Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Experimental Setup
2.3. Cyanobacterial Isolates and Culture Conditions
2.4. Determination of Soil and Water Physicochemical Parameters
2.5. Methane Fluxes
2.6. Chlorophyll a (Chl a) Determination
2.7. Molecular Analyses
2.8. Abundance of Methane Cycling Microorganisms
2.9. Activity of the MOB
2.10. Statistical Analysis and Data Visualization
3. Results
3.1. CH4 Fluxes and the Effect of Cyanobacterial Inoculation
3.2. Effect of Cyanobacterial Inoculation on MOB Distribution, Abundance, and Activity
3.3. Effect of Cyanobacterial Inoculation on the Abundance of Methane Producing Microorganisms
3.4. Physicochemical Properties of Soil and Water and Effects on Methane Processing Microorganisms
4. Discussion
4.1. Inoculation Effect on MOB Abundance and Activity
4.2. Effect of Cyanobacterial Inoculation on the Abundance of Methanogens
4.3. Effect of the Environment on the Distribution of Methane Cycling Microorganisms
5. Conclusions
Cyanobacteria as GHG Mitigators
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Shi, H.; Zhang, J.; Wang, X.; Pan, S.; Yang, J. Increased Greenhouse Gas Emissions Intensity of Major Croplands in China: Implications for Food Security and Climate Change Mitigation. Glob. Chang. Biol. 2020, 26, 6116–6133. [Google Scholar] [CrossRef]
- Rosentreter, J.A.; Borges, A.V.; Deemer, B.R.; Holgerson, M.A.; Liu, S.; Song, C.; Melack, J.; Raymond, P.A.; Duarte, C.M.; Allen, G.H.; et al. Half of Global Methane Emissions Come from Highly Variable Aquatic Ecosystem Sources. Nat. Geosci. 2021, 14, 225–230. [Google Scholar] [CrossRef]
- Islam, T.; Gessesse, A.; Garcia-Moyano, A.; Murrell, J.C.; Øvreås, L. A Novel Moderately Thermophilic Type Ib Methanotroph Isolated from an Alkaline Thermal Spring in the Ethiopian Rift Valley. Microorganisms 2020, 8, 250. [Google Scholar] [CrossRef]
- Conrad, R. The Global Methane Cycle: Recent Advances in Understanding the Microbial Processes Involved. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef]
- Liu, Y.; Whitman, W.B. Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Ann. N. Y. Acad. Sci. 2008, 1125, 171–189. [Google Scholar] [CrossRef]
- Hernández, M.; Conrad, R.; Klose, M.; Ma, K.; Lu, Y. Structure and Function of Methanogenic Microbial Communities in Soils from Flooded Rice and Upland Soybean Fields from Sanjiang Plain, NE China. Soil Biol. Biochem. 2017, 105, 81–91. [Google Scholar] [CrossRef]
- Knief, C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front. Microbiol. 2015, 6, 1346. [Google Scholar] [CrossRef]
- Ettwig, K.F.; van Alen, T.; van de Pas-Schoonen, K.T.; Jetten, M.S.M.; Strous, M. Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum. Appl. Environ. Microbiol. 2009, 75, 3656–3662. [Google Scholar] [CrossRef]
- Guerrero-Cruz, S.; Vaksmaa, A.; Horn, M.A.; Niemann, H.; Pijuan, M.; Ho, A. Methanotrophs: Discoveries, Environmental Relevance, and a Perspective on Current and Future Applications. Front. Microbiol. 2021, 12, 678057. [Google Scholar] [CrossRef]
