Google Scholar] [CrossRef]
- Tamme, R.; Hiiesalu, I.; Laanisto, L.; Szava-Kovats, R.; Pärtel, M. Environmental heterogeneity, species diversity and co-existence at different spatial scales. J. Veg. Sci. 2010, 21, 796–801. [Google Scholar] [CrossRef]
- Carney, K.M.; Matson, P.A. Plant communities, soil microorganisms, and soil carbon cycling: Does altering the world belowground matter to ecosystem functioning? Ecosystems 2005, 8, 928–940. [Google Scholar] [CrossRef]
- Donnison, L.M.; Griffith, G.S.; Bardgett, R.D. Determinants of fungal growth and activity in botanically diverse haymeadows: Effects of litter type and fertilizer additions. Soil Biol. Biochem. 2000, 32, 289–294. [Google Scholar] [CrossRef]
- Huang, X.F.; Chaparro, J.M.; Reardon, K.F.; Zhang, R.F.; Shen, Q.R.; Vivanco, J.M. Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 2014, 92, 267–275. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Guo, Z.Y.; Chen, C.R.; Jia, Z.J. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations. Biogeosciences 2017, 14, 2101–2111. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wen, H.Y.; Chen, L.Q.; Yin, T.T. Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLoS ONE 2014, 9, e115024. [Google Scholar] [CrossRef]
- Zhang, X.F.; Xu, S.J.; Li, C.M.; Zhao, L.; Feng, H.Y.; Yue, G.Y.; Ren, Z.W.; Cheng, G.D. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan Plateau. Res. Microbiol. 2014, 165, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, Z.G.; Li, Y.F.; Zhang, Y.G.; Wang, M. Soil microbial community structure and diversity of typical vegetation types in Chishui River Basin. Res. Soil Water Conserv. 2022, 29, 275–283. [Google Scholar]
- Shen, C.C.; Xiong, J.B.; Zhang, H.Y.; Feng, Y.Z.; Lin, X.G.; Li, X.Y.; Liang, W.J.; Chu, H.Y. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211. [Google Scholar] [CrossRef]
- Ranjard, L.; Dequiedt, S.; Chemidlin Prévost-Bouré, N.C.; Thioulouse, J.; Saby, N.P.A.; Lelievre, M.; Maron, P.A.; Morin, F.E.R.; Bispo, A.; Jolivet, C.; et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 2013, 4, 1434. [Google Scholar] [CrossRef]
- Franklin, R.B.; Mills, A.L. Importance of spatially structured environmental heterogeneity in controlling microbial community composition at small spatial scales in an agricultural field. Soil Biol. Biochem. 2009, 41, 1833–1840. [Google Scholar] [CrossRef]
- Lin, Y.B.; Kong, J.J.; Yang, L.; He, Q.; Su, Y.; Li, J.Y.; Wang, G.Y.; Qiu, Q. Soil bacterial and fungal community responses to throughfall reduction in a Eucalyptus plantation in southern China. Forests 2021, 13, 37. [Google Scholar] [CrossRef]
- Jiang, X.W.; Ma, D.L.; Zang, S.Y.; Zhang, D.Y.; Sun, H.Z. Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing. Microbiol. China 2021, 48, 1093–1105. [Google Scholar]
