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Abstract: Influenza A virus (IAV) infections represent a substantial global health challenge and are
often accompanied by coinfections involving secondary viruses or bacteria, resulting in increased
morbidity and mortality. The clinical impact of coinfections remains poorly understood, with
conflicting findings regarding fatality. Isolating the impact of each pathogen and mechanisms of
pathogen synergy during coinfections is challenging and further complicated by host and pathogen
variability and experimental conditions. Factors such as cytokine dysregulation, immune cell function
alterations, mucociliary dysfunction, and changes to the respiratory tract epithelium have been
identified as contributors to increased lethality. The relative significance of these factors depends
on variables such as pathogen types, infection timing, sequence, and inoculum size. Mathematical
biological modeling can play a pivotal role in shedding light on the mechanisms of coinfections.
Mathematical modeling enables the quantification of aspects of the intra-host immune response that
are difficult to assess experimentally. In this narrative review, we highlight important mechanisms of
IAV coinfection with bacterial and viral pathogens and survey mathematical models of coinfection
and the insights gained from them. We discuss current challenges and limitations facing coinfection
modeling, as well as current trends and future directions toward a complete understanding of
coinfection using mathematical modeling and computer simulation.
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1. Introduction

Influenza A virus (IAV) infection is a major yearly global health burden. A typical
seasonal influenza infection is a mild, survivable viral infection. However, IAV infection is
regularly complicated by coinfection with either a second virus or with a bacterium, leading
to increased morbidity and mortality [1]. The likelihood of these coinfections increases
in influenza pandemics, further exacerbating the morbidity and associated costs of the
epidemic [2–4].

IAV–bacteria coinfection is most often associated with Streptococcus pneumoniae (pneu-
mococcus) and Staphylococcus aureus, though coinfections with other bacteria strains such
as Haemophilus influenzae and Streptococcus pyogenes are also regularly diagnosed [2,5–7].
By some estimates, around 75% of hosts infected with influenza that eventually develop
pneumonia have a confirmed bacterial coinfection [1]. The devastating severity of the 1918
influenza pandemic is thought to be largely attributed to widespread secondary bacterial
infections, particularly with pneumococcus [2,8,9]. About 90% of samples tested from fatal
IAV infections were positive for at least one bacterial coinfection [2]. Analyses of samples
from patients fatally infected with the 2009 H1N1 pandemic also indicated a prevalence
of secondary bacterial infections, particularly from pneumococcus or methicillin-resistant
S. aureus (MRSA) [4]. Influenza is thought to change the lung epithelium in a way that
creates an environment suitable for pneumococcal pneumonia, which may turn a typical,
seasonal influenza infection into a severe or even fatal coinfection [10–13].
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Coinfection with a second respiratory virus has also been identified as a major contrib-
utor to morbidity and mortality in both influenza and coronavirus pandemic years [14,15].
With the advent of more sophisticated testing techniques, patients tested for respiratory
viruses for diagnoses have been increasingly shown to exhibit more than one virus in
the lungs at the same time. By some estimates, 10% to 55% of respiratory viral infections
involve more than one virus [16–20], though some reports estimate this value to be as
high as 70% [21]. Viruses such as IAV, coronavirus, rhinovirus, and respiratory syncytial
virus (RSV) tend to be co-circulating in the population and may readily infect the same
vulnerable respiratory tract. Each of these viruses may also be paired with a variety of
bacterial strains, resulting in a high number of possible combinations of virus–bacteria
coinfection, each with its own dynamics and symptoms [22].

Despite its prevalence, much remains unknown about the clinical impact of coinfec-
tion. In some studies, coinfections have been shown to be substantially more fatal than
single infections [23–26], while in other studies, coinfection did not play a major role in
determining the fatality of the infection [27,28]. The complicated, interconnected dynam-
ics of these coinfections make it difficult to experimentally determine the impact of each
individual pathogen on the coinfected host. Variability in host species, pathogen species,
and experimental conditions such as inoculum or timing further complicate the studies of
coinfection, making it challenging to generalize IAV coinfection.

Modeling of biological phenomena is an important and growing field in mathematics.
Models allow us to identify and analyze key mechanisms in the immune response to
infection. Models can be used to quantify elements of the intra-host immune response
that are difficult to obtain and measure experimentally. In silico experimentation is vital
to expanding our knowledge of the immune response and the mechanisms by which
pathogens may evade it. Improving and increasing the library of available models for
superinfection is a crucial next step in mathematical biology.

Currently, there are many published models of IAV single infection or bacterial sin-
gle infection, but not nearly as many models of coinfection dynamics. In this review,
we describe the current state of the literature in modeling the immune response to vi-
ral and bacterial respiratory infections, and the gaps in knowledge that modeling may
endeavor to fill.

2. Virus–Bacteria Coinfections: Immune Dysregulation and Mathematical Models
2.1. Changes and Dysregulation of the Immune Response after Virus–Bacteria Coinfection

Virus–bacteria coinfections generally cause increased morbidity and mortality for
the host, regardless of the two pathogens causing the infection. Multiple theories exist
as to which mechanisms are primarily responsible for this increased lethality [29–38], but
no single theory adequately explains the multiple interconnected changes that occur to
the immune system during coinfection. Cytokine dysregulation, changes to immune cell
activation and function, mucociliary dysfunction, and alterations to the respiratory tract
epithelium have all been identified as causes for increased lethality after coinfection. The
relative importance of each of these mechanisms varies with the type of pathogens, timing
and sequence of infections, inoculum size, and other experimental conditions.

2.1.1. Dysregulation of Cytokine Responses

The pro-inflammatory cytokine response is dysregulated by viral infections and is
believed to contribute to the increased severity of secondary bacterial coinfection [39].
Pro-inflammatory cytokines are released soon after the viral infection begins in the lung.
These pro-inflammatory cytokines promote the upregulation of platelet-activating factor
receptor (PAFR), which pneumococcus can use to invade the epithelium and instigate
secondary bacterial infection [32].

Many studies report significantly increased pro-inflammatory cytokine and chemokine
concentrations after secondary bacterial infection [38,40–42]. However, several studies
have also shown substantial decreases in certain cytokines and chemokines related to
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effector cell function. For example, the production of neutrophil chemoattractants such
as KC (CXCL1) and MIP2 (CXCL2) is diminished after secondary bacterial infection [43].
This lack of chemoattractants can exacerbate the infection by limiting the innate immune
response to both pathogens. However, in some cases, minimizing inflammatory responses
is actually advantageous to the host. For example, decreased levels of IL-6 have been shown
to increase survival from infection [44]. These complex dynamics and lack of generalization
about the immune response further complicate our understanding of the cytokine dynamics
in virus–bacteria infection.

Interferons (IFNs) are critical to the antiviral immune response, as they inhibit viral
replication and activate adaptive immune responses. A strong and prompt IFN response
is crucial to controlling a viral infection. However, there is evidence that interferon also
reduces antibacterial host responses in secondary bacterial infections. Type I IFN (IFN-α/β)
has been shown in multiple experiments to decrease antibacterial responses within the
lung in response to both S. aureus and pneumococcus [43,45–47].

Type II IFN (IFN-γ) also plays a complex role in the antiviral and antibacterial de-
fenses in the host respiratory tract. IAV infection in IFN-γ-deficient mice produced less
inflammation and disease severity [48]. In mice, IAV decreased immunity to pneumococcus
by reducing IFN-γ-dependent proliferation of memory T-helper cells and migration of
CD4+ T cells [49]. Decreased IFN-γ levels have been shown to be advantageous for host
survival [44,50].

To date, not many studies have focused on the impact of type III interferon (IFN-λ) on
morbidity and mortality in superinfection. IFN-λweakens bacterial clearance in IAV–MRSA
and IAV–pneumococcus superinfection [51]. In mice, IFN-λ produced by dendritic cells
as an antiviral measure leads to epithelial damage and increased likelihood of secondary
bacterial infection [52].

Anti-inflammatory cytokines also exhibit interesting and complex behaviors in the
wake of secondary bacterial infection. IL-10 has been identified as a potential key player
in the dysregulation of cytokine activity in coinfection, especially when there is a time
delay between the initiation of the two pathogens. IL-10 production is stimulated after an
infection to control the inflammatory response, but if a secondary infection begins after
inflammatory responses have been halted, that secondary infection can become deadly.
IL-10 inhibits antibacterial defenses, and treatment of IAV-infected mice with anti-IL-10
antibodies can improve survival rates from secondary bacterial infection [38]. Transforming
growth factor (TGF)-β is another anti-inflammatory cytokine released after the onset of
viral infection. The influenza neuraminidase activates latent TGF-β, which can diminish
inflammatory responses for the subsequent bacterial infection [53].