- Knittel, K.; Boetius, A. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annu. Rev. Microbiol. 2009, 63, 311–334. [Google Scholar] [CrossRef]
- Op den Camp, H.J.M.; Islam, T.; Stott, M.B.; Harhangi, H.R.; Hynes, A.; Schouten, S.; Jetten, M.S.M.; Birkeland, N.-K.; Pol, A.; Dunfield, P.F. Environmental, Genomic and Taxonomic Perspectives on Methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 2009, 1, 293–306. [Google Scholar] [CrossRef]
- van Spanning, R.J.M.; Guan, Q.; Melkonian, C.; Gallant, J.; Polerecky, L.; Flot, J.-F.; Brandt, B.W.; Braster, M.; Iturbe Espinoza, P.; Aerts, J.W.; et al. Methanotrophy by a Mycobacterium Species That Dominates a Cave Microbial Ecosystem. Nat. Microbiol. 2022, 7, 2089–2100. [Google Scholar] [CrossRef]
- Howe, K.L.; Seitz, K.W.; Campbell, L.G.; Baker, B.J.; Thrash, J.C.; Rabalais, N.N.; Rogener, M.-K.; Joye, S.B.; Mason, O.U. Metagenomics and Metatranscriptomics Reveal Broadly Distributed, Active, Novel Methanotrophs in the Gulf of Mexico Hypoxic Zone and in the Marine Water Column. FEMS Microbiol. Ecol. 2023, 99, fiac153. [Google Scholar] [CrossRef]
- Semrau, J.D.; Chistoserdov, A.; Lebron, J.; Costello, A.; Davagnino, J.; Kenna, E.; Holmes, A.J.; Finch, R.; Murrell, J.C.; Lidstrom, M.E. Particulate Methane Monooxygenase Genes in Methanotrophs. J. Bacteriol. 1995, 177, 3071–3079. [Google Scholar] [CrossRef]
- Luesken, F.A.; Zhu, B.; van Alen, T.A.; Butler, M.K.; Diaz, M.R.; Song, B.; Op den Camp, H.J.M.; Jetten, M.S.M.; Ettwig, K.F. pmoA Primers for Detection of Anaerobic Methanotrophs. Appl. Environ. Microbiol. 2011, 77, 3877–3880. [Google Scholar] [CrossRef]
- Oswald, K.; Milucka, J.; Brand, A.; Hach, P.; Littmann, S.; Wehrli, B.; Kuypers, M.M.M.; Schubert, C.J. Aerobic Gammaproteobacterial Methanotrophs Mitigate Methane Emissions from Oxic and Anoxic Lake Waters. Limnol. Oceanogr. 2016, 61, S101–S118. [Google Scholar] [CrossRef]
- van Grinsven, S.; Oswald, K.; Wehrli, B.; Jegge, C.; Zopfi, J.; Lehmann, M.F.; Schubert, C.J. Methane Oxidation in the Waters of a Humic-Rich Boreal Lake Stimulated by Photosynthesis, Nitrite, Fe(III) and Humics. Biogeosciences 2021, 18, 3087–3101. [Google Scholar] [CrossRef]
- He, R.; Wang, J.; Pohlman, J.W.; Jia, Z.; Chu, Y.-X.; Wooller, M.J.; Leigh, M.B. Metabolic Flexibility of Aerobic Methanotrophs under Anoxic Conditions in Arctic Lake Sediments. ISME J. 2022, 16, 78–90. [Google Scholar] [CrossRef]
- Ho, A.; Angel, R.; Veraart, A.J.; Daebeler, A.; Jia, Z.; Kim, S.Y.; Kerckhof, F.-M.; Boon, N.; Bodelier, P.L.E. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System. Front. Microbiol. 2016, 7, 1285. [Google Scholar] [CrossRef]
- Lee, H.J.; Jeong, S.E.; Kim, P.J.; Madsen, E.; Jeon, C.O. High Resolution Depth Distribution of Bacteria, Archaea, Methanotrophs, and Methanogens in the Bulk and Rhizosphere Soils of a Flooded Rice Paddy. Front. Microbiol. 2015, 6, 639. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Shen, L.; Bai, Y.; Liu, X.; Tian, M.; Wang, C.; Yang, Y.; Liu, J. Biogeographical Distribution and Regulation of Methanotrophs in Chinese Paddy Soils. Eur. J. Soil Sci. 2022, 73, e13200. [Google Scholar] [CrossRef]