- Zeng, J.; Liu, X.J.; Song, L.; Lin, X.G.; Zhang, H.Y.; Shen, C.C.; Chu, H.Y. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 2016, 92, 41–49. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Klatt, C.G.; Liu, Z.F.; Ludwig, M.; Kühl, M.; Jensen, S.I.; Bryant, D.A.; Ward, D.M. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. ISME J. 2013, 7, 1775–1789. [Google Scholar] [CrossRef]
- Burton, J.; Chen, C.R.; Xu, Z.H.; Ghadiri, H. Gross nitrogen transformations in adjacent native and plantation forests of subtropical Australia. Soil Biol. Biochem. 2007, 39, 426–433. [Google Scholar] [CrossRef]
- Wang, Y.S.; Li, C.N.; Kou, Y.P.; Wang, J.J.; Tu, B.; Li, H.; Li, X.Z.; Wang, C.T.; Yao, M.J. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biol. Biochem. 2017, 115, 547–555. [Google Scholar] [CrossRef]
- Rivett, D.W.; Bell, T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat. Microbiol. 2018, 3, 767–772. [Google Scholar] [CrossRef]
- Hou, X.L.; Han, H.; Tigabu, M.; Cai, L.P.; Meng, F.R.; Liu, A.Q.; Ma, X.Q. Changes in soil physico-chemical properties following vegetation restoration mediate bacterial community composition and diversity in Changting, China. Ecol. Eng. 2019, 138, 171–179. [Google Scholar] [CrossRef]
Experimental Group | Important Value |
---|---|
L1 | 0.434 ± 0.009 e |
L2 | 0.481 ± 0.007 d |
L3 | 0.514 ± 0.012 c |
L4 | 0.544 ± 0.007 b |
L5 | 0.585 ± 0.009 a |
Experimental Group | TN (g/kg) | AK (mg/kg) | AP (mg/kg) | AN (mg/kg) | SOC (g/kg) | MBC (mg/kg) | pH | WC (%) | C/N |
---|---|---|---|---|---|---|---|---|---|
L1 | 2.14 ± 0.02 b | 137.44 ± 0.92 c | 20.23 ± 0.08 e | 67.57 ± 0.13 c | 73.66 ± 1.46 a | 200.77 ± 0.09 a | 5.48 ± 0.01 a | 31.16 ± 1.07 b | 34.39 ± 0.73 a |
L2 | 2.15 ± 0.02 b | 112.21 ± 0.68 e | 45.25 ± 2.02 d | 69.47 ± 0.17 c | 55.54 ± 0.33 b | 170.70 ± 0.06 b | 5.14 ± 0.01 b | 34.77 ± 0.53 ab | 25.80 ± 0.29 b |
L3 | 2.27 ± 0.01 a | 191.49 ± 0.97 a | 57.16 ± 0.65 c | 79.68 ± 1.46 b | 42.18 ± 0.53 c | 147.77 ± 0.03 c | 5.05 ± 0.00 c | 36.35 ± 2.35 a | 18.58 ± 0.27 c |
L4 | 2.29 ± 0.00 a | 188.15 ± 0.62 b | 61.56 ± 1.34 b | 96.13 ± 1.17 a | 40.29 ± 0.11 cd | 139.67 ± 0.15 d | 4.41 ± 0.01 d | 36.06 ± 1.18 a | 17.59 ± 0.05 cd |
L5 | 2.31 ± 0.01 a | 131.45 ± 0.70 d | 77.38 ± 0.75 a | 98.35 ± 0.70 a | 39.41 ± 0.22 d | 116.40 ± 0.20 e | 4.31 ± 0.00 e | 36.86 ± 1.08 a | 17.09 ± 0.07 d |
Experimental Group | Coverage Index | Chao1 Index | Shannon Index | Simpson Index |
---|---|---|---|---|
L1 | 0.9996 ± 0.0002 a | 861.4867 ± 45.3938 a | 5.9228 ± 0.0613 b | 0.0085 ± 0.0011 a |
L2 | 0.9997 ± 0.0001 a | 896.1055 ± 29.5726 a | 6.0373 ± 0.0434 ab | 0.0077 ± 0.0005 ab |
L3 | 0.9998 ± 0.0001 a | 902.6085 ± 46.4267 a | 6.1131 ± 0.0958 ab | 0.0068 ± 0.0012 ab |
L4 | 0.9999 ± 0.0001 a | 866.5270 ± 34.9195 a | 5.9670 ± 0.0207 b | 0.0078 ± 0.0005 ab |