2.1.2. Changes to Effector Cells’ Activation and Function

Closely tied to the changes to cytokine expression are the activation, recruitment,
and function of immune effector cells. Alveolar macrophages (AMs) are the first line of
phagocytic defense against lung pathogens. A robust macrophage response to infection is
key to controlling pathogen replication. AM responses are dysregulated in the presence
of influenza [54] and their clearance of bacterial pathogens is inhibited by IAV through
poorly understood mechanisms [55]. IAV has also been shown to inhibit the recruitment of
macrophages in mice, resulting in both enhanced pneumococcus colonization and suscepti-
bility to pneumonia caused by S. aureus [11]. In the first few days after virus infection, AMs
exhibit strong phagocytic responses, but later experience weakened phagocytic ability [30].
Sun and Metzer found that IFN-γ suppresses AM activity post-influenza infection, again
leading to a weakened resistance to pneumococcal infection [30]. Neutralizing the IFN-γ
response can reestablish the bacterial clearance rates.

Neutrophil responses are also altered after coinfection. Neutrophils are a major
component of innate immune responses and are particularly important for early clearance
of bacterial infection. Multiple studies have shown that the initial recruitment of neutrophils
in response to secondary bacterial infection is decreased [38,43,56,57], though some studies
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show this recruitment returns to normal levels a few days post-bacterial infection. In
addition to diminished early recruitment, neutrophils also often become less effective
in the wake of secondary infection [40,56,58]. IAV infection has been shown to decrease
neutrophil phagocytosis and the generation of reactive oxygen species, leading to greater
susceptibility to pneumococcus [59]. These weakened responses can thus make it easier for
bacteria to replicate and cause a severe infection.

2.1.3. Effect of Damage to the Epithelium

Viral infections have been shown to alter the epithelium such that epithelial cells
become more permissive to the adherence of bacteria [10,32]. Epithelial cell death by
IAV infection promotes bacterial invasion and colonization by upregulating bacterial
adhesion [60]. Pneumococcus pathogenesis is enhanced by epithelial damage from IAV
infection [61], which exposes cryptic binding sites [62] and the basement membrane [63] or
disrupts barrier function potentially leading to pneumococcus outgrowth, dissemination,
and invasion into the bloodstream [64]. Alveolar barrier disruption during coinfection has
been primarily attributed to the dysregulation of the host immune response [12].

Lethal synergism between IAV and pneumococcus leads to decreased rates of repair
of epithelial damage, further enhancing morbidity and mortality due to coinfection [65].
Exposure of undifferentiated airway epithelial cells during wound healing provides adhe-
sion sites for S. aureus [66]. Damaged epithelium may also disrupt mucociliary clearance,
allowing the bacteria to replicate more quickly within the lung tissue. In an in vivo study of
murine tracheal tissue, the influenza virus did not increase the adherence of bacteria to the
epithelium, but rather decreased the velocity of mucociliary action and thus the clearance
rate of bacteria [67]. Other respiratory viruses, such as rhinovirus and RSV, in addition to
bacterial and fungal pathogens, have all been shown to reduce mucociliary clearance in
lung tissue [68]. This sustained disruption of nonspecific clearance mechanisms further
enhances the likelihood of subsequent respiratory infections.

2.1.4. Effect of Timing and Sequence of Inocula

Timing between infections and types of infections has been shown to be a major
determinant of the severity of infection as well. For example, McCullers et al. [32] showed
that infection with influenza A virus 7 days before pneumococcus infection was lethal in
100% of mice tested, whereas infection with pneumococcus bacteria 7 days before influenza
A infection was 100% survivable. Mice singly infected with influenza only or bacteria
only showed some lethality, indicating the host defenses were somehow enhanced when
bacteria were administered first. The same has been shown in mice for coinfection with
IAV and MRSA, where the infection was most pathological and lethal when MRSA was
administered 0–3 days after IAV [25].

When bacteria are the first pathogen to invade the respiratory tract, there may be
different effects on the immune response than when the virus is first. For example, pneu-
mococcal nasopharyngeal colonization in mice resulted in impaired IFN-α production and
higher viral load during IAV infection [69].

2.2. Mathematical Modeling of Dynamics of Respiratory Virus–Bacteria Coinfection
2.2.1. Within-Host Ordinary Differential Equation (ODE) Models of Coinfection

Despite many models published on respiratory virus-only [70–78] and bacteria-only [79–83]
infections, few ODE models currently exist that can replicate influenza–bacteria coinfection
dynamics [42,44,84–89]. The majority of ODE modeling work in coinfection has been done
in IAV and pneumococcus coinfection, one of the most common coinfections diagnosed in
a typical influenza season [14].

There are some commonalities between these various ODE models, primarily in the
structure of terms controlling the innate immune response to infections. Existing models
are largely target cell-limited models, which model the target epithelial cells as a limited
resource within the lung environment that cannot be replenished. Most of the models



Microorganisms 2023, 11, 2974 5 of 18

also include terms for alveolar macrophages, specifically emphasizing the importance of a
robust and functioning macrophage population to limit the likelihood of a lethal secondary
bacterial infection. A few models include terms for cytokines, such as interferon or TNF-α,
or other immune cells, such as neutrophils or B cells, but most models are comparatively
small and concise. These models provide a strong foundation upon which more complex
models may be built, to further our understanding of the dynamics of the immune response
to coinfection. Table 1 summarizes the ODE models of virus–bacteria coinfection included
in this review.

Table 1. Summary of models of virus–pneumonia coinfection.

Reference Notable Variables and Parameters Primary Results and Conclusions

Duvigneau et al. [42] Interferon-γ IFN-γweakens bacterial clearance, allowing for
increased post-influenza bacterial replication.

Sharma-Chawla et al. [44] Interferon-γ
IL-6

Neutralizing IFN-γ improves bacterial clearance.
Neutralizing both IFN-γ and IL-6 further improves

bacterial clearance after influenza infection.

Smith et al. [84]

ϕ (decreased rate of macrophage
phagocytosis)

ψ (increased bacterial carrying capacity)
µ (increased bacterial adherence to

epithelial cells)

Viral titers increased in the presence of bacteria, and
post-influenza macrophage impairment allows

bacteria to grow at a faster rate.

Smith and Smith [85] Φ (percent of alveolar macrophage
depletion)

Macrophage depletion, bacterial growth rates, and
bacterial inoculum are interconnected, and balancing

them is key to survival of the coinfection.

Cheng et al. [86] TNF-α
TNF-α levels can reflect the overall level of

inflammatory response, providing an early warning
against possible cytokine storm.

Shrestha et al. [88]
Time between influenza and bacterial

inoculation
Bacterial inoculum size

Bacteria administered 4–6 days post-influenza
produce the most severe infections and require a

lower inoculum size than coinfections started
outside of this window.

In one of the first published models of influenza–pneumonia coinfection, Smith et al.
designed a small, target cell-limited model to explore the mechanisms involved in the
replication and survival of each pathogen in the presence of the other [84]. Their work
explores the hypothesis that macrophage function may be impaired following influenza
infection, leading to decreased bacterial clearance and thus increased lethality of influenza–
pneumonia coinfection. They also hypothesize that the presence of bacteria may lead
to an increased rate of viral release from the infected epithelial cells. These hypotheses
cannot be confirmed via mathematical modeling, though the authors do suggest possible
experimental techniques to test the theories. Their model also includes terms representing
mechanisms for increased epithelial cell death due to pneumococci as well as increased
bacterial adherence and carrying capacity in the presence of a virus, but these terms are
less influential in the overall behavior of the model.

Smith and Smith also expanded upon this work by exploring the effect of the bacterial
inoculum on the likelihood of instigating a secondary bacterial infection [85]. As before,
the model emphasizes that alveolar macrophages are critical to controlling the onset of bac-
terial infection, and depleting these macrophages decreases the inoculum of pneumococci
required to cause the secondary infection. The extent and severity of macrophage depletion
varies throughout the course of a typical influenza infection, and thus this dependence on
the macrophage population may explain why the likelihood of a severe secondary bacterial
infection also varies with time post-viral infection.

