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Abstract: The Triatoma brasiliensis species complex is a monophyletic group encompassing two sub-
species and six species. Recently, a hybrid zone of members of this complex was recorded in the
state of Pernambuco. Questions concerning the capability of the hybrids to become infected with
Trypanosoma cruzi have been raised. This study aimed to compare the susceptibility of Triatoma b.
brasiliensis, Triatoma juazeirensis, and their experimental hybrids to infection with T. cruzi. We infected
the parentals and their experimental hybrids (obtained through reciprocal crosses) through artificial
feeding with citrated rabbit blood, to which the TcI 0354 strain of T. cruzi had been added. The
insects were weighed before and after feeding on the rabbit blood, and then they were dissected on
the 10th, 20th, and 30th day after infection. Both the hybrids and the parentals remained infected
throughout the experiment. The parasite was mostly found in the epimastigote form. The number of
epimastigotes was significantly lower in the stomach and small intestine of T. juazeirensis than in the
hybrids or in T. b. brasiliensis. A significantly higher percentage of metacyclic trypomastigotes was
detected in the small intestine and rectum of the hybrids. Hybrids demonstrated higher susceptibility
to the TcI 0354 strain than their parentals, opening up new avenues to be investigated.

Keywords: Chagas disease; triatomine; hybrid; vector capacity; metacyclogenesis; epimastigotes

1. Introduction

Chagas disease remains one of the most important and yet neglected diseases in
the world, and until now, there have been no drugs available to cure the illness in its
chronic phase [1]. Therefore, strategies that aim to monitor and control insect vectors
are the most effective measures to prevent the transmission of the protozoan Trypanosoma
cruzi, an etiologic agent, to humans [2]. American trypanosomiasis, better known as
Chagas disease, affects more than six million people around the world, and changes in
its epidemiology pose new challenges for controlling the illness [2,3]. Currently, there
are more than 155 triatomine species recognized as potential vectors of T. cruzi that occur
mainly in Central and South America; however, only a dozen of them offer a real risk for
the transmission of this etiological agent to human populations [4–8].
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Trypanosoma cruzi is a flagellated protozoan parasite of mammals that is transmitted via
bloodsucking insects of the Triatominae subfamily. It causes Chagas disease, an important
human disease in Neotropical America [4,9,10]. Distinct methods of transmission of the
protozoan have also been reported among human populations, for instance, through the
consumption of contaminated wild animals [11–13]. The disease is now considered a global
public health problem due to human migration from endemic to non-endemic areas, where
countries such as Australia, Canada, Japan, Spain, and the United States of America have
the highest number of immigrants infected by T. cruzi [14].

The parasite develops inside the triatomine insect’s intestinal tract, and its first trans-
formation from trypomastigotes to epimastigotes takes place in the stomach, where the
blood is stored nearly undigested. When the parasite reaches the small intestine, a multipli-
cation boost occurs, and the parasite population density increases. Some of the parasites
migrate to the rectum, while others continue to multiply in this portion of the intestinal
tract. The different properties of the environment of the rectum provide better attachment
conditions for the parasite, which leads to a transformation in its infective form, i.e., the
metacyclic trypomastigote form [15]. Subsequently, the insects eliminate the parasite’s
infective form in their feces and urine, which can be deposited on the skin of the mammal
host species, eventually transmitting T. cruzi [12,16,17]. The triatomines’ vector capacity is
related to several factors: their geographic distribution, feeding behavior, and physiological,
genetic, and environmental parameters [17–20].

The Triatoma brasiliensis species complex is a monophyletic group of the Triatominae
subfamily, and multidisciplinary studies have been carried out to reveal the phylogenetic
relationships among the species [21–26]. Currently, this complex encompasses two sub-
species and six species: T. b. brasiliensis Neiva, 1911; T. b. macromelasoma Galvão, 1956;
T. bahiensis Sherlock & Serafim, 1987; T. juazeirensis Costa & Felix, 2006; T. lenti Sherlock
& Serafim, 1967; T. melanica Neiva e Lent, 1941; T. petrocchiae Pinto & Barreto, 1925; and
T. sherlocki Papa et al., 2002. The members of this species complex are of distinct epidemio-
logic importance, have a clear geographic distribution, and can be distinguished by their
morphological characteristics [22,27–30]. Triatoma b. brasiliensis is one of the most important
triatomine species in northeastern Brazil because of its wide geographic distribution (in
five Brazilian states), its high rate of domiciliation, and its spread through natural infec-
tion [27,29,31,32]. Moreover, the programs to control Triatoma infestans (Klug, 1834), which
was previously considered the main vector in Latin America, were not so effective for
T. b. brasiliensis, a native vector, which colonized not just human domiciles but also infested
several artificial and natural ecotopes [6,27,31–37].