L5 | 0.9998 ± 0.0001 a | 966.1622 ± 51.2490 a | 6.2130 ± 0.0616 a | 0.0055 ± 0.0006 b |
Soil Factors | R2 | p-Value |
---|---|---|
TN | 0.7442 | 0.003 |
AK | 0.2187 | 0.224 |
AP | 0.8497 | 0.001 |
AN | 0.5492 | 0.009 |
SOC | 0.9429 | 0.001 |
MBC | 0.8539 | 0.001 |
pH | 0.5905 | 0.004 |
WC | 0.4834 | 0.019 |
C/N | 0.9381 | 0.001 |
Functional Groups | L1 | L2 | L3 | L4 | L5 |
---|---|---|---|---|---|
chemoheterotrophy | 40.6 ± 0.11 a | 38.93 ± 0.20 b | 37.02 ± 0.54 c | 38.68 ± 0.35 b | 35.08 ± 0.09 d |
aerobic chemoheterotrophy | 40.45 ± 0.12 a | 38.87 ± 0.19 b | 36.87 ± 0.48 c | 38.54 ± 0.36 b | 33.59 ± 0.21 d |
nitrogen fixation | 4.44 ± 0.50 b | 5.78 ± 0.31 a | 6.24 ± 0.51 a | 6.59 ± 0.32 a | 6.14 ± 0.43 a |
cellulolysis | 6.14 ± 0.25 a | 5.58 ± 0.43 ab | 3.31 ± 0.43 c | 4.52 ± 0.86 abc | 3.72 ± 0.72 bc |
animal parasites or symbionts | 1.50 ± 0.55 b | 1.50 ± 0.19 b | 2.23 ± 0.19 ab | 1.91 ± 0.24 ab | 2.78 ± 0.45 a |
predatory or exoparasitic | 1.44 ± 0.06 a | 1.53 ± 0.07 a | 1.53 ± 0.15 a | 1.73 ± 0.09 a | 1.92 ± 0.36 a |
human pathogens all | 0.36 ± 0.01 d | 0.65 ± 0.09 cd | 1.54 ± 0.09 b | 0.95 ± 0.16 c | 1.94 ± 0.08 a |
human pathogens pneumonia | 0.09 ± 0.03 e | 0.62 ± 0.08 d | 1.54 ± 0.09 b | 0.95 ± 0.16 c | 1.91 ± 0.09 a |
ureolysis | 0.39 ± 0.01 d | 0.43 ± 0.06 cd | 1.93 ± 0.08 a | 0.78 ± 0.12 c | 1.22 ± 0.22 b |
phototrophy | 1.01 ± 0.06 a | 0.95 ± 0.05 a | 0.93 ± 0.18 a | 0.81 ± 0.11 a | 0.80 ± 0.05 a |
iron respiration | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.05 ± 0.03 b | 0.00 ± 0.00 b | 2.42 ± 0.32 a |
fermentation | 0.04 ± 0.01 b | 0.03 ± 0.02 b | 0.12 ± 0.06 b | 0.07 ± 0.01 b | 1.52 ± 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Wu, S.; Pan, H.; Lu, X.; Du, J.; Yang, L. Heterogeneous Habitats in Taiga Forests with Different Important Values of Constructive Species Changes Bacterial Beta Diversity. Microorganisms 2023, 11, 2609. https://doi.org/10.3390/microorganisms11102609
Zhou T, Wu S, Pan H, Lu X, Du J, Yang L. Heterogeneous Habitats in Taiga Forests with Different Important Values of Constructive Species Changes Bacterial Beta Diversity. Microorganisms. 2023; 11(10):2609. https://doi.org/10.3390/microorganisms11102609
Chicago/Turabian StyleZhou, Tian, Song Wu, Hong Pan, Xinming Lu, Jun Du, and Libin Yang. 2023. "Heterogeneous Habitats in Taiga Forests with Different Important Values of Constructive Species Changes Bacterial Beta Diversity" Microorganisms 11, no. 10: 2609. https://doi.org/10.3390/microorganisms11102609
APA StyleZhou, T., Wu, S., Pan, H., Lu, X., Du, J., & Yang, L. (2023). Heterogeneous Habitats in Taiga Forests with Different Important Values of Constructive Species Changes Bacterial Beta Diversity. Microorganisms, 11(10), 2609. https://doi.org/10.3390/microorganisms11102609