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Abstract: The role of the microbiome in shaping the host’s phenotype has emerged as a critical
area of investigation, with implications in ecology, evolution, and host health. The complex and
dynamic interactions involving plants and their diverse rhizospheres’ microbial communities are
influenced by a multitude of factors, including but not limited to soil type, environment, and plant
genotype. Understanding the impact of these factors on microbial community assembly is key to
yielding host-specific and robust benefits for plants, yet it remains challenging. Here, we conducted
an artificial ecosystem selection experiment for eight generations of Arabidopsis thaliana Ler and Cvi
to select soil microbiomes associated with a higher or lower biomass of the host. This resulted in
divergent microbial communities shaped by a complex interplay between random environmental
variations, plant genotypes, and biomass selection pressures. In the initial phases of the experiment,
the genotype and the biomass selection treatment had modest but significant impacts. Over time,
the plant genotype and biomass treatments gained more influence, explaining ~40% of the variation
in the microbial community’s composition. Furthermore, a genotype-specific association of plant-
growth-promoting rhizobacterial taxa, Labraceae with Ler and Rhizobiaceae with Cvi, was observed
under selection for high biomass.

Keywords: plant-associated microbiome; microbial diversity; soil health; sustainable agriculture

1. Introduction

The conventional understanding of the host phenotype involves genetics and the
environment shaping observable traits. Yet, the last two decades have underscored the
microbiome’s significance in shaping the host phenotype, driven by extensive research on
its role in ecology, evolution, and host health. The plant microbiome represents a rich source
of functional diversity that is not encoded within the host genome. The interactions between
the plant host and its microbiome are dynamic and reciprocal, with the plant shaping its
immediate environment by exuding specific metabolites, thereby promoting the growth of
specific microbial taxa, while the microbiome in turn influences plant health and growth [1].
A multitude of biotic and abiotic factors influence the dynamic nature of the microbiome,
including but not limited to plant root exudates [2–4]; soil type [5–9]; environment [10]; and
various aspects of the plant, including species [11], genotype [4,12–15] and developmental
stage [16,17].

Previous studies in Arabidopsis thaliana have shown that the microbial diversity of
the soil decreased with proximity to the endophytic compartment, as well as that mi-
crobes found in the bulk soil were not enriched in the endophytic compartment, and vice
versa [18–20]. Furthermore, the microbiomes of the greenhouse-grown plants were similar
to those of the field-grown plants, even across different plant compartments—rhizosphere,
woody stem, and endophytic compartment—indicating an active role of the plant host
in creating and maintaining an environment where certain microbes have improved
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fitness [21]. The soil environment was a stronger predictor of the rhizosphere’s micro-
biome structure, though plant genotype has been shown to have a weak influence in some
studies [18,20,22]. A follow-up study confirmed that the variation in microbiome com-
munities depends more on the environment than on different Arabidopsis varieties and
sister species. Though there were some differences between different host species, the
core microbiome’s interaction with the plant host at the root endophytic zone was largely
consistent and reproducible [23].

Unfortunately, most prior studies were conducted in a single plant growth cycle,
precluding an analysis of the temporal stability of the plant–microbiome association. Obser-
vations from plant–soil feedback studies highlight that plant–microbiome interactions can
be altered by successive growth cycles of a given plant in the same soil [24,25]. Prior studies
have employed plant-mediated selection on the soil ecosystem over multiple generations,
and this has resulted in consistent effects on plant characteristics such as biomass, flow-
ering time, and germination [26,27]. By selecting for soils where hosts show the desired
phenotype, such as high biomass or altered flowering time, it becomes possible to enrich
microbes that modulate host traits. Additionally, studies have shown that plants’ responses
to abiotic stress, such as drought and salt stress, could be influenced in two ways. The first
of these is through generational selection, where plants with desirable stress responses
are chosen over multiple generations [28–30]. The second occurs by introducing beneficial
microbes that are associated with plants and have previously lived in similar drought
or salt conditions [31]. Mueller et al. [28] used generational selection to create microbial
communities that could improve plant seed production by up to 205%. A soil inoculum ob-
tained from drought-exposed soils improved wheat biomass under drought conditions [31].
Older studies, such as that of Swenson et al. [27], have also shown similar results under
optimal growing conditions without necessarily exploring the microbiome. A recent study
conducted on the rhizosphere microbiome of wild and domesticated tomato plants over
multiple generations demonstrated an escalating influence of the host’s genotype on the
microbiome community [32]. A separate study on the phyllosphere microbiome of var-
ious tomato genotypes indicated a declining impact of host genotype across successive
generations [33].

Despite several earlier efforts, the development of a robust and host-specific microbial
community with long-lasting beneficial effects on the plant host remains a challenge. Using
an artificial ecosystem selection experiment, we sought to advance our understanding
of how the plant genotype, environment, and biomass selection treatment (henceforth
referred to as biomass treatment) impact the assembly of host–microbial communities.
In this study, we hypothesized that: (i) Genotype, biomass treatment, and environment
would play a critical role in microbial community assembly; (ii) generational selection
of the soil ecosystem would lead to phenotypes with high and low biomasses; (iii) the
influence of plant genotype over multiple generations would result in genotype and
biomass-treatment-specific microbiomes. This study enhances our understanding of the
temporal dynamics involved in microbial community assembly in the rhizosphere and sets
the stage for targeted methodologies establishing resilient plant–microbiome interactions,
with potential applications in sustainable agriculture and ecosystem health.

2. Materials and Methods
2.1. Multi-Generation Selection of Soil Ecosystem

Arabidopsis thaliana Cvi and Ler accessions were cultivated using custom-made “rhi-
zotubes” (Stuart Morey, Univ. of Massachusetts, Boston, unpublished). The tubes were
equipped with a black polyethylene sleeve, which effectively blocked light penetration.
This design also facilitated the convenient removal of the plants from the pot, granting full
access to the root system (Supplementary Figure S1).