Building upon the Smith model, Duvigneau et al. explored a variety of mechanisms by
which bacterial clearance rates may be impaired after influenza infection [42]. By calibrating
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their model to each of several candidate cytokines, the authors tested hypotheses on which
cytokines are most influential to the diminished bacterial clearance rates often seen in the
wake of influenza infection. Type II interferon (IFN-γ) had the greatest effect on the bacterial
clearance rates, but TNF-α and IL-6 on their own did not exhibit much negative effect on
the clearance rates. These authors later built upon their work to show, through data-driven
experimentation, that neutralizing IFN-γ improves bacterial clearance in the lungs [44].
Schmit et al. have also shown experimentally that IFN-γ is a major contributor to the lung
damage experienced during influenza infection, and mice without IFN-γ demonstrate
increased resistance to secondary bacterial infection [48]. Sun and Metzger also verified
that IFN-γ impedes macrophage function, which can make a host more susceptible to a
secondary bacterial infection [30].

Cheng et al. worked with the Smith model to study the dynamics of coinfection,
specifically within the inflammatory response [86]. Their investigations showed the most
severe inflammation would occur with bacteria administered seven days after influenza
infection. These results align with those found experimentally by McCullers et al. [32].
Boianelli et al. also expanded upon the Smith model to test antiviral treatment regimens
and their effect on coinfection dynamics [89].

In contrast to the previous models, Shrestha et al. built an ODE model of influenza–
pneumonia coinfection [88] based on the within-host model of influenza infection dynamics
by Handel et al. [90]. The authors explored the effect of timing and inoculum on the
likelihood of survival of coinfection. This model demonstrates that bacteria administered
4–6 days post-influenza infection can initiate a serious secondary infection with a much
lower inoculum than in hosts without a pre-existing viral infection. The model also shows
the importance of providing any antiviral treatment within 4 days post-infection to prevent
the host’s defenses from weakening enough to allow the secondary bacterial infection to
take hold. As in the previous models, macrophages are the primary phagocytic cells in the
model used to control the infections.

We demonstrate the versatility of these in-host mathematical models in Figure 1, which
simulates results from the Smith and Smith model [85]. In this simulation, we vary the
time at which the bacterial infection is initiated, relative to the initial viral infection. This
model always leads to total depletion of the target epithelial cells (T) and infected cells
(I1 and I2). The virus (V) reaches its peak about 3 days post-infection and then begins to
decline as the target cell population is eradicated. The virus experiences a rebound after
the secondary bacterial infection is initiated (P). We simulated 1000 iterations of this model,
uniformly sampling a distribution of the time of administration of bacteria, between 5 and
9 days post-infection. While the time at which the virus rebounds is dependent upon the
onset of the secondary pathogen, the magnitude and duration of the rebound are consistent
regardless of the time the bacteria enter the host.

2.2.2. Population-Level Dynamics of Virus–Bacteria Coinfection

Virus–bacteria coinfections have also been modeled with population-level models.
Shrestha et al. used longitudinal data from influenza seasons to quantify the likelihood of
bacterial pneumonia after influenza infection and found that influenza infection increases
the risk of pneumonia by about 100-fold [91]. Other models have been proposed to identify
mitigation strategies for post-influenza pneumonia. Some studies indicate that, due to the
high likelihood that influenza strains will develop a resistance to antiviral measures as an
epidemic progresses, antibacterial interventions may be important to reduce morbidity
and mortality in a pandemic [92]. Widespread implementation of mitigation strategies
such as social distancing or vaccination may be effective in reducing the spread of multiple
circulating pathogens [93]. The effectiveness of antiviral or antibacterial measures in a
population is also likely to be highly strain-dependent [94].
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Figure 1. Simulation of IAV–streptococcus coinfection according to the model in Smith and Smith [85]
varying time of secondary infection. Target cells (“T”, panel (A)) that become infected enter an eclipse
phase (“I1”, panel (B)), transition to producing IAV (“I2”, panel (C)), and are eventually cleared. IAV
(“V”, panel (D)) is administered at time 0. Streptococcus (“P”, panel (E)) is administered at varying
times of secondary infection. Time is shown in units of days. The time of secondary infection was
uniformly sampled between times 5 and 9 for 1000 replicates. The inset shows colors for the time of
secondary infection, from time 5 (“Low”) to time 9 (“High”).

3. Virus–Virus Coinfection: Viral Competition and Mathematical Models

Viral coinfections commonly present in both children [17,95–99] and adults [17,100,101]
with acute respiratory infection. Millions of children are afflicted with lethal respiratory
infections each year, particularly in Africa and Asia [99]. RSV and rhinovirus are commonly
found in young children; RSV infects about 90% of children within their first two years of
life [102], and rhinovirus is commonly detected in even asymptomatic children [96,103].
While these two viruses are not often found simultaneously in a single host, their coinfection
does cause prolonged respiratory symptoms [96]. As with virus–bacteria coinfections, the
strain of virus, timing between infection, and in-host immune response to the two infecting
viruses will impact the dynamics and symptoms of the viral coinfection in the host.

3.1. Changes and Dysregulation of the Immune Response after Virus–Virus Coinfection
3.1.1. Interferon Stimulation and Antiviral Immunity

Much of the work done studying immune dysregulation in virus–virus coinfection has
been in interferon stimulation and avoidance by viruses. When the first virus invades the
host, it stimulates an interferon response by the host to slow viral replication and release.
This interferon response often limits the ability of the second virus to replicate and cause
infection as well [104–107]. In turn, viruses have evolved to develop evasion techniques to
avoid the host’s antiviral defenses and allow the viral coinfection to persist.

As in virus–bacteria coinfections, the timing between the two viral inocula will greatly
impact the likelihood of a successful defense against infection. If the host mounts a strong
enough defense against the first virus, the immune system may be primed to defend against
the second. However, the second virus may also cause an overstimulation of inflammatory
responses, leading to cytokine dysregulation, excess symptoms, and damage to the host.
The synergistic and antagonistic mechanisms by which two viruses interact are highly
dependent on the individual species; even different strains of the same virus may react
differently in coinfection [108,109].
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3.1.2. Resource Limitation and Competition

When two viruses simultaneously infect the same respiratory tract, there is a natural
competition between pathogens for the limited resources within the tract. Some virus–virus
interactions can result in more severe pathology for the host, while other interactions may
prevent the second virus from productively infecting the host. These agonistic and antag-
onistic interactions of competing viruses impact the seasonality and circulating patterns
of common viruses, such as influenza, rhinovirus, RSV, and coronavirus [108,110–114].
For example, a prominent circulation of rhinovirus likely delayed the onset of the 2009
influenza pandemic in many European countries [111,115]. The onset of rhinovirus was
also shown to protect against SARS-CoV-2 infection [106].

The viruses are also likely competing for a limited number of cell surface receptors
in order to infect epithelial cells lining the respiratory tract [116–118]. However, some
viral pathogens have been shown to enhance the availability of target receptors of other
viruses, such as increased expression of ACE2, the target receptor of SARS-CoV-2, through
stimulation of IFNr [119] by influenza independently of IFN [120].

3.2. Mathematical Modeling of Dynamics of Virus–Virus Coinfection
3.2.1. Within-Host ODE Models of Virus–Virus Coinfection

A few ODE models of virus–virus coinfections have also been published in recent years,
as experimental evidence has shown the widespread prevalence of dual virus infections
in patients admitted with influenza-like infections. Table 2 summarizes the models of
virus–virus coinfection discussed in this section.

Table 2. Summary of models of virus–virus coinfection.

Reference Notable Variables and Parameters Primary Results and Conclusions

Pinky and Dobrovolny [121] Size and timing of secondary viral
inoculum

Primary viruses can block secondary viruses by
infecting host cells without viral interference.

Pinky and Dobrovolny [122] Cell regeneration rate

Chronic coinfection was not possible for the
considered coinfection models with

cellular regeneration.
Only a single-virus infection could produce

chronic infection.

Pinky et al. [123] Relative viral production rate Stochasticity allows a slower-growing virus to
outcompete a faster-growing virus.

Pinky et al. [124] Infection rate of superinfected cells
Cell regeneration rate

Chronic viral coinfection required both cell
superinfection and regeneration.

Cao et al. [125]

Rate of IFN-induced conversion from
target cells to virus-resistant cells

Viral production rate sensitivity to IFN
Killing rate of infected cells by

IFN-activated NK cells

Viral hierarchy could be reproduced with IFN
inhibition of viral production and IFN-mediated

killing of infected cells by NK cells.
Viral hierarchy and interactions between competing

viruses are highly dependent on the timing of
secondary infection.