Morphometric studies on the T. brasiliensis species complex have identified T. b.
macromelasoma as a possible hybridization product between T. juazeirensis and T. b. brasilien-
sis, suggesting, for the first time, a homoploidal hybrid speciation in the triatomine
group [38]. In addition, thirteen different phenotypes of T. b. brasiliensis were found
in peridomiciliary areas in the state of Pernambuco, and their intermediate patterns were
confirmed using molecular tools, establishing them as hybrids of members of this species
complex [39].

The triatomine’s susceptibility to infection depends on several factors, such as the
vector species becoming infected by the parasite; the parasite density, which is modulated
by the insect’s physiological barriers [15,40]; the multiplication rates of the parasite; the
capacity of the parasite to reach the insect’s rectum [41]; and adaptation of the parasite
strain to the triatomine species [40,42,43]. On the other hand, T. cruzi strains have biological,
biochemical, molecular, and genetic diversity, along with eco-epidemiological complex-
ity [44,45]. Therefore, interactions between the parasite and insect vectors raise complex
questions that are yet to be understood.

Studies on the capacity of the triatomine species to become infected with the parasite
T. cruzi and how this is associated with its capacity to colonize human domiciles are of great
importance for public health and governmental services since this information is crucial
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for the application of more precise monitoring and measures to control the Chagas disease
vectors [2,27,46].

The objective of this study was to explore the susceptibility of the hybrids from T. b.
brasiliensis and T. juazeirensis to T. cruzi in comparison to the susceptibility of their parental
subspecies and species by performing experimental infection.

2. Materials and Methods
2.1. Insects

Triatoma b. brasiliensis and T. juazeirensis fifth-instar nymphs from laboratory colonies
kept under standardized conditions (52–70% relative humidity and 23–24.8 ◦C) were
randomly selected (Table 1).

Table 1. Data on the localities of the founder species of the colonies.

Species State Municipality Date Geographic
Coordinates

T. b. brasiliensis RN Caicó 12 May 2011 06◦27′ S 37◦05′ W
T. juazeirensis BA Curaça 24 November 2013 09◦12′ S 39◦83′ W

Initially, 10 fifth-instar nymphs (5 males and 5 females) from each species were sexed
and separated into containers (14 × 14 × 15 cm) to obtain virgin adults. The insects were
fed once a week on Swiss Webster mice (license: LW-18/11 from the Ethics Committee
on the Use of Animals of the Oswaldo Cruz Institute (CEUA-IOC)) until reaching the
imaginal molt. When some of the specimens died, they were replaced by other virgin
adults. Thirty other fifth-instar nymphs of T. b. brasiliensis and T. juazeirensis were kept
starving for 30 days and were then used in the infection experiment.

2.2. Experiments of Species Crossing

After the imaginal molt, interspecies crosses of T. b. brasiliensis females × T. juazeirensis
males and T. juazeirensis females × T. b. brasiliensis males were performed in separate
containers, and they were fed mice once a week. The hybrids were named “Hbj” and “Hjb”.

The F1 hybrids, thus obtained, were placed in separate containers and were reared
until at least 30 fifth-instar nymphs had been obtained from each crossing. In total, 30 fifth-
instar specimens of T. b. brasiliensis and T. juazeirensis plus 60 F1 hybrids (30) of each
crossing combination were used in the infection experiment with strain 0354 of T. cruzi
(Figure 1).
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Figure 1. General aspect of adults (top) and fifth-instar nymphs (bottom) of Triatoma brasiliensis (A,A’),
Triatoma juazeirensis (B,B’), and their reciprocal hybrids “Hbj” (♀T. b. brasiliensis × ♂T. juazeirensis)
(C,C’) and “Hjb” (♀T. juazeirensis × ♂T. b. brasiliensis) (D,D’), scale= 25mm for adults and 20 mm
for nymphs.
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2.3. Trypanosoma cruzi