The potting soil used was PRO-MIX PGX, a commercial mixture comprising 80–90%
sphagnum peat moss and small quantities of perlite. It was autoclaved twice for 40 min,
with a 48 h interval between each sterilization. The sterile potting soil was then sifted
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through a 3 mm sieve and combined with field soil at a 6:1 ratio for the first generation. The
field soil, obtained from the Center for Agricultural Research in Waltham, Massachusetts,
was composed of 44% sand, 49% silt, and 7% clay, which is representative of agricultural
and grassland ecosystems.

The mixture was homogenized using a custom-made cement mixer and attached to
sterile bins to avoid cross-contamination. Distilled water was gradually added to achieve
a final ratio of 1:2 (water to soil). The soil was incubated at room temperature for two days
following inoculation before the seeds were planted. All seeds used in the experiment were
obtained from a single parent plant. Before planting, the seeds were surface-sterilized by
treatment with a solution of 50% bleach v/v and a drop of Tween 20 for 10 min, then rinsed
ten times with sterile distilled water. We placed 3–4 seeds in the center of each pot and kept
only one seedling per pot after emergence. All plants were grown at 22 ◦C day/18 ◦C night
with a 12/12 h day–night cycle in a controlled growth chamber. The relative humidity
ranged from 35–60%, and the light intensity was 96 µE. Fertilizer was not applied to
the plants.

In the first generation of the experiment, 100 plants of each accession (Cvi and Ler)
were grown separately in individual pots. The plants were arranged in a randomized block
design to avoid batch effects. All plants were harvested 35 days after germination. The
above-ground portion of the plant, the rhizosphere, and the bulk soil from each rhizotube
were separated, ensuring that there was no cross-contamination (Supplementary Figure S1).
The above-ground parts of the plant, the stem, and the leaves were dried at 70 ◦C for 4 days.
All of the plants were weighed individually on a closed weighing scale accurate to 1 mg.
The root–soil complex (comprising the rhizosphere and the endosphere, henceforth referred
to as the rhizosphere) was obtained by shaking the excess soil off the root and placing
the root and the remaining attached soil into a sterile 5 mL tube. Bulk soil samples were
transferred to a sterile Ziplock bag. Tubes and bags were immediately transferred to dry
ice and then stored at −80 ◦C for DNA analysis.

All subsequent generations were inoculated with a mixture of previously collected
bulk soil from the top five and bottom five plants based on above-ground biomass, then
combined with sterile potting soil at a ratio of 1:14 (50 gm inoculum:700 gm sterile potting
soil). This resulted in two different treatments for each genotype: high-biomass Ler, low-
biomass Ler, high-biomass Cvi, and low-biomass Cvi. This process was repeated for the
remaining seven generations. Starting with the third generation, plants were grown in
uninoculated sterile potting soil as a control for random environmental variation (REV). In
generation 6, all plants died for unknown reasons. The experiment was then continued
using soil from generation 5. Soil sourced from the top six to ten plants and the bottom
six to ten plants based on above-ground biomass was used as the inoculum to replant
generation 6.

2.2. DNA Extraction and 16S rRNA Amplicon Library Prep

Microbial DNA was isolated from the frozen rhizosphere samples using the Machery-
Nagel Nucleospin Soil DNA extraction kit (MACHEREY-NAGEL Inc., Allentown, PA,
USA). Approximately 0.1 g of the rhizosphere soil sample was used for DNA isolation. All
samples were diluted to 5 ng ul−1 with PCR-grade water. The 16S rRNA gene was amplified
from the isolated DNA samples in triplicate in 96-well PCR plates. The PCR primers used
for the 16S rRNA V4 region were 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) [34] and 806R
(5′-GGACTACNVGGGTWTCTAAT-3′) [35] for downstream paired-end Illumina (Illumina,
Inc., San Diego, CA, USA) barcoded sequencing [36]. The PCR cycling conditions were as
follows: 94 ◦C for 3 min; 25 cycles of 94 ◦C for 45 s; 50 ◦C for 60 s; 72 ◦C for 90 s; and final
elongation at 72 ◦C for 10 min. The triplicate amplified samples were pooled, then purified
and normalized using the SequalPrep™ Normalization Plate Kit (Invitrogen Corporation,
Carlsbad, ON, Canada). Finally, multiplexed paired-end sequencing was carried out on the
Illumina MiSeq (SY-410-1003) platform using earth microbiome project (EMP) primers [37].
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2.3. Sequence Data Analysis and Statistics

The paired-end sequences obtained from the Illumina MiSeq were demultiplexed with
QIIME 2 and converted into individual sequence fastq files for each sample [36,38]. The rest of
the sequence processing was carried out in R (Version 4.2.2) using the DADA2 package (Version
1.24.0) [39]. The reads were processed in R using the following command in DADA2: ‘fil-
terAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen = c (145,145), minLen = 50, maxN = 0, maxEE = c
(2,2), truncQ = 2, rm.phix = TRUE, compress = TRUE, multithread = TRUE)’. De novo OTU (op-
erational taxonomic units) picking was performed using DADA2 (37), which resolves amplicon
sequence variants (ASVs) to single-nucleotide differences. Chimeras were removed. Taxonomy
was assigned using a 100% cut-off rate for species-level identification with the (2022) GTDB 16S
rRNA reference database [40]. The phylogenetic tree was constructed using IQTree [41] with
1000 ultrafast bootstraps, and Modelfinder was used to identify the best model. In this study,
the best-fit model was SYM + R10, chosen according to BIC. The data comprising the OTU
table, phylogenetic tree, taxonomy table, and sample meta-data were then parsed through
R studio using the phyloseq package [42]. Here, the processing removed OTUs identified as
mitochondrial or chloroplast, which had less than five reads across all samples, and samples
that had fewer than 8000 reads. The packages phytools, phyloseq, microbiome, and ggplot2 were
used for further data analysis. All sequence data and metadata can be downloaded from
PRJNA1010286.