- Vaksmaa, A.; van Alen, T.A.; Ettwig, K.F.; Lupotto, E.; Valè, G.; Jetten, M.S.M.; Lüke, C. Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil. Front. Microbiol. 2017, 8, 2127. [Google Scholar] [CrossRef]
- Fernández-Valiente, E.; Quesada, A. A Shallow Water Ecosystem: Rice-Fields. The Relevance of Cyanobacteria in the Ecosystem. Limnetica 2004, 23, 95–108. [Google Scholar] [CrossRef]
- Adams, D.G. Heterocyst Formation in Cyanobacteria. Curr. Opin. Microbiol. 2000, 3, 618–624. [Google Scholar] [CrossRef]
- Chamizo, S.; Mugnai, G.; Rossi, F.; Certini, G.; De Philippis, R. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration. Front. Environ. Sci. 2018, 6, 49. [Google Scholar] [CrossRef]
- Ikram, S.F.; Singh, L.; Kumar, D.; Sharma, C.M. Prospects and Constraints in Studying the Biodiversity of Agriculturally Important Microalgae and Cyanobacteria and Useful Statistical Tools. Biodivers. Conserv. 2022, 31, 1095–1124. [Google Scholar] [CrossRef]
- Demirkaya, C.; Vadlamani, A.; Tervahauta, T.; Strous, M.; De la Hoz Siegler, H. Autofermentation of Alkaline Cyanobacterial Biomass to Enable Biorefinery Approach. Biotechnol. Biofuels Bioprod. 2023, 16, 62. [Google Scholar] [CrossRef]
- Khetkorn, W.; Raksajit, W.; Maneeruttanarungroj, C.; Lindblad, P. Photobiohydrogen Production and Strategies for H2 Yield Improvements in Cyanobacteria. Adv. Biochem. Eng. Biotechnol. 2023, 183, 253–279. [Google Scholar] [CrossRef]
- Zhou, M.; Zhou, C.; Peng, Y.; Jia, R.; Zhao, W.; Liang, S.; Xu, X.; Terada, A.; Wang, G. Space-for-Time Substitution Leads to Carbon Emission Overestimation in Eutrophic Lakes. Environ. Res. 2023, 219, 115175. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Yang, Y.; Xie, S. Impacts of Cyanobacterial Biomass and Nitrate Nitrogen on Methanogens in Eutrophic Lakes. Sci. Total Environ. 2022, 848, 157570. [Google Scholar] [CrossRef]
- Badr, K.; He, Q.P.; Wang, J. A Novel Semi-Structured Kinetic Model of Methanotroph-Photoautotroph Cocultures for Biogas Conversion. Chem. Eng. J. 2022, 431, 133461. [Google Scholar] [CrossRef]
- Rasouli, Z.; Valverde Pérez, B.; D’Este, M.; De Francisci, D.; Angelidaki, I. Nutrient Recovery from Industrial Wastewater as Single Cell Protein by a Co-Culture of Green Microalgae and Methanotrophs. Biochem. Eng. J. 2018, 134, 129–135. [Google Scholar] [CrossRef]
- Guggenheim, C.; Freimann, R.; Mayr, M.J.; Beck, K.; Wehrli, B.; Bürgmann, H. Environmental and Microbial Interactions Shape Methane-Oxidizing Bacterial Communities in a Stratified Lake. Front. Microbiol. 2020, 11, 579427. [Google Scholar] [CrossRef]
- Ho, A.; Bodelier, P.L. Diazotrophic Methanotrophs in Peatlands: The Missing Link? Plant Soil 2015, 389, 419–423. [Google Scholar] [CrossRef]
- Prasanna, R.; Kumar, V.; Kumar, S.; Yadav, A.K.; Tripathi, U.; Singh, A.K.; Jain, M.C.; Gupta, P.; Singh, P.K.; Sethunathan, N. Methane Production in Rice Soil Is Inhibited by Cyanobacteria. Microbiol. Res. 2002, 157, 1–6. [Google Scholar] [CrossRef]