Despite the prevalence of multi-virus infections, a limited number of papers have
modeled dual virus coinfection in the respiratory tract. Pinky and Dobrovolny have
studied the dynamics of multiple viruses replicating and competing for resources within a
single respiratory tract in several papers [121–124]. Competition for the limited resources
within the epithelium, specifically the availability of epithelial cells to infect, is a major
contributor to the dynamics of the two coinfecting viruses [121]. Through experimental
and simulated data of influenza A, RSV, rhinovirus, parainfluenza, and hMPV, the authors
determined swift and sustained viral replication is paramount for one virus to survive
in the presence of another; one virus may drive out the other by being first to infect the
host’s target epithelial cells. Simulations indicated the virus with the fastest replication rate



Microorganisms 2023, 11, 2974 9 of 18

(rhinovirus) was able to weaken the replication of other viruses in its vicinity, whereas the
slowest replicating virus (parainfluenza) was largely overwhelmed by the other, quicker
viruses [121]. Viruses that infect first tend to get a head start on the trailing virus, and they
have a greater likelihood of successfully competing for the limited resources available in
the host’s respiratory tract. In several follow-up studies, these authors further explored the
dynamics of cell regeneration [122,124], stochasticity [123], and dosage levels [126] on the
replication and viability of two competing viruses.

In Figure 2, we demonstrate the dynamics of a virus–virus coinfection model [121]
when varying the time at which the secondary infection is initiated. In these simulations,
the initial RSV infection (V2) is administered at day 0, and the onset of the secondary
influenza infection (V1) is taken from a uniform distribution between 0 and 2 days. We
again performed 1000 replicates of these simulations to indicate the sensitivity of the model
variables to the timing between infections. When the influenza is administered within a
day of the initial RSV infection (blue lines), the secondary infection is detrimental to the
host. The influenza titers (V1) remain elevated long after the initial infection, and many
more cells die (R). When there is more time between infections (yellow lines), the influenza
titers remain low and clear quickly, indicating the secondary infection will not adversely
affect the host, and the RSV would have won the competition for limited resources within
the host’s lung environment.
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Figure 2. Simulation of IAV–RSV coinfection according to the model in [121] varying the time of
secondary IAV infection. Susceptible uninfected cells (“S”, panel (A)) are infected by either IAV (“V1”,
panel (G)) or RSV (“V2”, panel (H)), enter an eclipse phase (“E1”, panel (B), for IAV, “E2”, panel (C),
for RSV), become productively infectious (“I1”, panel (D), for IAV, “I2”, panel (E), for RSV), and then
die (“R”, panel (F)). RSV is administered at time 0. IAV is administered at varying times of secondary
infection. Time is shown in units of days. The time of secondary infection was uniformly sampled
between times 0 and 2 for 1000 replicates. The inset shows colors for the time of secondary infection,
from time 0 (“Low”) to time 2 (“High”).
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As with virus–bacteria coinfections, the timing between subsequent viral infections is
highly influential to the dynamics of the infections [125]. Cao et al. explored this timing in
a series of mathematical models calibrated to data from coinfected ferrets [127]. Like the
previous models, these experiments showed that the first virus to infect and replicate in the
epithelium can delay and/or block the second virus from infecting the host. As different
virus strains instigate the innate immune response, specifically the interferon response, at
different rates, the order and timing between the subsequent virus infections has a major
impact on the overall likelihood of survival of the host.

3.2.2. Population-Level Models of Virus–Virus Coinfection Dynamics

While within-host models give a picture of the immune response of one individual
against one or more infections, population-level models can yield further insights into the
transmissibility, infectivity, and severity of epidemics within a population of susceptible
individuals. ODE modeling of epidemics has been studied for about a century, starting
with the most basic Susceptible-Infected-Recovered (SIR) model. Only recently have these
SIR models expanded to include multiple pathogens within one epidemic. Most of these
models also test the effects of immunity within some members of the population as well,
either through a treatment regimen or through existing natural immunity to the pathogen.

Recently, a number of studies have endeavored to model transmissibility, virulence,
and time-dependent dynamics in a population-level model of coinfection [110,128,129].
Merler et al. created a modified SIR model that features SIR dynamics for a pandemic
strain of influenza and SIS dynamics for a co-circulating secondary respiratory virus, such
as rhinovirus [128]. These multidimensional dynamics indicate that circulating rhinovirus
can increase the transmissibility of influenza, leading to potential multiple waves in the
influenza season dynamics. Chen et al. also modeled multiple circulating viruses in a
population following SIS dynamics, in which infected individuals may become susceptible
again [129]. Nickbakhsh et al. further studied co-circulating viruses in a population to
explain temporal dynamics in a typical rhinovirus and IAV season [110].

4. Current Limitations in Coinfection Modeling

Mathematical modeling of coinfection currently contends with several limitations that
inhibit its utility in understanding the complex interactions between a host and multiple
pathogens. Generally, there is a significant lack of longitudinal data with sufficient time
resolution to confidently perform model development and selection and produce a well-
calibrated model. This lack of data, which is perpetuated by the expense and difficulty
of collecting the experimental data, also manifests in limited measures of host health and
immune response, which inhibits establishing relationships between datasets from different
experiments and thus constructing a model that integrates the collective body of published
experiments. As such, most modeling applications in coinfection, to date, have been limited
to describing the dynamics of marginal pathological and immunological processes com-
pared to the immense complexity of the total interactions of a host and multiple pathogens.
Integrative models that describe the complexity of the overall immune response (e.g., by
incorporating multiple datasets) can further the development of a comprehensive quantita-
tive description such as those demonstrated by projects such as FIRM [130], GranSim [131],
and ImmSim [132,133].

Spatial models such as those implemented in projects such as GranSim have been
developed at a wide variety of model scales and targeted a diverse set of applications,
such as the spatial distribution and spread of virions [134], local recruitment and effects of
the immune response [135], and contagion cooperation in host populations [136]. To our
knowledge, no in-host model exists that describes influenza–bacteria coinfection dynamics
with any significant emphasis on spatial dynamics and pathogen specificity. However,
several recently developed spatial and multiscale models could lay the groundwork for
explaining spatially resolved observations of influenza–bacteria coinfection at one or multi-
ple scales. Of interest are multicellular spatial agent-based models (ABMs), which consider
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the interactions of individual cells and/or pathogens (i.e., the agents) while modeling
cell shape and motility, spatial distributions, and transport of biomolecular species, and
other multicellular-level objects and processes. Spatial ABMs are especially well suited for
modeling tissue complexity and heterogeneity because they provide a natural framework
for describing the properties and processes of pathogens and cells on the basis of their
state and local environment. Spatial ABMs have described the cellular and spatial aspects
of viral infection comparably to population models [137], and recently in simulations of
complex, heterogeneous tissues on the order of millions of cells [138].

We demonstrate the potential utility of these spatial models with the simulations
in Figure 3. We simulated the virus–virus coinfection model presented in Figure 2, but
now allowing spatial effects to impact the dynamics of the coinfection in the host. Using
parameters from previous work [139], we demonstrate the time- and space-dependent
dynamics of the competing viruses in the host. At day 0, the majority of cells are considered
susceptible (blue) and both viruses exist at very low levels. As the infection progresses
through days 1 and 3 post-infection, the virus populations grow, and the number of infected
cells increases. We see distinct patterns of virus growth in the tissue: cells affected by a given
virus (green or red cells) tend to be in close proximity to one another. One to two weeks
post-infection, the epithelium is comprised largely of dead or productively infected cells,
and the virus levels begin to diminish as they run out of new cells to infect. Accounting for
the spatial heterogeneity in coinfections will be key to future mathematical modeling of
these infections.
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Figure 3. Two-dimensional, spatial simulation of viral–viral coinfection according to the infection
model in Figure 2 [121]. The agent-based multicellular spatial model and model parameters were
taken from [139]. The simulation consists of a field of individual cells (“Cells”, top) and two viruses
represented as diffusive fields (“Virus 1”, middle, and “Virus 2”, bottom). Susceptible cells are
infected by either Virus 1 or Virus 2, enter an eclipse phase (“Virus 1 infected” for Virus 1, “Virus
2 infected” for Virus 2), become productively infectious (“Virus 1 releasing” for Virus 1, “Virus 2
releasing” for Virus 2), and then die (“Dead”). Results are shown for days 0 (left), 1 (left-center),
3 (center), 7 (right-center), and 14 (right). Cell types are shown in the top-right legend. Virus
concentrations are shown according to the bottom-right color bar. The simulation was implemented
in CompuCell3D [140].