2.4. Diversity Analyses

Alpha diversity was computed using two metrics, Observed and the Shannon di-
versity index. Beta diversity was calculated using weighted and unweighted UniFrac,
and subsequently, principle coordinate analysis (PCoA) plots were constructed using the
first two axes, which explained the most variance. Linear mixed effect models, via the
lmerTest package in R, were used to determine changes in alpha and beta diversity over
time (lmer (DiveristyMetric, Genotype*Generation*Biomass Treatment, (1|Generation)),
with generation as a fixed and random effect. Pairwise comparisons were determined with
emmeans and adjusted p-values were obtained with Tukey’s test.

2.5. Adonis

PERMANOVA was carried out for each generation using the adonis2 test. Both
weighted and unweighted UniFrac distance matrices were used to account for the abun-
dance, presence/absence, and phylogeny of the microbiome. The following model was
used ‘adonis2 (distance.matrix ~ Biomass Treatment + Genotype, data = meta, permuta-
tions = 999)’.

2.6. Neutral Model

To determine the impact of neutral processes like drift and dispersal, or by determinis-
tic selective forces, such as plant genotype and biomass treatments, on microbial community
assembly, we carried out an analysis that was described by Burns et al. [43] to fit microbiome
abundance data to the neutral model for prokaryotes from Sloan et al. [44]. The following
design was used: sncm.fit (spp = generation (n)_Biomass Treatment, pool = generation (n),
stats = T), where n is the nth generation and ‘Biomass Treatment’ represents the high- or
low-biomass samples.

2.7. Differential Abundance

There are several challenges in estimating differentially abundant (DA) taxa in mi-
crobiome data. These include high variability in their abundance, zero-inflated data, and
the compositional nature of the data. Nearing et al. [45] compared several methods across
38 datasets and found that different methods often identified different sets of DA taxa.
The DA taxa were estimated using ANCOMBC2 [46], a conservative and robust approach.
ANCOMBC2 incorporated bias correction, effectively addressing sampling-specific and
sequencing biases present in the data. This feature ensures that the analysis is not skewed
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by any systematic errors introduced during the sampling or sequencing processes. It
also conducts a sensitivity analysis for the pseudo-count addition to assess the impacts of
different pseudo-count values on zero counts for each taxon. The analysis was run on Ler
and Cvi samples, from OTU to family taxonomic levels, as follows: (fixed effect = (Biomass
Treatment + Genotype + Generation), group = Biomass Treatment).

2.8. Spearman Correlation for Differentially Abundant OTUs

The ‘cor’ function from the stats package (version 4.2.3) was employed to calculate
Spearman’s correlation coefficient between differentially abundant OTUs in the high-
biomass-treatment samples of Ler. This was carried out for samples from both the early
phase (generation 1 and generation 2) and the late phase (generation 6, generation 7, and
generation 8) of the experiment. The results were then visualized using the corrplot package
(version 0.92). Correlations were computed separately for the early and late phases of the
experiment, enabling us to observe changes in the correlation coefficients at different stages
of the experiment.

3. Results
3.1. Changes in Above-Ground Plant Biomass

The ecosystem selection experiment was carried out with respect to the above-
ground plant biomass in two different accessions of Arabidopsis thaliana—Ler and Cvi—for
eight generations. The two selected treatments were characterized by high and low
above-ground biomass. The absolute values for the mean biomass of plants (n = 50)
from each genotype and treatment changed substantially through the course of the
eight generations of the experiment (Supplementary Tables S10 and S11). Despite the
stochastic fluctuations in biomass caused by random environmental variations (REVs),
the high-biomass-treatment plants were always the same as or greater than the low-
biomass-treatment plants for both genotypes (Figure 1a,b). Due to the significant drop in
biomass between generations 1 and 2, an uninoculated control in sterile potting soil was
planted in all subsequent generations to serve as a reference for REV. The uninoculated
control shows that the drastic drop in biomass after generations 1 and 2 was not a result
of the inoculated soil, but was due to other subtle, but crucial, environmental factors
that could not be held constant. The above-ground biomass for each generation in terms
of deviations from the mean was plotted to give a clearer representation of the difference
in phenotype seen in every generation (Figure 2a,b). Significant differences between
the low- and high-biomass treatments become apparent from generation 4 onwards.
Plants of all treatments in generation 6 died, resulting in a sharp dip, which necessitated
repeating that generation (described in Section 2).

3.2. Microbial Community Composition

After preprocessing the 16S rRNA metagenomic amplicon reads in DADA 2, a total
of 1,897,732 reads with an average of 12,822 reads per sample were obtained. Singletons
and chimeras were removed during pre-processing. The most well-represented phyla
were Proteobacteria (36.2%), Bacteroidetes (10.3%), Planctomycetes (7.8%), and Actinobacteria
(7.6%) (Supplementary Figure S2). The most well-represented classes identified in the
dataset were Alphaproteobacteria (24.7%), Gammaproteobacteria (11.4%), Bacteroidia (10.1%),
and Verrucomicrobiae (6.2%) (Figure 3). This relative abundance is typical of microbiome
data, heavily weighted by a few abundant groups and a long tail of rare taxa.
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Figure 3. Taxonomic distribution of the microbial community is represented in terms of the relative
abundance at the Class level. The plot shows eight generations (1–8) of the high- and low-biomass
treatments of both the Cvi (left) and Ler (right) genotypes of Arabidopsis thaliana. Ten samples
were assayed for the generation 1 experiments, but only five for all subsequent generations. The
most represented classes across all samples were Alphaproteobacteria (24.7%), Gammaproteobacteria
(11.4%), Bacteroidia (10.1%), and Verrucomicrobiae (6.2%).