The parasite isolate used in this study was obtained from the institutional trypanosome
collection consisting of wild and domestic mammals and vectors (Coleção de Trypanosoma
de Mamíferos Silvestres, Domésticos e Vetores, COLTRYP). Trypanosoma cruzi strain 0354 (TcI)
was originally isolated from T. b. brasiliensis from Caicó, its type locality, and it has been
maintained through cryopreservation at −195 ◦C in liquid nitrogen since 2006. This
isolate was previously characterized by means of multiplex PCR on the mini-exon gene, as
described by another study [47].

Epimastigotes were grown in MacNeal, Novy, and Nicolle (NNN) medium with
a liver infusion tryptose (LIT) overlay and supplemented with 10% fetal bovine serum, as
previously described in [40,48].

2.4. Infective Feeding of the Insects

Thirty fifth-instar nymphs of the parental species (T. b. brasiliensis and T. juazeirensis)
and their hybrids (Hbj and Hjb) were artificially fed through latex membranes 10 mL of cit-
rated rabbit blood (0.1 mL of sodium citrate/mL), which had been centrifuged at a speed of
3500 rpm for 10 min to separate the plasma from the erythrocytes. We removed the plasma
and washed the erythrocytes three times with phosphate-buffered saline (PBS; pH 7.2).

After washing, the erythrocytes were resuspended in LIT (the same volume as that of
the plasma removed) containing 1.5 × 107/mL epimastigotes in the exponential growth
phase (v/v), and they were counted using a hemocytometer. This mixture was then
transferred to a glass bottle where peripheral circulation of heated water was carried out at
a temperature of around 37 ◦C. A latex membrane coated the open bottom of the bottle, on
which the insects fed. Fifteen insects were divided between two bottles so that all of the
insects could move and reach the food source. Thus, only fully engorged insects were used
in the experiment.

For this experiment, the insects were previously and individually marked with differ-
ent gouache colors (non-toxic) on the legs and pronotum, allowing for the differentiation
of each of the specimens. Then, we weighed the insects individually on a precision scale
(Libor AEG, Shimadzu, Kyoto, Japan) before and after the infective meal. Thus, it was
possible to measure their blood volume ingestion by calculating the weight difference,
which was based on the weight before and after the blood meal (Supplementary Table S1).

Fifteen days after the first feeding, the insects were fed again with chicken blood
without parasites because the percentage of flagella declines if the insects are subjected to
long periods of fasting [15].

2.5. Analysis of T. cruzi Forms in Insects

Ten triatomines were dissected 10, 20, and 30 days after the infective blood meal,
totaling thirty insects in each group. The outer edge of the abdomen of the triatomine
(conexivum) was cut in the posterior–anterior direction and, with the dorsal region exposed,
the entire digestive tract was removed and transferred to a Petri dish where it was divided
into three segments: stomach, intestine, and rectum. These segments were then macerated
in 200 µL of PBS (pH 7.2).

To examine the insect’s biological content (feces, urine, and digestive tract tissues),
each segment of the digestive tract was individually displayed on a hemocytometer
to count the distinct parasite forms: epimastigotes, metacyclic forms, and transitional
forms [40,42,48–51] (Supplementary Table S2). For a better understanding and visualiza-
tion of the percentages in the distinct compartments of the insect’s gut, two tables are
presented wherein the first shows the percentages of the different T. cruzi forms across
the experiment and the second compares the percentages of the parasite forms in each
gut compartment.
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2.6. Statistical Analyses

The effects of the number of days after the infective blood meal and groups on the
number of parasite forms in the stomach, intestine, and rectum were analyzed by fit-
ting generalized linear models (GLM) with the Poisson error distribution, which was
corrected for overdispersion. The choice of the best statistical model applied in the analysis
was made through comparisons between the adjustments of the complete models and
models with reduced variables, where a maximum likelihood test was used to compare
changes in deviances before and after removing variables. Interactions between vari-
ables were considered only when significant. The goodness of fit was determined using
“half-normal-plot” plots with simulated envelopes at a 95% significance level. For the anal-
ysis, the statistical software R version 4.1.3 (The R Foundation for Statistical Computing;
http://www.R-project.org, accessed 4 May 2023) was used. When the effect of the variables
was significant, the averages of the number of parasite forms were compared using the cld
function of the multcomp package of the R software (R Core Team 2020).