Recent ABMs of viral infection have described host–pathogen interactions with in-
creasingly greater simulation detail and model complexity by coupling multicellular ABMs
with descriptions of subcellular state, viral kinetics, and organismal-level immune response.
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One recent ABM demonstrated the importance of timing in antiviral therapies by consider-
ing a local distribution of susceptible tissue, where each susceptible cell was modeled with
an embedded ODE model of viral replication that was calibrated to SARS-CoV-2 data, and
each embedded ODE was coupled with local diffusive transport of extracellular virus [141].
Several methodologically similar ABMs have since described other viral pathogens, con-
texts, and applications. One ABM described the spatial dynamics of influenza plaque
growth by embedding an ODE model of the JAK/STAT pathway and interferon signaling
in susceptible cells [142]. Another ABM showed the role of cellular drug metabolic vari-
ability in promoting the spread of SARS-CoV-2 by coupling subcellular and multicellular
models with PK/PD modeling of drug dosing [143]. An investigation of the basic biological
and cellular aspects of immune response to influenza infection generated another ABM
from a calibrated ODE model of influenza infection and innate and adaptive immune
responses [144].

While recent work has made progress toward quantitatively describing the cellular-
and tissue-specific aspects of infection and host immune response, a quantitative model of
coinfection with local specificity, especially virus–bacteria coinfection, remains out of reach.
Some cell-based spatial models of local infection have delivered promising frameworks for
describing the interplay between subcellular, tissue, and host dynamics. However, most
efforts have focused on viral infection and there is a general lack of quantitative models
to describe most bacterial pathogens such as S. aureus and pneumococcus with sufficient
detail to develop a comprehensive model of a particular microenvironment during viral–
bacterial coinfection and immune response. Such models could generate and/or test
hypotheses related to the interplay between pathogens or enhanced pathogenicity through
manipulation of the local microenvironment and immune response. While ODE modeling
is an important first step to understanding these complicated dynamics, ODE models
cannot account for the spatial detail that is likely critical to understanding how those
dynamics produce observed viral plaques and bacterial colonies in the respiratory tract.
Some ODE models attempt to account for spatial and resource limitations by creating target
cell-limited models that limit the pathogen through exhaustion of resources, but these
models inaccurately describe the reality of target organs and tissues such as the airway
epithelium and overall health of the host. Detailed models of heterogeneous tissues and
specific microenvironments can consider the complex dynamics of target tissues such as
those of the epithelium to identify the mechanisms and conditions of critically important
events such as the spread of infection, onset of pneumonia, and organ failure.

5. Conclusions

In this review, we explored within-host and population-level mathematical models
of respiratory virus–bacteria and virus–virus coinfection. We have emphasized some
opportunities for further exploration and research, including more detailed and dynamic
ODE models, as well as the incorporation of spatial information in the models. Coinfections
present complicated, time-dependent dynamics, and these may best be investigated through
mathematical modeling and in silico experiments to develop more effective interventions
against coinfection.

Funding: This research was funded by the National Institutes of Health, grant number U24EB028887.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zambon, M.C. The Pathogenesis of Influenza in Humans. Rev. Med. Virol. 2001, 11, 227–241. [CrossRef] [PubMed]
2. Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Predominant Role of Bacterial Pneumonia as a Cause of Death in Pandemic

Influenza: Implications for Pandemic Influenza Preparedness. J. Infect. Dis. 2008, 198, 962–970. [CrossRef] [PubMed]
3. Chien, Y.-W.; Klugman, K.P.; Morens, D.M. Bacterial Pathogens and Death during the 1918 Influenza Pandemic. N. Engl. J. Med.

2009, 361, 2582–2583. [CrossRef] [PubMed]

https://doi.org/10.1002/rmv.319
https://www.ncbi.nlm.nih.gov/pubmed/11479929
https://doi.org/10.1086/591708
https://www.ncbi.nlm.nih.gov/pubmed/18710327
https://doi.org/10.1056/NEJMc0908216
https://www.ncbi.nlm.nih.gov/pubmed/20032332


Microorganisms 2023, 11, 2974 13 of 18

4. Gill, J.R.; Sheng, Z.-M.; Ely, S.F.; Guinee, D.G., Jr.; Beasley, M.B.; Suh, J.; Deshpande, C.; Mollura, D.J.; Morens, D.M.; Bray, M.; et al.
Pulmonary Pathologic Findings of Fatal 2009 Pandemic Influenza A/H1N1 Viral Infections. Arch. Pathol. Lab. Med. 2010, 134,
235–243. [CrossRef] [PubMed]

5. Murray, R.J.; Robinson, J.O.; White, J.N.; Hughes, F.; Coombs, G.W.; Pearson, J.C.; Tan, H.-L.; Chidlow, G.; Williams, S.;
Christiansen, K.J.; et al. Community-Acquired Pneumonia Due to Pandemic A(H1N1)2009 Influenzavirus and Methicillin
Resistant Staphylococcus aureus Co-Infection. PLoS ONE 2010, 5, e8705. [CrossRef] [PubMed]

6. Podewils, L.J.; Liedtke, L.A.; McDonald, L.C.; Hageman, J.C.; Straustaaugh, L.J.; Fischer, T.K.; Jernigan, D.B.; Uyeki, T.M.;
Kuehnert, M.J. A National Survey of Severe Influenza-Associated Complications among Children and Adults, 2003–2004. Clin.
Infect. Dis. 2005, 40, 1693–1696. [CrossRef] [PubMed]

7. Randolph, A.G.; Vaughn, F.; Sullivan, R.; Rubinson, L.; Thompson, B.T.; Yoon, G.; Smoot, E.; Rice, T.W.; Loftis, L.L.; Helfaer,
M.; et al. Critically Ill Children during the 2009-2010 Influenza Pandemic in the United States. Pediatrics 2011, 128, e1450–e1458.
[CrossRef]

8. Brundage, J.F.; Shanks, G.D. Deaths from Bacterial Pneumonia during 1918-19 Influenza Pandemic. Emerg. Infect. Dis. 2008, 14,
1193–1199. [CrossRef]

9. Klugman, K.P.; Chien, Y.-W.; Madhi, S.A. Pneumococcal Pneumonia and Influenza: A Deadly Combination. Vaccine 2009, 27
(Suppl. S3), C9–C14. [CrossRef]

10. Avadhanula, V.; Rodriguez, C.A.; Devincenzo, J.P.; Wang, Y.; Webby, R.J.; Ulett, G.C.; Adderson, E.E. Respiratory Viruses Augment
the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner. J. Virol.
2006, 80, 1629–1636. [CrossRef]

11. Manna, S.; Baindara, P.; Mandal, S.M. Molecular Pathogenesis of Secondary Bacterial Infection Associated to Viral Infections
Including SARS-CoV-2. J. Infect. Public Health 2020, 13, 1397–1404. [CrossRef] [PubMed]

12. Nickol, M.E.; Ciric, J.; Falcinelli, S.D.; Chertow, D.S.; Kindrachuk, J. Characterization of Host and Bacterial Contributions to Lung
Barrier Dysfunction Following Co-Infection with 2009 Pandemic Influenza and Methicillin Resistant Staphylococcus aureus. Viruses
2019, 11, 116. [CrossRef]

13. Siegel, S.J.; Roche, A.M.; Weiser, J.N. Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated
Substrates as a Nutrient Source. Cell Host Microbe 2014, 16, 55–67. [CrossRef] [PubMed]

14. Morris, D.E.; Cleary, D.W.; Clarke, S.C. Secondary Bacterial Infections Associated with Influenza Pandemics. Front. Microbiol.
2017, 8, 1041. [CrossRef]

15. Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M.;
et al. Microbial Co-Infections in COVID-19: Associated Microbiota and Underlying Mechanisms of Pathogenesis. Microb. Pathog.
2021, 156, 104941. [CrossRef]

16. Asner, S.A.; Rose, W.; Petrich, A.; Tran, S.; Richardson, D.J. Is Virus Coinfection a Predictor of Severity in Children with Viral
Respiratory Infections? Clin. Microbiol. Infect. 2020, 21, 264.e1–e6. [CrossRef] [PubMed]