3.3. Trends in Alpha Diversity

We used two metrics to assess alpha diversity (Figure 4). Observed (F7,160 = 333.054,
p < 0.001) estimated species richness and showed a significant decrease in the number of
OTUs (1477 to ~580) between generation 1 and generation 5, with less pronounced changes
in diversity after generation 5. The Shannon diversity index (F7,160 = 82.23, p < 0.001),
which was more sensitive to the difference in abundance, exhibited a comparable trend.
Both metrics demonstrated a rapid decline in diversity between generations 1 and 5,
with a less pronounced decrease after generation 5. A negative exponential function
was fitted to the Observed metric (R2 = 0.81, p < 0.01) and the Shannon metric (R2 = 0.58,
p < 0.01). The Observed metric displayed a better fit, indicating the increased stability of the
microbiome in later generations. In addition, a linear mixed-effect model showed significant
interactions between genotype and biomass treatment (F = 8.71, p < 0.01); genotype and
generation (F =3, p < 0.01); and genotype, biomass treatment, and generation (F = 3, p < 0.01)
for Shannon (Supplementary Table S5). No significant interaction terms were found for
Observed, which did not consider the abundance of OTUs in its calculations.



Microorganisms 2023, 11, 2932 8 of 22

Microorganisms 2023, 11, x FOR PEER REVIEW 8 of 22 
 

 

< 0.01) for Shannon (Supplementary Table S5). No significant interaction terms were found 
for Observed, which did not consider the abundance of OTUs in its calculations. 

 
Figure 4. Changes in alpha diversity. Two alpha diversity indices were computed, including the 
Observed and Shannon metrics. Both metrics demonstrated a rapid decline in diversity between 
generations 1 and 5, with a less pronounced decrease after generation 5. Additionally, a negative 
exponential function was fit to the Observed (R2 = 0.81, p < 0.01) and Shannon (R2 = 0.58, p < 0.01) 
metrics, with Observed showing a better fit, indicating the increased stability of the microbiome in 
later generations (Wilcox test, *** < 0.001). 

3.4. Beta Diversity and Principal Coordinate Analysis 
Principal coordinate analysis (PCoA) of the weighted UniFrac distances was con-

ducted. They were plotted with the first two axes that captured the most variance in the 
data, from 73% in generation 1 to more than 90% in generation 8 (Figure 5). The UniFrac 
distance considers the evolutionary relationships between taxa, which makes it more bio-
logically meaningful than other distance metrics that do not consider the evolutionary 
history. Weighted UniFrac is more sensitive to differences in the abundance of taxa. The 
microbiomes associated with the biomass treatments and genotypes were very similar in 
generation 1, but began to diverge by generation 2. By generation 3, the microbiomes of 
the Ler and Cvi genotypes had diverged, and by generation 5, the high- and low-biomass 
treatments appeared to have further distinguished the microbial communities. The diver-
gence of the microbial community in generations 4 and 5 caused by the high/low biomass 

Figure 4. Changes in alpha diversity. Two alpha diversity indices were computed, including the
Observed and Shannon metrics. Both metrics demonstrated a rapid decline in diversity between
generations 1 and 5, with a less pronounced decrease after generation 5. Additionally, a negative
exponential function was fit to the Observed (R2 = 0.81, p < 0.01) and Shannon (R2 = 0.58, p < 0.01)
metrics, with Observed showing a better fit, indicating the increased stability of the microbiome in
later generations (Wilcox test, *** < 0.001).

3.4. Beta Diversity and Principal Coordinate Analysis

Principal coordinate analysis (PCoA) of the weighted UniFrac distances was conducted.
They were plotted with the first two axes that captured the most variance in the data,
from 73% in generation 1 to more than 90% in generation 8 (Figure 5). The UniFrac
distance considers the evolutionary relationships between taxa, which makes it more
biologically meaningful than other distance metrics that do not consider the evolutionary
history. Weighted UniFrac is more sensitive to differences in the abundance of taxa. The
microbiomes associated with the biomass treatments and genotypes were very similar
in generation 1, but began to diverge by generation 2. By generation 3, the microbiomes
of the Ler and Cvi genotypes had diverged, and by generation 5, the high- and low-
biomass treatments appeared to have further distinguished the microbial communities.
The divergence of the microbial community in generations 4 and 5 caused by the high/low
biomass treatments also aligned with the onset of notable differences in the above-ground
plant biomass within these generations.
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Figure 5. Host genotype and biomass treatment shape the composition of the microbiome. Principle
coordinate analysis (PCoA) was conducted using unweighted UniFrac for generations 1 through 8.
Each point represents an individual sample, with microbial communities defined as Cvi, represented
by red/orange circles, and Ler, represented by dark/light blue triangles. The first two coordinate
axes to be plotted accounted for the highest variation in the data, ranging from 13% in generation 1
to approximately 52% in generation 8. While there was no discernible clustering in generation 1,
both genotypes and high/low biomass treatments exhibited greater clustering over the course of
the experiment.