3. Results
3.1. Percentage of the T. cruzi Forms across the Days of Analysis

The forms found in the digestive tube were classified as epimastigotes, trypomastig-
otes, and transition forms. The latter includes any parasite intermediate forms, as already
described in the literature [40]. Table 2 shows the variation in the relative percentage of
T. cruzi forms (per specimen, for each time) of each form found in each compartment of
the digestive tube over the course of the analysis. It was verified that there was a higher
percentage of epimastigote forms in all compartments of the digestive tube in both parentals
and hybrids, despite their numbers decreasing between the stomach and the rectum until
the end of the experiment. The highest percentages of metacyclic forms (the infective ones)
in the rectum were observed in the hybrids Hbj and Hjb.

Table 2. Percentages of different forms of Trypanosoma cruzi found in different compartments of the
digestive tube (stomach, intestine, and rectum) on the 10th, 20th, and 30th days after infection in
Triatoma b. brasiliensis, Triatoma juazeirensis, and their hybrids Hbj (♀T. b. brasiliensis × ♂T. juazeirensis)
and Hjb (♀T. juazeirensis × ♂T. b. brasiliensis) throughout the experiment.
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The percentage of parasite numbers in the stomach declined over the course of the
analysis for both hybrids and for T. b. brasiliensis. Triatoma juazeirensis also declined, but the
kinetics were different (Table 2).

In the small intestine, the parasite percentage increased in the hybrids over the days
of observation. The parentals also experienced increases in parasite percentages, although
T. juazeirensis presented with the highest percentage on the 20th day, and for T. b. brasiliensis,
the values were very close on the 20th and 30th days (Table 2).

In general, the percentages of parasites in the rectum were lower when compared
to the other parts of the digestive tube. There was also an increase in percentages of the
parasites in the rectum over the course of the analysis, mainly for Hbj and T. b. brasiliensis
(Table 2).

3.2. Developmental Stages in Each Compartment of the Digestive Tube

Epimastigotes were the predominant form in all compartments and in all groups,
demonstrating the highest percentages across all of the days of observation (Table 3). Tran-
sitional forms, when compared to the epimastigotes, were recorded in lower percentages
in all compartments of the digestive tract in all of the insects, with oscillating values in
both the hybrids and the parentals (Table 3). Trypomastigotes were observed in all parts
of the digestive tract of the insects, although they had lower percentages compared to the
epimastigotes and demonstrated oscillating values when compared to the transitional form.
Among the specimens studied, T. b brasiliensis and T. juazeirensis had the lowest numbers of
trypomastigotes in their intestines (Table 3).

Table 3. Relative percentages of different forms of Trypanosoma cruzi found in different compartments
of the digestive tube (stomach, intestine, and rectum) on the 10th, 20th, and 30th days after infection in
Triatoma b. brasiliensis, Triatoma juazeirensis, and their hybrids Hbj (♀T. b. brasiliensis × ♂T. juazeirensis)
and Hjb (♀T. juazeirensis × ♂T. b. brasiliensis).
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The number of epimastigotes (F1,85 = 65.6, p < 0.001), transition forms (F1,85 = 16.7,
p < 0.001), and trypomastigotes (F1,85 = 11.63, p < 0.001) of T. cruzi in the insects’ stomachs
differed after long periods of time. On the other hand, the number of epimastigotes
(F3,86 = 1.43, p = 0.23) and transition forms (F3,86 = 0.67, p = 0.56) of T. cruzi was not different
among the triatomine groups (parentals and hybrids). Only the number of trypomastigotes
was significantly distinct among the groups (F3,86 = 5.83, p < 0.01).