- Badr, K.; He, Q.P.; Wang, J. Identifying Interspecies Interactions within a Model Methanotroph-Photoautotroph Coculture Using Semi-Structured and Structured Modeling. IFAC-PapersOnLine 2022, 55, 106–111. [Google Scholar] [CrossRef]
- Cerbin, S.; Pérez, G.; Rybak, M.; Wejnerowski, Ł.; Konowalczyk, A.; Helmsing, N.; Naus-Wiezer, S.; Meima-Franke, M.; Pytlak, Ł.; Raaijmakers, C.; et al. Methane-Derived Carbon as a Driver for Cyanobacterial Growth. Front. Microbiol. 2022, 13, 837198. [Google Scholar] [CrossRef]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-Resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef]
- Murase, J.; Frenzel, P. Selective Grazing of Methanotrophs by Protozoa in a Rice Field Soil. FEMS Microbiol. Ecol. 2008, 65, 408–414. [Google Scholar] [CrossRef]
- Fernandez Scavino, A.; Ji, Y.; Pump, J.; Klose, M.; Claus, P.; Conrad, R. Structure and Function of the Methanogenic Microbial Communities in Uruguayan Soils Shifted between Pasture and Irrigated Rice Fields. Environ. Microbiol. 2013, 15, 2588–2602. [Google Scholar] [CrossRef]
- Krause, S.; Lüke, C.; Frenzel, P. Succession of Methanotrophs in Oxygen–Methane Counter-Gradients of Flooded Rice Paddies. ISME J. 2010, 4, 1603–1607. [Google Scholar] [CrossRef]
- Irisarri, P.; Gonnet, S.; Monza, J. Cyanobacteria in Uruguayan Rice Fields: Diversity, Nitrogen Fixing Ability and Tolerance to Herbicides and Combined Nitrogen. J. Biotechnol. 2001, 91, 95–103. [Google Scholar] [CrossRef]
- Pérez, G.; Cerecetto, V.; Irisarri, P. Potential Cyanobacterial Inoculants for Rice Described from a Polyphasic Approach. Agrocienc. Urug. 2020, 24, e52. [Google Scholar] [CrossRef]
- Rippka, R. [1] Isolation and Purification of Cyanobacteria. In Methods in Enzymology; Cyanobacteria; Academic Press: Cambridge, MA, USA, 1988; Volume 167, pp. 3–27. [Google Scholar]
- Rhine, E.D.; Mulvaney, R.L.; Pratt, E.J.; Sims, G.K. Improving the Berthelot Reaction for Determining Ammonium in Soil Extracts and Water. Soil Sci. Soc. Am. J. 1998, 62, 473–480. [Google Scholar] [CrossRef]
- Mulvaney, R.L. Nitrogen—Inorganic Forms. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 1123–1184. ISBN 978-0-89118-866-7. [Google Scholar]
- Heanes, D.L. Determination of Total organic-C in Soils by an Improved Chromic Acid Digestion and Spectrophotometric Procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Nusch, E. Comparison of Different Methods for Chlorophyll and Phaeopigment Determination. Arch. Hydrobiol. 1980, 14, 14–36. [Google Scholar]
- Griffiths, R.I.; Whiteley, A.S.; O’Donnell, A.G.; Bailey, M.J. Rapid Method for Coextraction of DNA and RNA from Natural Environments for Analysis of Ribosomal DNA- and rRNA-Based Microbial Community Composition. Appl. Environ. Microbiol. 2000, 66, 5488–5491. [Google Scholar] [CrossRef]
- Prasanna, R.; Adak, A.; Verma, S.; Bidyarani, N.; Babu, S.; Pal, M.; Shivay, Y.S.; Nain, L. Cyanobacterial Inoculation in Rice Grown under Flooded and SRI Modes of Cultivation Elicits Differential Effects on Plant Growth and Nutrient Dynamics. Ecol. Eng. 2015, 84, 532–541. [Google Scholar] [CrossRef]