The complex interplay between genotype and biomass treatment was modeled using
a PERMANOVA test with both weighted and unweighted UniFrac distances to account for
differences in abundance and presence or absence of OTUs, respectively. The resulting R2

values for genotype and biomass treatment and residuals as a proxy for REVs were plotted
(Figure 6a,b). For both the weighted and the unweighted UniFrac, the variance in the micro-
bial community explained by both genotype and biomass treatment increased significantly
over the eight generations. Despite observing a decrease in the variance accounted for
by the residuals, which could potentially signify a decline in the influence of REVs, they
accounted for ~50 percent of the variability within the microbial community in generation 8.
For all metrics, weighted UniFrac exhibited more fluctuations compared to the unweighted
UniFrac. The weighted UniFrac analyses found that genotype (F1,39 = 1.55, p < 0.05) and
biomass treatment (F1,39 = 1.33, p < 0.001) explained 5.7% and 13.7%, respectively, of the dis-
similarity between microbiomes in generation 1. By generation 8, the genotype (F1,14 = 5.14,
p < 0.05) and biomass treatment (F1,14 = 5.48, p < 0.001) explained 24% and 22%, respec-
tively, of the dissimilarity between microbiomes (Supplementary Tables S6 and S7). For
unweighted UniFrac, the influence of genotype on the microbial community increased from
3.3% in generation 1 (F1,39 = 1.33, p < 0.01) to 26% in generation 8 (F1,39 = 5.13, p < 0.001),
and for biomass, it increased from 3.8% in generation 1 (F1,14 = 1.55, p < 0.001) to 13% in
generation 8 (F1,14 = 2.58, p < 0.05) (Supplementary Tables S8 and S9).
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Figure 6. Variance in microbiome structure and composition, explained by genotype and biomass
treatment increases over generations. The R2 values were computed using the PERMANOVA test
with the adonis2 function for generations 1 through 8 for (a) weighted and (b) unweighted UniFrac
distances. The resulting R2 and variance explained by residual values for the biomass treatment
(brown), genotype (blue), and residuals (black) are plotted. Residuals are plotted as a proxy for
random environmental variations (REVs). There was a marked increase in the influence of both
genotype and biomass treatment on differences in the microbial community from generations 1 to 8.
Despite observing a decrease in the variance accounted for by the residuals, which could potentially
signify a decline in the influence of REVs, the model elucidated more than 50 percent of the variability
within the microbial community in the 8th generation. These differences are more pronounced in the
weighted vs. the unweighted UniFrac model (distance.matrix ~ biomass treatment + genotype).

3.5. Sloan Neutral Model

Many forces can alter a microbial community’s structure and dynamics. For our study,
these can be divided into selective forces, such as the plant genotype being colonized and
the biomass selection process, or neutral, stochastic forces like dispersal that are innate
in any experiment or environment. The Sloan neutral model was fit to the data to assess
the importance of selective versus neutral drivers of change in the experiment. If neutral
processes were the driving force in the microbial community assembly, the null hypothesis
would be that all generations of the experiment would fit the model equally well. The
model fit to neutrality represented by the R2 value decreased from 0.795 in generation 1 to
0.59 in generation 8, demonstrating the increasing importance of selective drivers over the
course of the experiment (Figure 7).
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Figure 7. Fit of the neutral model diminished as generations progressed. The occupancy (prevalence
of OTU in samples), plotted against log10 abundance, is depicted using the Burns model. OTUs that
are neutral, i.e., not selected for or against, are indicated in black. Green- and blue-colored OTUs
signify positive and negative selection, respectively. This plot highlights the presence of numerous
microbes that underwent directed selection throughout the experiment.

3.6. Differential Abundance and Correlation Analyses

Differentially abundant (DA) taxa that distinguished the high-biomass treatments
from the low-biomass treatments were determined using ANCOMBC2 at the family level.
Taxa lacking classification at the family level were denoted by the preceding identifiable
taxonomic tier. The OTUs that were present in higher (red) and lower (blue) abundances
in the high biomass treatment were identified (Figure 8a,b). Among the DA taxa in this
study, several are known to benefit plants. Bacteria within the class Bacilli promote plant
growth [47]. Members of the class Gemmatimonadetes have been shown to exhibit a positive
association with vegetation restoration, plant richness, and soil nutrients [48]. Cytophagacea
are chemoorganotrophs, important for remineralizing organic materials into micronutrients.
They could support both mycelial growth and plant nutrition [49].

Enterobacteriaceae, Paenibacillaceae, and JACDCH01 were all present in higher abun-
dances in the high-biomass treatments of both Ler and Cvi. Most Paenibacillaceae members
predominantly inhabited soil, frequently in close association with plant roots [50]. These
rhizobacteria are known to play a significant role in enhancing plant growth, and they
possess potential applications in agriculture. Enterobacteriaceae has been reported to enhance
plant growth [51–53].
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Figure 8. Differentially abundant OTUs. ANCOMBC2 results are illustrated as log2 fold changes
at the family level for high-biomass vs. low-biomass samples. Each taxon listed in the figure
represents a single OTU in either the Ler (a) or Cvi (b) microbial community, identified to the family
level if possible. The scale indicates log2 fold changes, with red and blue representing positive
and negative fold changes, respectively, in the high-biomass samples. Well-known plant-growth-
promoting bacteria, such as Paenibacillaceae, Bacilli, Labraceae, Rhizobiaceae, andBdellovibrio were present
in higher abundance. A vast majority of the other taxa identified were uncultivated, and there is little
to no information on them. (c,d): Box plots of relative abundance for all OTUs that were enriched
in high-biomass treatment samples of genotypes Ler and Cvi, respectively, with colors indicating
different generations. These OTUs demonstrated a consistent trend of increasing relative abundance
across successive generations. To test this trend (red line), a linear model was fitted to the data,
resulting in an R2 value of 0.57 (p < 0.01) for Ler and 0.73 (p < 0.01) for Cvi. (e,f) are box plots of
relative abundance for all OTUs that were depleted in samples from the high-biomass treatment in
genotypes Ler and Cvi, respectively, and are colored according to generation.