The number of epimastigotes and transition forms in the small intestine varied either
with time (F1,113 = 5.32, p < 0.05 and F1,113 = 5.62, p < 0.05, respectively) or based on the
triatomine group (F3,113 = 5.53 p < 0.05 and F1,113 = 11.38, p < 0.05, respectively). The
variation in the number of trypomastigotes in the small intestine was affected by the
interaction effects of the triatomine group and time (time: F1,113 = 6.93 p < 0.05; triatomine
group: F3,114 = 3.43, p < 0.05; time× triatomine group: F3,110 = 4.75, p < 0.05). In this case, the
highest percentages of trypomastigotes were found in hybrids Hbj and Hjb with oscillating
values across the days of observation in both groups. In the parentals, the highest values
were recorded on the 30th day, being 5% and 4% for T. juazeirensis and T. b. brasiliensis,
respectively (Table 3).

The number of epimastigotes and transient forms in the rectum varied only with the
observation time (F1,93 = 6.55, p < 0.05 and F1,93 = 4.62, p < 0.05, respectively). However, the
different groups of triatomines had no significant effect on these T. cruzi forms (F3,94 = 0.279,
p = 0.83; F3,94 = 6.55, p = 0.348). In general, the number of these forms of T. cruzi increased
with observation time.

In the rectum, the hybrids showed the highest percentages of trypomastigotes (16%
on the 20th day in the Hbj and 31% on the 20th day in the Hjb), when compared to the
parentals. In T. juazeirensis and T. b. brasiliensis, trypomastigotes were not recorded on the
10th day, while their highest percentages (6.5% and 7%, respectively) were observed on the
30th day (Table 3).

3.3. Blood Meal Volume

As shown in Supplementary Table S1, some specimens with low infectivity ingested
the same amount of blood as those that had a higher infection rate. The correlation analyses
between the amount of blood ingested and parasitic infection were not significant for
all tests (additional files 2–5; p > 0.05), with the exception being the correlation between
T. b. brasiliensis and the amount of blood ingested on the 20th day after the blood meal.

4. Discussion

In the literature, few studies have addressed the susceptibility of natural or experi-
mental hybrids of triatomines to infection by T. cruzi. Therefore, it is extremely important
to understand how a particular strain of this etiologic agent can interact with the triatomine
vector species and their hybrids. In this unprecedented study, susceptibility to the T. cruzi
strain 0354 (TcI) infection was evaluated by comparing T. b. brasiliensis, T. juazeirensis, and
their reciprocal experimental hybrids. In our experiment, under laboratory conditions, it
was revealed that the hybrids of the T. brasiliensis complex are able to be infected by T. cruzi,
and they developed the infective forms in the rectum in higher percentages than their
parentals. It is important to stress that in some cases, hybrids may be sterile, which would
reduce their epidemiological importance. However, this is not the case for the hybrids of
the T. brasiliensis complex, specifically those between T. b. brasiliensis and T. juazeirensis,
since their fertility was already demonstrated until the F3 phase under laboratory con-
ditions [21]. In addition to this, it was suggested more recently that the species’ sexual
choice is not always conspecific but can increase genetic variability, which emphasizes the
importance of better understanding the hybrids’ vector competence and capacity [52]. We
also want to stress that the parentals, T. b brasiliensis and T. juazeirensis, play a relevant role
as vectors of the etiologic agent of Chagas disease in several states of the northeast region
of Brazil [27–32,36,37,53].



Microorganisms 2023, 11, 2850 8 of 13

The host–parasite relationship drives triatomines to transmit T. cruzi to susceptible
hosts, which involves several factors such as the morphogenesis process of the parasite [54];
the susceptibility of the insect vector to the parasite strain [55]; the average time between
blood-feeding and infective defecation, which occurs when the triatomine is still in direct
contact with the host’s skin; and the number of blood meals at each stage during the insect
developmental cycle [56]. These characteristics provide important information that enables
us to evaluate the vector capacity of the triatomine species [57], which covers several
biological, ecological, and behavioral parameters of the insect; also, we can evaluate their
vector competence, which is estimated as the proportion of individuals susceptible to the
etiological agent within the population [58].

In our experiment, it was found that the epimastigote form was prevalent in all
compartments of the digestive tract in both the hybrids and the parentals. This can be
corroborated with previous findings where T. infestans was infected with the Y strain, in
which epimastigotes, and occasionally amastigotes and metacyclic forms, were found in
the intestine [59].