17. Goka, E.A.; Vallely, P.J.; Mutton, K.J.; Klapper, P.E. Single, Dual and Multiple Respiratory Virus Infections and Risk of Hospitaliza-
tion and Mortality. Epidemiol. Infect. 2015, 143, 37–47. [CrossRef]

18. Martin, E.T.; Kuypers, J.; Wald, A.; Englund, J.A. Multiple versus Single Virus Respiratory Infections: Viral Load and Clinical
Disease Severity in Hospitalized Children. Influ. Other Respir. Viruses 2012, 6, 71–77. [CrossRef]

19. Martin, E.T.; Fairchok, M.P.; Stednick, Z.J.; Kuypers, J.; Englund, J.A. Epidemiology of Multiple Respiratory Viruses in Childcare
Attendees. J. Infect. Dis. 2013, 207, 982–989. [CrossRef]

20. Ratnamohan, V.M.; Taylor, J.; Zeng, F.; McPhie, K.; Blyth, C.C.; Adamson, S.; Kok, J.; Dwyer, D.E. Pandemic Clinical Case
Definitions Are Non-Specific: Multiple Respiratory Viruses Circulating in the Early Phases of the 2009 Influenza Pandemic in
New South Wales, Australia. Virol. J. 2014, 11, 113. [CrossRef]

21. De Paulis, M.; Gilio, A.E.; Ferraro, A.A.; Ferronato, A.E.; Rossi do Sacramento, P.; Botosso, V.F.; Bruna Leal de Oliveira, D.;
Marinheiro, J.C.; Hársi, C.M.; Durigon, E.L.; et al. Severity of Viral Coinfection in Hospitalized Infants with Respiratory Syncytial
Virus Infection. J. Pediatr. (Rio J.) 2011, 87, 307–313. [PubMed]

22. Meskill, S.D.; O’Bryant, S.C. Respiratory Virus Co-Infection in Acute Respiratory Infections in Children. Curr. Infect. Dis. Rep.
2020, 22, 3. [CrossRef] [PubMed]

23. Mirzaei, R.; Goodarzi, P.; Asadi, M.; Soltani, A.; Aljanabi, H.A.A.; Jeda, A.S.; Dashtbin, S.; Jalalifar, S.; Mohammadzadeh, R.;
Teimoori, A.; et al. Bacterial Co-Infections with SARS-CoV-2. IUBMB Life 2020, 72, 2097–2111. [CrossRef] [PubMed]

24. Jia, L.; Xie, J.; Zhao, J.; Cao, D.; Liang, Y.; Hou, X.; Wang, L.; Li, Z. Mechanisms of Severe Mortality-Associated Bacterial
Co-Infections Following Influenza Virus Infection. Front. Cell. Infect. Microbiol. 2017, 7, 338. [CrossRef] [PubMed]

25. Jia, L.; Zhao, J.; Yang, C.; Liang, Y.; Long, P.; Liu, X.; Qiu, S.; Wang, L.; Xie, J.; Li, H.; et al. Severe Pneumonia Caused by Coinfection
With Influenza Virus Followed by Methicillin-Resistant Staphylococcus aureus Induces Higher Mortality in Mice. Front. Immunol.
2018, 9, 3189. [CrossRef] [PubMed]

26. Quah, J.; Jiang, B.; Tan, P.C.; Siau, C.; Tan, T.Y. Impact of Microbial Aetiology on Mortality in Severe Community-Acquired
Pneumonia. BMC Infect. Dis. 2018, 18, 451. [CrossRef] [PubMed]

27. Kobayashi, S.D.; Olsen, R.J.; LaCasse, R.A.; Safronetz, D.; Ashraf, M.; Porter, A.R.; Braughton, K.R.; Feldmann, F.; Clifton, D.R.;
Kash, J.C.; et al. Seasonal H3N2 Influenza A Virus Fails to Enhance Staphylococcus aureus Co-Infection in a Non-Human Primate
Respiratory Tract Infection Model. Virulence 2013, 4, 707–715. [CrossRef]

https://doi.org/10.5858/134.2.235
https://www.ncbi.nlm.nih.gov/pubmed/20121613
https://doi.org/10.1371/journal.pone.0008705
https://www.ncbi.nlm.nih.gov/pubmed/20090931
https://doi.org/10.1086/430424
https://www.ncbi.nlm.nih.gov/pubmed/15889371
https://doi.org/10.1542/peds.2011-0774
https://doi.org/10.3201/eid1408.071313
https://doi.org/10.1016/j.vaccine.2009.06.007
https://doi.org/10.1128/JVI.80.4.1629-1636.2006
https://doi.org/10.1016/j.jiph.2020.07.003
https://www.ncbi.nlm.nih.gov/pubmed/32712106
https://doi.org/10.3390/v11020116
https://doi.org/10.1016/j.chom.2014.06.005
https://www.ncbi.nlm.nih.gov/pubmed/25011108
https://doi.org/10.3389/fmicb.2017.01041
https://doi.org/10.1016/j.micpath.2021.104941
https://doi.org/10.1016/j.cmi.2014.08.024
https://www.ncbi.nlm.nih.gov/pubmed/25596778
https://doi.org/10.1017/S0950268814000302
https://doi.org/10.1111/j.1750-2659.2011.00265.x
https://doi.org/10.1093/infdis/jis934
https://doi.org/10.1186/1743-422X-11-113
https://www.ncbi.nlm.nih.gov/pubmed/21655684
https://doi.org/10.1007/s11908-020-0711-8
https://www.ncbi.nlm.nih.gov/pubmed/31980966
https://doi.org/10.1002/iub.2356
https://www.ncbi.nlm.nih.gov/pubmed/32770825
https://doi.org/10.3389/fcimb.2017.00338
https://www.ncbi.nlm.nih.gov/pubmed/28824877
https://doi.org/10.3389/fimmu.2018.03189
https://www.ncbi.nlm.nih.gov/pubmed/30761162
https://doi.org/10.1186/s12879-018-3366-4
https://www.ncbi.nlm.nih.gov/pubmed/30180811
https://doi.org/10.4161/viru.26572


Microorganisms 2023, 11, 2974 14 of 18

28. Tosche, A.; Aranz, S.; von Kries, R.; Puppe, W.; Weigl, J.; Hohle, M.; Heininger, U. No Temporal Association between Influenza
Outbreaks and Invasive Pneumococcal Infections. Arch. Dis. Child. 2007, 93, 218–220. [CrossRef]

29. Small, C.-L.; McCormick, S.; Gill, N.; Kugathasan, K.; Santosuosso, M.; Donaldson, N.; Heinrichs, D.E.; Ashkar, A.; Xing, Z.;
Donaldson, N. NK Cells Play a Critical Protective Role in Host Defense against Acute Extracellular Staphylococcus aureus Bacterial
Infection in the Lung. J. Immunol. 2013, 180, 5558–5568. [CrossRef]

30. Sun, K.; Metzger, D.W. Inhibition of Pulmonary Antibacterial Defense by Interferon-γ during Recovery from Influenza Infection.
Nat. Med. 2008, 14, 558–564. [CrossRef]

31. Lee, M.-H.; Arrecubieta, C.; Martin, F.J.; Prince, A.; Borczuk, A.C.; Lowy, F.D. A Postinfluenza Model of Staphylococcus aureus
Pneumonia. J. Infect. Dis. 2010, 201, 508–515. [CrossRef] [PubMed]

32. McCullers, J.A.; Rehg, J.E. Lethal Synergism between Influenza Virus and Streptococcus pneumoniae: Characterization of a Mouse
Model and the Role of Platelet-Activating Factor Receptor. J. Infect. Dis. 2002, 186, 341–350. [CrossRef] [PubMed]

33. McCullers, J.A.; Bartmess, K.C. Role of Neuraminidase in Lethal Synergism between Influenza Virus and Streptococcus pneumoniae.
J. Infect. Dis. 2003, 187, 1000–1009. [CrossRef] [PubMed]

34. Tuvim, M.J.; Gilbert, B.E.; Dickey, B.F.; Evans, S.E. Synergistic TLR2/6 and TLR9 Activation Protects Mice against Lethal Influenza
Pneumonia. PLoS ONE 2012, 7, e30596. [CrossRef] [PubMed]