Additionally, Order_NS11-12g, BJHT01, JACDCH01, and UBA6156 were more abun-
dant in Cvi under high-biomass conditions, but less abundant in Ler under high-biomass
conditions. The majority of these were uncultivated or candidate taxa. Two alternative
families in the order Rhizobiales appeared to be differentially associated with the two
plant genotypes: Labraceae with Ler and Rhizobiaceae with Cvi [54]. These could indicate
genotype-specific interactions with different members of the microbial community.
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The relative abundances of all OTUs that exhibited higher abundance (enriched) in
samples from the high-biomass treatment in Ler and Cvi are depicted in Figure 8c and 8d,
respectively. These OTUs consistently exhibited an increasing trend of relative abundance
across successive generations. A linear model was employed to test this trend, resulting in
R-squared values of 0.57 (p < 0.01) for Ler and 0.73 (p < 0.01) for Cvi. Furthermore, OTUs
that were lower in abundance (depleted) in samples from the high-biomass treatment of
Ler and Cvi are depicted in Figure 8e and 8f, respectively. These OTUs persisted in low
abundance across all generations, suggesting a lack of selective pressure on this group of
microbes in the samples which received the high-biomass treatment.

We then conducted a Spearman’s correlation analysis using 58 OTUs identified as en-
riched in high-biomass-treatment samples of Ler (Figure 9a,b). This analysis was carried out
for samples from both the early phases (generations 1 and 2) and the late phases (generations
6, 7, and 8) of the experiment. Our observations indicated that, during the early phases,
the associations between OTUs were comparatively weaker than during the later phases,
suggesting a trend of OTUs being selected in groups rather than individually. Additionally,
we presented specific examples of OTUs that showed significant differences in the number of
pairwise positive and negative associations between the early and late phases of the experi-
ment (Figure 9c). This visualization highlights trends spanning both the early and late phases
of the experiment, with certain OTUs demonstrating an increase in positive pairwise associ-
ations and a decrease in negative pairwise associations as generations progressed. Notable
examples include OTU1606_Chitinophagaceae, OTU162_Bdellovibrionaceae, OTU94_Class_Bacilli,
and OTU359_Order_AKYH767. Conversely, others displayed the opposite trend, such as
OTU763_Fimbriimonadaceae, OTU142_Sphingobacteriaceae, and OTU1005_Labraceae.

1 
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Figure 9. Pairwise spearman correlation analysis for differentially abundant OTUs. Spearman
correlation results are illustrated between OTUs enriched in the high-biomass-treatment samples
of the Ler genotype in the early phase (generation 1 and generation 2) (a) and late phase (gen-
eration 6, generation 7, and generation 8) (b) of the experiment. The color gradient depicts the
correlation coefficient’s strength for each OTU pair, from −1 (dark red) to 1 (dark blue). The legend
represents a key, where each number corresponds to the OTU name and taxonomy at the family
level, when available. (c): Barplot of a subset of OTUs. The bars represent OTUs, along with the
number of pairwise positive or negative associations. This visualization highlights trends over
the early and late phases of the experiment, with some OTUs exhibiting increases in positive pair-
wise associations (OTU1606_Chitinophagaceae, OTU162_Bdellovibrionaceae, OTU94_Class_Bacilli, and
OTU359_Order_AKYH767) as generations progressed and decreases in negative pairwise associations,
while others exhibited the opposite trend (OTU763_Fimbriimonadaceae, OTU142_Sphingobacteriaceae,
and OTU1005_Labraceae).

4. Discussion

We applied artificial ecosystem selection to the eight generations in Arabidopsis thaliana
Ler and Cvi to select soil microbiomes associated with the higher or lower biomass of
the host. In contrast to some previous studies [26,32], we did not fertilize plants, thus
maintaining nutrient limitation and thereby promoting the interaction of the plant with the
microbiome [55]. Over the course of eight generations, a response to the selection, most
apparent after generations 4 and 5, was evident in both the gradually shifting microbiome
composition and the plant biomass. The microbiome selection process noticeably influ-
enced the plant biomass despite large phenotypic variation from one generation to the
next. Stochasticity in growth through generations may be attributed to random environ-
mental variations (REVs), as indicated by Swenson et al. [27]. This was observed in the
uninoculated sterile potting soil reference, which showed similar patterns of variability
to the inoculated treatments across generations (Figure 1). Ecological variability among
generations, even under the conditions of a controlled growth chamber, is a common
characteristic of similar studies [56], and may be due to minute fluctuations in the growth
chamber conditions or the batch and age of the potting soil.

We observed a gradual decline in microbial species richness during the initial gen-
erations of the experiment. This was evident from the observed OTU counts, as well as
from the Chao1 and Shannon diversity indices. This pattern is consistent with findings
from other studies [31–33], highlighting the impact of selection pressures as the microbial
communities adapted to the host plant’s environment. However, in our study, which
continued for about twice the number of generations as these earlier studies, we observed
a stabilization of richness and alpha diversity in the later generations. This was further
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substantiated by the stronger fit to the negative exponential function when compared to
a linear model, indicating constant and proportional changes in alpha diversity and a trend
of the rhizosphere microbiome towards reduced diversity loss, accompanied by heightened
stability, over eight generations. Previous studies have suggested that the stability in alpha
diversity metrics in later generations may possibly be due to the retention of microbiome
community members through robust selection and improved fitness with the host [57–59].
Over time, less fit individuals are outcompeted by microbes that have better fitness in the
host environment [59,60].

To further understand the complex interplay between the forces of directed selection
(plant genotype and biomass treatment), we conducted a PCoA. Over successive genera-
tions, the results demonstrated a strengthening effect of the plant genotypes and biomass
treatment on the microbial community (Figure 5). This result was modeled using PER-
MANOVA for both weighted and unweighted UniFrac distances. Both the weighted and
unweighted UniFrac showed marked increases in the proportion of variance explained by
genotype and biomass treatment, with the unweighted UniFrac exhibiting larger increases
from generation to generation (Figure 6). Both metrics considered phylogenetic relatedness.
Weighted UniFrac considers the absolute abundance of OTUs, and is generally used to
study changes in microbial community structure. Unweighted UniFrac considers only the
presence/absence of OTUs, and is generally used to study changes in microbial commu-
nity composition. The results suggest that the variance in the microbiome’s composition
(presence/absence of OTUs), as explained by genotype, consistently increases, whereas the
variance in the microbiome structure (considers the abundance of OTUs), as explained by
genotype, greatly fluctuates with changes in abundant taxa.