According to a previous analysis of the interaction of a T. cruzi strain with a particular
vector species, the proportionality of the numbers of epimastigotes, spheromastigotes,
and metacyclic trypomastigotes in the vector digestive tract can be modified according to
several aspects, including the particularities of each specimen [50]. Our results showed that
the populations of epimastigotes and transitional forms in the stomach of T. juazeirensis
were significantly lower either in the hybrids or in T. b. brasiliensis. This difference in the
proportion of these T. cruzi populations may affect the metacyclogenesis, which appears to
be vector-dependent [40].

The decrease in the epimastigote population in the rectum and the increase in the
metacyclic population in the gut are expected events in vector species susceptible to
T. cruzi infection, such as Rhodnius neglectus Lent, 1954, Rhodnius Prolixus Stal, 1859, and
Panstrongylus megistus (Burmeister, 1835), when infected with the Y strain [40]. In the
present experiment, a higher prevalence of epimastigotes was observed in all insects’ gut
compartments. The trypomastigotes had lower numbers over the experiment compared
to the other forms; however, this form was recorded in significantly higher percentages
in the hybrids’ rectums. An experimental infection carried out with members of the
T. brasiliensis complex using the 913 strain demonstrated that the development of the
parasite was similar in all vectors. However, mice infected with the 913 strain from T. b.
macromelasoma (a subspecies with a hybrid origin) [23,38] had higher rates on the 20th day
after infection [43]. In the present study, it was observed the experimental hybrids showed
a decrease in the parasite population (in the case of Hjb) after that period (the 20th day).

Transitional forms were also distributed throughout the insects’ guts and were present
in all observation periods, but their peak density oscillated over different days and groups.
The presence of transitional forms is necessary for parasite development because the
transformation from the epimastigote into the metacyclic form leads to an indeterminate
form [40]. The speed at which this transformation occurs depends on the nature of the
T. cruzi strain since the faster the strain can perform this process, the better the multiplica-
tion conditions will be for establishing an infection, and higher production of metacyclic
trypomastigotes will also occur [54].

An experiment performed with T. infestans showed a tendency to overcome infection
with the Y strain, whereas P. megistus was the species most susceptible to infection. This
latter species had a better interaction with the Y strain, such that it continued to present with
infection over a period of time [60]. In our experiment, the analysis of strain 0354 demon-
strated that it is able to interact with T. b. brasiliensis and T. juazeirensis, especially with
the hybrids. Sometimes, the strains fail to complete their life cycle, i.e., they fail to infect
the digestive tract of the insect or present with low levels of infection [48]. In a previous
study, for example, the infectivity of strain 0354 showed different behavior in T. infestans.
The epimastigote form was prevalent throughout the digestive tract until the 20th day
after infection, but on the 30th day, the trypomastigote metacyclic form was most frequent,
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especially in the rectum; this was different in the hybrids and parentals, in which the
epimastigote form was more prevalent during all observation periods. This suggests that
the development of strain 0354 in the T. brasiliensis species complex and hybrids was slower
than in T. infestans. In analyzing the development of T. cruzi in the insect digestive tract,
we should consider the digestive tract as a series of micro-habitats in which the parasite
interacts with different factors that can modulate its development, such as the amount of
blood ingested, hemolytic factors, the perimicrovillar membrane, and the insect’s innate
immune system [40–42,61].

Triatoma b. brasiliensis presents with high rates of infection in nature [31,32]. On the
contrary, the present study, it demonstrated a low percentage of metacyclic forms. Other
studies showed that other species that are also often naturally found to have high rates of
infection presented with low percentages under laboratory conditions [40].

The results from T. juazeirensis showed a slower process of metacyclogenesis since the
metacyclic trypomastigote percentages were the lowest ones. Like the hybrids and T. b.
brasiliensis, this species showed an ability to host and maintain the parasite. Nonetheless,
T. juazeirensis is often found to have a low rate of natural infection when compared to the
other species, as already mentioned in the literature [31,32,34,53].