35. Iverson, A.R.; Boyd, K.L.; McAuley, J.L.; Plano, L.R.; Hart, M.E.; McCullers, J.A. Influenza Virus Primes Mice for Pneumonia from
Staphylococcus aureus. J. Infect. Dis. 2011, 203, 880–888. [CrossRef] [PubMed]

36. Khader, S.A.; Gaffen, S.L.; Kolls, J.K. Th17 Cells at the Crossroads of Innate and Adaptive Immunity against Infectious Diseases at
the Mucosa. Mucosal Immunol. 2009, 2, 403–411. [CrossRef] [PubMed]

37. Kudva, A.; Scheller, E.V.; Robinson, K.M.; Crowe, C.R.; Choi, S.M.; Slight, S.R.; Khader, S.A.; Dubin, P.J.; Enelow, R.I.; Kolls, J.K.;
et al. Influenza A Inhibits Th17-Mediated Host Defense against Bacterial Pneumonia in Mice. J. Immunol. 2011, 186, 1666–1674.
[CrossRef]

38. van der Sluijs, K.F.; van Elden, L.J.R.; Nijhuis, M.; Schuurman, R.; Pater, J.M.; Florquin, S.; Goldman, M.; Jansen, H.M.; Lutter,
R.; van der Poll, T. IL-10 Is an Important Mediator of the Enhanced Susceptibility to Pneumococcal Pneumonia after Influenza
Infection. J. Immunol. 2004, 172, 7603–7609. [CrossRef]

39. Bakaletz, L.O. Viral-Bacterial Co-Infections in the Respiratory Tract. Curr. Opin. Microbiol. 2017, 35, 30–35. [CrossRef]
40. Seki, M.; Yanagihara, K.; Higashiyama, Y.; Fukuda, Y.; Kaneko, Y.; Ohno, H.; Miyazaki, Y.; Hirakata, Y.; Tomono, K.; Kadota, J.;

et al. Immunokinetics in Severe Pneumonia Due to Influenza Virus and Bacteria Coinfection in Mice. Eur. Respir. J. 2004, 24,
143–149. [CrossRef]

41. Verma, A.K.; Bauer, C.; Palani, S.; Metzger, D.W.; Sun, K. IFN-γ Drives TNF-αHyperproduction and Lethal Lung Inflammation
during Antibiotic Treatment of Postinfluenza Staphylococcus aureus Pneumonia. J. Immunol. 2021, 207, 1371–1376. [CrossRef]
[PubMed]

42. Duvigneau, S.; Sharma-Chawla, N.; Boianelli, A.; Stegemann-Koniszewski, S.; Nguyen, V.K.; Bruder, D.; Hernandez-Vargas, E.A.
Hierarchical Effects of Pro-Inflammatory Cytokines on the Post-Influenza Susceptibility to Pneumococcal Coinfection. Sci. Rep.
2016, 6, 37045. [CrossRef] [PubMed]

43. Shahangian, A.; Chow, E.K.; Tian, X.; Kang, J.R.; Ghaffari, A.; Liu, S.Y.; Belperio, J.A.; Cheng, G.; Deng, J.C. Type I IFNs Mediate
Development of Postinfluenza Bacterial Pneumonia in Mice. J. Clin. Investig. 2009, 119, 1910–1920. [CrossRef] [PubMed]

44. Sharma-Chawla, N.; Stegemann-Koniszewski, S.; Christen, H.; Boehme, J.D.; Kershaw, O.; Schreiber, J.; Guzmán, C.A.; Bruder,
D.; Hernandez-Vargas, E.A. In Vivo Neutralization of Pro-Inflammatory Cytokines During Secondary Streptococcus pneumoniae
Infection Post Influenza A Virus Infection. Front. Immunol. 2019, 10, 1864. [CrossRef] [PubMed]

45. Nakamura, S.; Davis, K.M.; Weiser, J.N. Synergistic Stimulation of Type I Interferons during Influenza Virus Coinfection Promotes
Streptococcus pneumoniae Colonization in Mice. J. Clin. Investig. 2011, 121, 3657–3665. [CrossRef] [PubMed]

46. Parker, D.; Planet, P.J.; Soong, G.; Narechania, A.; Prince, A. Induction of Type I Interferon Signaling Determines the Relative
Pathogenicity of Staphylococcus aureus Strains. PLoS Pathog. 2014, 10, e1003951. [CrossRef] [PubMed]

47. Lee, B.; Robinson, K.M.; McHugh, K.J.; Scheller, E.V.; Mandalapu, S.; Chen, C.; Di, Y.P.; Clay, M.E.; Enelow, R.I.; Dubin, P.J.; et al.
Influenza-Induced Type I Interferon Enhances Susceptibility to Gram-Negative and Gram-Positive Bacterial Pneumonia in Mice.
Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L158–L167. [CrossRef]

48. Schmit, T.; Guo, K.; Tripathi, J.K.; Wang, Z.; McGregor, B.; Klomp, M.; Ambigapathy, G.; Mathur, R.; Hur, J.; Pichichero, M.; et al.
Interferon-γ Promotes Monocyte-Mediated Lung Injury during Influenza Infection. Cell Rep. 2022, 38, 110456. [CrossRef]

49. Li, N.; Fan, X.; Xu, M.; Zhou, Y.; Wang, B. Flu Virus Attenuates Memory Clearance of Pneumococcus via IFN-γ-Dependent Th17
and Independent Antibody Mechanisms. iScience 2020, 23, 101767. [CrossRef]

50. Palani, S.; Uddin, M.B.; McKelvey, M.; Shao, S.; Sun, K. Immune Predisposition Drives Susceptibility to Pneumococcal Pneumonia
after Mild Influenza A Virus Infection in Mice. Front. Immunol. 2023, 14, 1272920. [CrossRef]

51. Rich, H.E.; McCourt, C.C.; Zheng, W.Q.; McHugh, K.J.; Robinson, K.M.; Wang, J.; Alcorn, J.F. Interferon Lambda Inhibits Bacterial
Uptake during Influenza Superinfection. Infect. Immun. 2019, 87, e00114-19. [CrossRef] [PubMed]

52. Broggi, A.; Ghosh, S.; Sposito, B.; Spreafico, R.; Balzarini, F.; Lo Cascio, A.; Clementi, N.; De Santis, M.; Mancini, N.; Granucci,
F.; et al. Type III Interferons Disrupt the Lung Epithelial Barrier upon Viral Recognition. Science 2020, 369, 706–712. [CrossRef]
[PubMed]

https://doi.org/10.1136/adc.2006.098996
https://doi.org/10.4049/jimmunol.180.8.5558
https://doi.org/10.1038/nm1765
https://doi.org/10.1086/650204
https://www.ncbi.nlm.nih.gov/pubmed/20078212
https://doi.org/10.1086/341462
https://www.ncbi.nlm.nih.gov/pubmed/12134230
https://doi.org/10.1086/368163
https://www.ncbi.nlm.nih.gov/pubmed/12660947
https://doi.org/10.1371/journal.pone.0030596
https://www.ncbi.nlm.nih.gov/pubmed/22299046
https://doi.org/10.1093/infdis/jiq113
https://www.ncbi.nlm.nih.gov/pubmed/21278211
https://doi.org/10.1038/mi.2009.100
https://www.ncbi.nlm.nih.gov/pubmed/19587639
https://doi.org/10.4049/jimmunol.1002194
https://doi.org/10.4049/jimmunol.172.12.7603
https://doi.org/10.1016/j.mib.2016.11.003
https://doi.org/10.1183/09031936.04.00126103
https://doi.org/10.4049/jimmunol.2100328
https://www.ncbi.nlm.nih.gov/pubmed/34380647
https://doi.org/10.1038/srep37045
https://www.ncbi.nlm.nih.gov/pubmed/27872472
https://doi.org/10.1172/JCI35412
https://www.ncbi.nlm.nih.gov/pubmed/19487810
https://doi.org/10.3389/fimmu.2019.01864
https://www.ncbi.nlm.nih.gov/pubmed/31474978
https://doi.org/10.1172/JCI57762
https://www.ncbi.nlm.nih.gov/pubmed/21841308
https://doi.org/10.1371/journal.ppat.1003951
https://www.ncbi.nlm.nih.gov/pubmed/24586160
https://doi.org/10.1152/ajplung.00338.2014
https://doi.org/10.1016/j.celrep.2022.110456
https://doi.org/10.1016/j.isci.2020.101767
https://doi.org/10.3389/fimmu.2023.1272920
https://doi.org/10.1128/IAI.00114-19
https://www.ncbi.nlm.nih.gov/pubmed/30804099
https://doi.org/10.1126/science.abc3545
https://www.ncbi.nlm.nih.gov/pubmed/32527925