Here, we would like to highlight that pronounced shifts in biomass between the
high/low biomass treatments, alpha diversity, and beta diversity all occur around genera-
tions 4 and 5 (Figures 1 and 2). This marks the point at which the changes in alpha diver-
sity stabilize (Figure 4) and the divergence between microbial communities by high/low
biomass treatments in the PCoA plots becomes more pronounced (Figure 5). It is possible
that, over the first four to five generations, the initial microbial community underwent
a period of restructuring before it stabilized and formed four distinct communities under
selection by high/low biomass treatments and by plant genotype. We propose that a com-
plex interaction between plants and their associated microbiome ensued, where differences
in root exudation patterns between the two genotypes presumably established associations
with microbes in the early generations. Simultaneously, during this period, the biomass
treatment likely promoted host-specific, microbe-mediated interactions that modulated
plant biomass. This restructuring of the microbial community was driven by both structural
(abundance of OTUs) and compositional (presence/absence of OTUs) effects in the micro-
biome (Figure 6a,b). Differences in the abundance of taxa driven by the biomass treatment
and genotype selection pressures were a larger contributor to the generation-to-generation
variation during the experiment.

Changes in the assembly of microbial communities can arise from either selective
pressure, like the plant’s genotype or the biomass treatment, as observed in this exper-
iment, or stochastic processes, like minute changes in the growth chamber humidity or
microenvironment. To gain deeper insights into the influence of selection on microbial
community assembly, a neutral model was fit to the data [43,44]. Interestingly, this revealed
a progressive decline in fit to neutrality, indicated by decreasing R2 values and increasing
AIC values (Figure 7). This suggests an increasing influence of selective forces such as
biomass treatment and genotype over multiple generations of ecosystem selection. This
has also previously been observed by Morella et al. [33].

Previous studies in Arabidopsis thaliana have often detected only a weak genotypic
effect on the rhizosphere microbiome [18,23,61]. However, a majority of these studies are
focused on a single growth cycle. Insights from plant–soil feedback research emphasize
that the interactions between plants and their microbiomes can be modified by consecutive
growth cycles of the same plant species in its respective soil [24,25]. Recent research has
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presented conflicting findings on the influence of the host genotype [32,33,62]. The different
experimental designs, communities being assessed, and the length of these experiments,
alongside the high stochastic environmental variation that is clearly associated with these
microbial studies, likely account for the conflicting findings. In our investigation, we found
that during the initial stages, genotype and biomass treatments had modest, but significant,
impacts. Over time, the plant genotype and biomass treatments exerted an increasing
influence. Together, these selective forces explained ~40% of the variation in the microbial
community’s composition in these later generations.

A key aim of microbiome engineering has been to develop host-specific microbial
communities that impart lasting beneficial effects to the plant host [26,28,31,63]. Herein,
we show the enrichment of some common taxa in high-biomass treatments, but also
some genotype-specific changes. Despite starting from the same soil, only three com-
mon families were enriched in the high-biomass treatment samples of both the Ler and
Cvi genotypes. In addition, well-known plant-growth-promoting rhizobacteria were en-
riched in a genotype-specific manner for both the Ler and Cvi samples that underwent
the high-biomass treatment. In the order Rhizobiales, Labraceae was enriched in Ler, while
Rhizobiaceae was enriched in Cvi [54]. Moreover, in high-biomass conditions, Cvi had
increased levels of the taxa Order_NS11-12g, BJHT01, JACDCH01, and UBA6156, while Ler
had decreased levels of these. These data suggest genotype-specific plant genetic control of
the rhizosphere microbiome.

To further explore how the abundance of these OTUs changed across successive
generations, we grouped all the DA OTUs that were enriched or depleted in the samples
with the high-biomass treatment and calculated the sum of their relative abundances. The
OTUs enriched in the samples of high biomass treatment displayed an increasing trend of
relative abundance over subsequent generations (Figure 8c,d). A linear model was fitted
to these data with high R2 values, reinforcing the notion that the genotype and biomass
treatments exerted selective pressure on entire microbial groups rather than individual
species. Conversely, the OTUs that were depleted in the samples which underwent high-
biomass treatment consistently remained in a state of low relative abundance throughout
the entirety of the experiment (Figure 8e,f). This observation may indicate that the selective
pressures exerted by the genotype and biomass treatments do not influence this particular
group of microbes.

The results of the correlation analysis revealed a strong directional shift in the rela-
tionships between the OTUs in the later phase of the experiment compared to the early
phase of the experiment. This analysis provides further empirical evidence that the OTUs
were selected in groups. This is particularly evident for members of Chitinophagaeae, which
showed a strong increase in pairwise positive associations and a concomitant decrease in
negative associations. Strengthening of microbial associations has been observed in previ-
ous succession studies on different plant species, including Arabidopsis thaliana [8,64,65].
Luo et al. also found stronger positive associations in the rhizosphere, highlighting the
importance of this zone in promoting stronger microbial associations [64].

Taken collectively, these findings suggest that the presence of diverse selection pres-
sures influences the rhizosphere microbiome. Initially, it seems that neutral processes
seem to play a major role in determining the structure and composition of the microbiome
(Figure 7). As generations progress, we observed an increase in the strength of directional
selection, possibly driven by genotype and biomass treatment, resulting in the enrichment
of specific groups of microbes, including some PGPRs (Figure 8c,d). The persistence of de-
pleted microbes in the high-biomass-treatment samples suggests the possibility of negative
frequency-dependent selection preserving them at a low abundance. On the other hand, it
is possible that this group did not experience any observable selection pressure.