For the insects to become infected with the parasite, they need to ingest an infective
blood meal. Some studies have suggested that for high levels of infection, the insects
would need to ingest large amounts of blood infected with the parasite. Nevertheless,
it is also known that the persistence of the parasite in the insect will depend on several
factors relating to the insect’s immune system [15]. In our study, insects with high levels
of infection (~49 × 105) ingested the same or lower amounts of blood (~220 mg) than the
specimens with lower levels of infection (~4 × 105). Moreover, specimens that ingested
very small amounts of blood (e.g., 91 mg) had a sufficient quantity of parasites to initiate
and maintain the infection in their digestive tract for up to 30 days after feeding. Another
study evaluating the susceptibility of four species of triatomines to infection with the Y
strain also found the amount of blood ingested did not have any influence on the level of
infection presented by the insects [55].

All of the insect groups analyzed were susceptible to infection with T. cruzi strain 0354,
but the hybrids maintained greater stability of infectivity, presenting with higher numbers
of metacyclic trypomastigotes in the rectum throughout the experiment and across all
observation periods. This means that the hybrids could be more susceptible to infection
than the parentals. This difference between parentals and hybrids might be the result
of the distinct efficiency of qualitative interactions between the strain and the vector. In
comparison with T. infestans, P. megistus also became infected with the T. cruzi Y strain more
efficiently, thus demonstrating higher numbers of positive insects, increased positivity over
time, and a higher maintenance rate of infection [60].

Small intraspecific differences in the susceptibility among triatomines infected with
the same strain of T. cruzi have been proven to occur. A group of T. infestans reared in the
same colony showed different rates of infection in comparison with a group of specimens
newly captured from the natural environment [62]. This may explain why T. b. brasiliensis
initially presented with infection with strain 0354 at a lower rate than that of the hybrids.
Additionally, this vector is known for its high infection rates in natural environments, and
it was expected to have higher levels than the other groups [27,31,32].

The natural ecotope of the insects also needs to be considered since the specimens
used in these experiments were all reared under laboratory conditions. Some studies
have emphasized the superiority of wild vectors over domestic ones for studying T. cruzi
infection [61], such as T. infestans and R. neglectus infected with the Y strain, which had
a lower infection rate than Dipetalogaster maxima (Uhler, 1894) and Triatoma matogrossensis
Leite & Barbosa, 1953, and which are typically wild species that invade domiciles [55].

The results reported here open up new avenues to be explored and can be applied
for triatomine control. The interaction between T. cruzi and triatomines is a complex issue;
therefore, the higher susceptibility to T. cruzi observed in the hybrid specimens could be
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associated with specific factors that must be deeply analyzed and experimentally tested.
Among the possibilities for future related studies that compare triatomine hybrids and
parentals, studying the gut components and microbiota, as stressed by Fuentes–Vicente [20],
could help to improve the triatomine control program and reduce the use of insecticides.

5. Conclusions

In the present study, the 0354 T. cruzi strain was shown to be able to develop and
maintain its cycle in the digestive tract of T. b. brasiliensis and T. juazeirensis as well as in
that of their experimental hybrids. The obtained results, in addition to recent findings that
showed the presence of natural hybrids in areas where different species of the T. brasiliensis
complex are circulating, contribute to the consideration of the potential participation of
these hybrids in the natural transmission cycle of T. cruzi. The hybrids showed greater
parasite distributional homogeneity for up to 30 days after infection. However, further
analysis is required to determine whether T. b. brasiliensis might present with more infective
forms in the rectum, even though its development initially was slower. The same analyses
would be necessary for T. juazeirensis; nevertheless, this species showed greater numbers of
negative specimens than the other analyzed groups, and therefore, its vector competence
seems to be less effective than that observed for T. b. brasiliensis and the hybrids.

The present study points out that the hybrids, as potential vectors of T. cruzi, are
able to transmit the etiological agent in the natural hybrid zones where T. b. brasiliensis
and T. juazeirensis can be found and enable us to understand the dynamics of some of
the mechanisms that occur in the development of strain 0354. Further analysis of the
susceptibility of these insects to different T. cruzi strains, as well as the infection of these
hybrids in the natural environment, needs to be conducted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms11122850/s1, Supplementary Table S1. Volume
of blood (mg) ingested and parasitic population density per specimen on the 10th, 20th, and 30th days
after the blood meal. Supplementary Table S2. Number of T. cruzi parasites in each segment of the
digestive tract individually displayed on a hemocytometer to count the distinct forms: epimastigotes,
transitional forms, and trypomastigotes.
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