- Ho, A.; Kerckhof, F.-M.; Luke, C.; Reim, A.; Krause, S.; Boon, N.; Bodelier, P.L.E. Conceptualizing Functional Traits and Ecological Characteristics of Methane-Oxidizing Bacteria as Life Strategies. Environ. Microbiol. Rep. 2013, 5, 335–345. [Google Scholar] [CrossRef]
- Safitri, A.S.; Hamelin, J.; Kommedal, R.; Milferstedt, K. Engineered Methanotrophic Syntrophy in Photogranule Communities Removes Dissolved Methane. Water Res. X 2021, 12, 100106. [Google Scholar] [CrossRef]
- Krause, S.M.; Johnson, T.; Samadhi Karunaratne, Y.; Fu, Y.; Beck, D.A.C.; Chistoserdova, L.; Lidstrom, M.E. Lanthanide-Dependent Cross-Feeding of Methane-Derived Carbon Is Linked by Microbial Community Interactions. Proc. Natl. Acad. Sci. USA 2017, 114, 358–363. [Google Scholar] [CrossRef]
- Lüke, C.; Krause, S.; Cavigiolo, S.; Greppi, D.; Lupotto, E.; Frenzel, P. Biogeography of Wetland Rice Methanotrophs. Environ. Microbiol. 2010, 12, 862–872. [Google Scholar] [CrossRef]
- Bodrossy, L.; Stralis-Pavese, N.; Konrad-Köszler, M.; Weilharter, A.; Reichenauer, T.G.; Schöfer, D.; Sessitsch, A. mRNA-Based Parallel Detection of Active Methanotroph Populations by Use of a Diagnostic Microarray. Appl. Environ. Microbiol. 2006, 72, 1672–1676. [Google Scholar] [CrossRef]
- Shinjo, R.; Oe, F.; Nakagawa, K.; Murase, J.; Asakawa, S.; Watanabe, T. Type-Specific Quantification of Particulate Methane Monooxygenase Gene of Methane-Oxidizing Bacteria at the Oxic–Anoxic Interface of a Surface Paddy Soil by Digital PCR. Environ. Microbiol. Rep. 2023, 15, 392–403. [Google Scholar] [CrossRef]
- Steenbergh, A.K.; Meima, M.M.; Kamst, M.; Bodelier, P.L.E. Biphasic Kinetics of a Methanotrophic Community Is a Combination of Growth and Increased Activity per Cell. FEMS Microbiol. Ecol. 2009, 71, 12–22. [Google Scholar] [CrossRef]
- Zhao, J.; Cai, Y.; Jia, Z. The pH-Based Ecological Coherence of Active Canonical Methanotrophs in Paddy Soils. Biogeosciences 2020, 17, 1451–1462. [Google Scholar] [CrossRef]
- Wu, Z.; Song, Y.; Shen, H.; Jiang, X.; Li, B.; Xiong, Z. Biochar Can Mitigate Methane Emissions by Improving Methanotrophs for Prolonged Period in Fertilized Paddy Soils. Environ. Pollut. 2019, 253, 1038–1046. [Google Scholar] [CrossRef]
- Yuan, Y.; Conrad, R.; Lu, Y. Responses of Methanogenic Archaeal Community to Oxygen Exposure in Rice Field Soil. Environ. Microbiol. Rep. 2009, 1, 347–354. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.; Wei, S.; Wang, W.; Lin, X. Windrow Composting Mitigated CH4 Emissions: Characterization of Methanogenic and Methanotrophic Communities in Manure Management. FEMS Microbiol. Ecol. 2014, 90, 575–586. [Google Scholar] [CrossRef]
- Liu, J.; Xu, H.; Jiang, Y.; Zhang, K.; Hu, Y.; Zeng, Z. Methane Emissions and Microbial Communities as Influenced by Dual Cropping of Azolla along with Early Rice. Sci. Rep. 2017, 7, 40635. [Google Scholar] [CrossRef]