Multiple studies have shown variations in the structure of the rhizosphere microbiome,
even within closely related plant genotypes, highlighting the importance of genotype-
specific root exudates in forming associations with the corresponding microbiome [66–72].
While previous studies have observed qualitative distinctions in the root exudate profiles
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of Ler and Cvi, these profiles lack quantitative characterization [67]. Currently, our under-
standing is limited to some characterization of root exudates for the Ler [67,68,73], and
to the best of our knowledge, there has been no in-depth characterization of Cvi’s root
exudate profile. Closer associations in the rhizosphere are formed between plants and
bacterial partners capable of metabolizing specific compounds. In a previous Arabidopsis
thaliana study, it was observed that rhizosphere-enriched microbes, such as Terracoccus sp.
273, excelled in utilizing SA as a carbon source. Conversely, microbes like Mitsuaria sp.
were unable to do so and were found in lower abundance [61]. Other plants, such as maize,
release benzoxazinoids (BXs) in their root exudates, and there is a negative correlation in
terms of abundance between Glomeromycota members and BXs [24,74,75]. It is important to
emphasize that microbes are also able to reciprocally influence the root exudation patterns
of plants. Pea plants treated with Pseudomonas aeruginosa PJHU15 and Bacillus subtilis
BHHU100 showed a significant increase in gallic acid and other phenolics compared to
control plants [76]. Furthermore, in response to Pseudomonas syringae pv tomato infection,
Arabidopsis thaliana roots shift their exudation patterns, releasing more malic acid. Malic
acid is a chemoattractant, selectively inducing Bacillus subtilis to bind to the infected plant’s
roots and, thus, improving plant disease resistance [77]. Future explorations should priori-
tize profiling root exudates, along with comparative metagenomics, metatranscriptomics,
and metabolomics studies. This will play a role in decoding chemical crosstalk, which
could eventually foster reproducible interactions between plants and microbes, leading to
an overall enhancement in plant fitness.

The relationship between plants and microorganisms in the rhizosphere involves
complex and diverse interactions which influence crucial ecological and physiological
processes. These interactions can be mutualistic, competitive, or antagonistic. Many
biotic and abiotic factors act in concert to influence the dynamic rhizosphere microbiome.
Gaining insight into how these factors influence the assembly of microbial communities
is crucial for obtaining targeted and long-lasting advantages for plants. Nevertheless,
establishing a strong and host-specific microbial community that consistently provides
beneficial effects continues to be a persistent challenge. We have shown that, despite
stochastic fluctuation due to REVs, it is possible to select for microbial communities that
impact biomass in a genotype-specific manner within four generations, addressing this key
challenge in microbial community engineering [31,63]. The rhizosphere microbiome that
evolves under plant-mediated selection has the potential to offer improved survivability
and efficacy when applied as an inoculum to the plant [78,79]. Multi-species ecosystem
selection provides a perspective on microbiome assembly that indicates the holobiont, and
the evolving relationship between the host and the microbiome contributes to emerging
properties beyond those predicted by the host’s genotype or the initial composition of the
microbial community. This study enhances our understanding of the temporal dynamics
involved in microbial assembly in the rhizosphere, and has implications for sustainable
agriculture, evolution, and ecology.

5. Conclusions

The detrimental impact of agrochemicals has emphasized the importance of adopting
sustainable agricultural practices [80,81]. Microbial formulations of PGPRs as inoculants
may boost soil fertility, promote favorable plant phenotypes, and reduce the harmful ef-
fects of agrochemicals. However, numerous challenges remain in terms of transitioning
from the lab to the field—in particular, the survivability and efficacy of these individual
strains [82–84]. Ecosystem selection overcomes these challenges by selecting for entire
groups of microbes rather than individuals, mitigating the potential loss of function due to
the extinction of essential microbes. We utilized multi-generational ecosystem selection
with respect to above-ground plant biomass for eight generations in two common inbred
genotypes of Arabidopsis thaliana: Ler and Cvi. The composition of the resulting rhizosphere
microbiome was shaped by a complex interplay between environmental factors, plant geno-
type, and biomass treatment. In the first few generations of the experiment, the genotype
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and biomass treatments played a modest role in shaping the microbial community. Over
time, the plant genotype and biomass treatments exerted increasing influence, explaining
~40% of the difference in the microbial community composition. We successfully cultivated
microbiomes that were associated with either increased or reduced plant biomass, and an
enrichment of known plant-growth-promoting rhizobacteria (PGPR) was observed with
the high-biomass treatment. The microbiomes identified in this study alter plant biomass
and growth, presumably by altering the availability of nutrients in the soil or by mitigating
biotic/abiotic stressors.

Translating the findings of such studies from a lab to a field setting requires further
optimization of the inoculum transfer [28,85]. For instance, Wright et al. made use of
artificial selection to select for active degraders of chitin by timing the harvest window
to collect inoculum at the same time that the desired trait (chitinase activity) was at its
peak and not at a pre-defined incubation time [86]. However, the dynamic nature of rhizo-
sphere microbiomes, where member abundances constantly shift based on the host plant’s
genotype and developmental stage, as well as environmental factors, adds complexity
to the challenge of identifying the optimal time point for transfer in plant microbiome
studies. Future research should focus on the meticulous refinement of transfer timing,
storage methods, and application techniques for the selected microbial inoculum to achieve
sustainable agricultural practices and improved soil health through ecosystem selection.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/microorganisms11122932/s1, Figure S1: Rhizotube schematic; Figure S2:
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