- Irisarri, P.; Gonnet, S.; Deambrosi, E.; Monza, J. Cyanobacterial Inoculation and Nitrogen Fertilization in Rice. World J. Microbiol. Biotechnol. 2007, 23, 237–242. [Google Scholar] [CrossRef]
- Costa, D.F.A.; Castro-Montoya, J.M.; Harper, K.; Trevaskis, L.; Jackson, E.L.; Quigley, S. Algae as Feedstuff for Ruminants: A Focus on Single-Cell Species, Opportunistic Use of Algal By-Products and On-Site Production. Microorganisms 2022, 10, 2313. [Google Scholar] [CrossRef]
- Zhu, Y.; Koo, C.W.; Cassidy, C.K.; Spink, M.C.; Ni, T.; Zanetti-Domingues, L.C.; Bateman, B.; Martin-Fernandez, M.L.; Shen, J.; Sheng, Y.; et al. Structure and Activity of Particulate Methane Monooxygenase Arrays in Methanotrophs. Nat. Commun. 2022, 13, 5221. [Google Scholar] [CrossRef]
- Krause, S.; Lüke, C.; Frenzel, P. Methane Source Strength and Energy Flow Shape Methanotrophic Communities in Oxygen-Methane Counter-Gradients: Energy Flow Shapes Methanotrophic Communities. Environ. Microbiol. Rep. 2012, 4, 203–208. [Google Scholar] [CrossRef]
- Crombie, A.T.; Murrell, J.C. Trace-Gas Metabolic Versatility of the Facultative Methanotroph Methylocella Silvestris. Nature 2014, 510, 148–151. [Google Scholar] [CrossRef]
- Sullivan, B.W.; Selmants, P.C.; Hart, S.C. What Is the Relationship between Soil Methane Oxidation and Other C Compounds? Glob. Chang. Biol. 2014, 20, 2381–2382. [Google Scholar] [CrossRef]
- Kravchenko, I.; Sukhacheva, M. Methane Oxidation and Diversity of Aerobic Methanotrophs in Forest and Agricultural Soddy–Podzolic Soils. Appl. Soil Ecol. 2017, 119, 267–274. [Google Scholar] [CrossRef]
- Tang, K.; Zheng, C.; Yang, F.; Wang, Z.; Feng, F. Soil Organic Carbon Changed by Grazing Determinates the Abundance, Diversity and Composition of Aerobic Methanotroph Communities in Cyanobacteria-Dominated Biological Soil Crusts in Desert Steppes. J. Arid Environ. 2023, 215, 105012. [Google Scholar] [CrossRef]
- Yang, C.; Chowdhury, D.; Zhang, Z.; Cheung, W.K.; Lu, A.; Bian, Z.; Zhang, L. A Review of Computational Tools for Generating Metagenome-Assembled Genomes from Metagenomic Sequencing Data. Comput. Struct. Biotechnol. J. 2021, 19, 6301–6314. [Google Scholar] [CrossRef]
- Mugnai, G.; Rossi, F.; Felde, V.J.M.N.L.; Colesie, C.; Büdel, B.; Peth, S.; Kaplan, A.; De Philippis, R. Development of the Polysaccharidic Matrix in Biocrusts Induced by a Cyanobacterium Inoculated in Sand Microcosms. Biol. Fertil. Soils 2018, 54, 27–40. [Google Scholar] [CrossRef]
- Lürling, M.; Mello, M.M.E.; van Oosterhout, F.; de Senerpont Domis, L.; Marinho, M.M. Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Front. Microbiol. 2018, 9, 1851. [Google Scholar] [CrossRef]
- Ohadi, S.; Godar, A.; Madsen, J.; Al-Khatib, K. Response of Rice Algal Assemblage to Fertilizer and Chemical Application: Implications for Early Algal Bloom Management. Agronomy 2021, 11, 542. [Google Scholar] [CrossRef]
- Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; et al. Expression of Barley SUSIBA2 Transcription Factor Yields High-Starch Low-Methane Rice. Nature 2015, 523, 602–606. [Google Scholar] [CrossRef]
- Steinberg, L.M.; Regan, J.M. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 2008, 74, 6663–6671. [Google Scholar] [CrossRef]
- Kolb, S.; Knief, C.; Stubner, S.; Conrad, R. Quantitative detection of methanotrophs in soil by novel pmoA- targeted real-time PCR assays. Appl. Environ. Microbiol. 2003, 69, 2423–2429. [Google Scholar] [CrossRef]
Treatments | Incubation Period (d) | CH4 Fluxes (mg CH4·m−2·d−1) |
---|---|---|
Control | 0 | - |
15 | 3.62 ± 0.84 a | |
30 | 1371.90 ± 565.61 bB | |
Nostoc sp. | 0 | - |
15 | 13.00 ± 18.55 a | |
30 | 11.47 ± 5.70 aA | |
Calothrix sp. | 0 | - |
15 | 2.89 ± 1.05 a | |
30 | 54.86 ± 74.82 aA |
Compartment | |||||||
---|---|---|---|---|---|---|---|
Surface Soil Layer | Subsurface Soil Layer | ||||||
Incubation Period (d) | |||||||
Treatment | Variable | 0 | 15 | 30 | 0 | 15 | 30 |
Control | pH * ° | 5.47 ± 0.07 a | 5.41 ± 0.04 a | 5.37 ± 0.0 b | 5.30 ± 0.13 a | 5.82 ± 0.08 b | 5.94 ± 0.08 b |
NH4+ | 6.91 ± 3.43 | 3.91 ± 1.47 | 6.55 ± 0.27 | 5.82 ± 2.29 | 6.61 ± 2.2 | 7.19 ± 0.48 | |
NO3− * ° | 0.65 ± 0.35 b | 0.72 ± 0.27 b | 0.50 ± 0.60 a | 1.13 ± 1.06 b | 0.41 ± 0.58 a | 0.47 ± 0.61 a | |
OC * ° | 2.06 ± 0.06 A | 2.10 ± 0.04 A | 2.03 ± 0.06 A | 1.96 ± 0.04 Aa | 2.09 ± 0.04 Aa | 2.11 ± 0.02 Ab | |
Nostoc sp. | pH | 5.46 ± 0.10 a | 5.64 ± 0.22 a | 5.78 ± 0.02 b | 5.47 ± 0.15 a | 5.76 ± 0.15 b | 5.84 ± 0.02 b |
NH4+ | 6.81 ± 0.39 | 6.01 ± 4.03 | 6.96 ± 1.78 | 6.56 ± 1.72 | 7.85 ± 1.72 | 6.26 ± 3.87 | |
NO3− | 1.14 ± 0.86 b | 0.50 ± 0.40 b | 0.01 ± 0.01 a | 0.41 ± 0.10 b | 0.19 ± 0.27 a | B.D. | |
OC | 2.07 ± 0.03 A | 1.96 ± 0.03 A | 2.15 ± 0.03 A | 2.06 ± 0.10 Aa | 1.95 ± 0.03 Aa | - | |
Calothrix sp. | pH | 5.44 ± 0.02 a | 5.67 ± 0.10 a | 5.55 ± 0.10 b | 5.56 ± 0.12 a | 5.62 ± 0.19 b | 5.50 ± 0.10 b |
NH4+ | 3.92 ± 0.02 | 5.29 ± 2.41 | 7.98 ± 1.16 | 4.66 ± 1.27 | 5.21 ± 1.40 | 6.26 ± 3.88 | |
NO3− | 0.54 ± 0.23 b | 0.70 ± 0.38 b | 0.02 ± 0.02 a | 0.15 ± 0.04 b | B.D. | B.D. | |
OC | 1.96 ± 0.04 B | 2.32 ± 0.19 B | 2.32 ± 0.20 B | 2.00 ± 0.06 Ba | 2.05 ± 0.16 Ba | 2.58 ± 0.0 Bb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, G.; Krause, S.M.B.; Bodelier, P.L.E.; Meima-Franke, M.; Pitombo, L.; Irisarri, P. Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils. Microorganisms 2023, 11, 2830. https://doi.org/10.3390/microorganisms11122830
Pérez G, Krause SMB, Bodelier PLE, Meima-Franke M, Pitombo L, Irisarri P. Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils. Microorganisms. 2023; 11(12):2830. https://doi.org/10.3390/microorganisms11122830
Chicago/Turabian StylePérez, Germán, Sascha M. B. Krause, Paul L. E. Bodelier, Marion Meima-Franke, Leonardo Pitombo, and Pilar Irisarri. 2023. "Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils" Microorganisms 11, no. 12: 2830. https://doi.org/10.3390/microorganisms11122830
APA StylePérez, G., Krause, S. M. B., Bodelier, P. L. E., Meima-Franke, M., Pitombo, L., & Irisarri, P. (2023). Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils. Microorganisms, 11(12), 2830. https://doi.org/10.3390/microorganisms11122830