Microorganisms 2023, 11, 2974 15 of 18

53. Schultz-Cherry, S.; Hinshaw, V.S. Influenza Virus Neuraminidase Activates Latent Transforming Growth Factor Beta. J. Virol.
1996, 70, 8624–8629. [CrossRef] [PubMed]

54. Aleith, J.; Brendel, M.; Weipert, E.; Müller, M.; Schultz, D.; Ko-Infekt Study Group; Müller-Hilke, B. Influenza A Virus Exacerbates
Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens 2022,
11, 1320. [CrossRef] [PubMed]

55. Barman, T.K.; Metzger, D.W. Disease Tolerance during Viral-Bacterial Co-Infections. Viruses 2021, 13, 2362. [CrossRef] [PubMed]
56. LeVine, A.M.; Koeningsknecht, V.; Stark, J.M. Decreased Pulmonary Clearance of S. pneumoniae Following Influenza A Infection

in Mice. J. Virol. Methods 2001, 94, 173–186. [CrossRef]
57. Smith, M.W.; Schmidt, J.E.; Rehg, J.E.; Orihuela, C.J.; McCullers, J.A. Induction of Pro- and Anti-Inflammatory Molecules in a

Mouse Model of Pneumococcal Pneumonia after Influenza. Comp. Med. 2007, 57, 82–89.
58. Wilden, J.J.; Jacob, J.C.; Ehrhardt, C.; Ludwig, S.; Boergeling, Y. Altered Signal Transduction in the Immune Response to Influenza

Virus and S. pneumoniae or S. aureus Co-Infections. Int. J. Mol. Sci. 2021, 22, 5486. [CrossRef]
59. McNamee, L.A.; Harmsen, A.G. Both Influenza-Induced Neutrophil Dysfunction and Neutrophil-Independent Mechanisms

Contribute to Increased Susceptibility to a Secondary Streptococcus pneumoniae Infection. Infect. Immun. 2006, 74, 6707–6721.
[CrossRef]

60. Klomp, M.; Ghosh, S.; Mohammed, S.; Nadeem Khan, M. From Virus to Inflammation, How Influenza Promotes Lung Damage. J.
Leukoc. Biol. 2021, 110, 115–122. [CrossRef]

61. Ellis, G.T.; Davidson, S.; Crotta, S.; Branzk, N.; Papayannopoulos, V.; Wack, A. TRAIL Monocytes and Monocyte-related Cells
Cause Lung Damage and Thereby Increase. EMBO Rep. 2015, 16, 1051–1232. [CrossRef] [PubMed]

62. LeMessurier, K.S.; Tiwary, M.; Morin, N.P.; Samarasinghe, A.E. Respiratory Barrier as a Safeguard and Regulator of Defense
Against Influenza A Virus and Streptococcus pneumoniae. Front. Immunol. 2020, 11, 3. [CrossRef] [PubMed]

63. Plotkowski, M.-C.; Puchelle, E.; Beck, G.; Jacquot, J.; Hannoun, C. Adherence of Type I Streptococcus pneumoniae to Tracheal
Epithelium of Mice Infected with Influenza A/PR8 Virus. Am. Rev. Respir. Dis. 1985, 134, 1040–1044. [CrossRef] [PubMed]

64. Sohail, I.; Ghosh, S.; Mukundan, S.; Zelewski, S.; Khan, M.N. Role of Inflammatory Risk Factors in the Pathogenesis of Streptococcus
pneumoniae. Front. Immunol. 2018, 9, 2275. [CrossRef]

65. Kash, J.C.; Walters, K.-A.; Davis, A.S.; Sandouk, A.; Schwartzman, L.M.; Jagger, B.W.; Chertow, D.S.; Qi, L.; Kuestner, R.E.; Ozinsky,
A.; et al. Lethal Synergism of 2009 Pandemic H1N1 Influenza Virus and Streptococcus pneumoniae Coinfection Is Associated with
Loss of Murine Lung Repair Responses. MBio 2011, 2, e00172-11. [CrossRef] [PubMed]

66. Mongodin, E.; Bajolet, O.; Cutrona, J.; Bonnet, N.; Dupuit, F.; Puchelle, E.; Bentzmann, S.D. Fibronectin-Binding Proteins of
Staphylococcus aureus Are Involved in Adherence to Human Airway Epithelium. Infect. Immun. 2002, 70, 620–630. [CrossRef]
[PubMed]

67. Pittet, L.A.; Hall-Stoodley, L.; Rutkowski, M.R.; Harmsen, A.G. Influenza Virus Infection Decreases Tracheal Mucociliary Velocity
and Clearance of Streptococcus pneumoniae. Am. J. Respir. Cell Mol. Biol. 2010, 42, 450–460. [CrossRef]

68. Kuek, L.E.; Lee, R.J. First Contact: The Role of Respiratory Cilia in Host-Pathogen Interactions in the Airways. Am. J. Physiol.
Lung Cell. Mol. Physiol. 2020, 319, L603–L619. [CrossRef]

69. Joma, B.H.; Siwapornchai, N.; Vanguri, V.K.; Shrestha, A.; Roggensack, S.E.; Davidson, B.A.; Tai, A.K.; Hakansson, A.P.; Meydani,
S.N.; Leong, J.M.; et al. A Murine Model for Enhancement of Streptococcus pneumoniae Pathogenicity upon Viral Infection and
Advanced Age. Infect. Immun. 2021, 89, e0047120. [CrossRef]

70. Baccam, P.; Beauchemin, C.; Macken, C.A.; Hayden, F.G.; Perelson, A.S. Kinetics of Influenza A Virus Infection in Humans. J.
Virol. 2006, 80, 7590–7599. [CrossRef]

71. Hancioglu, B.; Swigon, D.; Clermont, G. A Dynamical Model of Human Immune Response to Influenza A Virus Infection. J.
Theor. Biol. 2007, 246, 70–86. [CrossRef]

72. Saenz, R.A.; Quinlivan, M.; Elton, D.; Macrae, S.; Blunden, A.S.; Mumford, J.A.; Daly, J.M.; Digard, P.; Cullinane, A.; Grenfell, B.T.;
et al. Dynamics of Influenza Virus Infection and Pathology. J. Virol. 2010, 84, 3974–3983. [CrossRef] [PubMed]

73. Miao, H.; Hollenbaugh, J.A.; Zand, M.S.; Holden-Wiltse, J.; Mosmann, T.R.; Perelson, A.S.; Wu, H.; Topham, D.J. Quantifying the
Early Immune Response and Adaptive Immune Response Kinetics in Mice Infected with Influenza A Virus. J. Virol. 2010, 84,
6687–6698. [CrossRef]

74. Canini, L.; Carrat, F. Population Modeling of Influenza A/H1N1 Virus Kinetics and Symptom Dynamics. J. Virol. 2011, 85,
2764–2770. [CrossRef] [PubMed]

75. Smith, A.M.; Adler, F.R.; McAuley, J.L.; Gutenkunst, R.N.; Ribeiro, R.M.; McCullers, J.A.; Perelson, A.S. Effect of 1918 PB1-F2
Expression on Influenza A Virus Infection Kinetics. PLoS Comput. Biol. 2011, 7, e1001081. [CrossRef]

76. Pawelek, K.A.; Huynh, G.T.; Quinlivan, M.; Cullinane, A.; Rong, L.; Perelson, A.S. Modeling Within-Host Dynamics of Influenza
Virus Infection Including Immune Responses. PLoS Comput. Biol. 2012, 8, e1002588. [CrossRef]

77. Price, I.; Mochan-Keef, E.D.; Swigon, D.; Ermentrout, G.B.B.; Lukens, S.; Toapanta, F.R.F.R.; Ross, T.M.T.M.; Clermont, G. The
Inflammatory Response to Influenza A Virus (H1N1): An Experimental and Mathematical Study. J. Theor. Biol. 2015, 374, 83–93.
[CrossRef]

78. Sachak-Patwa, R.; Lafferty, E.I.; Schmit, C.J.; Thompson, R.N.; Byrne, H.M. A Target-Cell Limited Model Can Reproduce Influenza
Infection Dynamics in Hosts with Differing Immune Responses. J. Theor. Biol. 2023, 567, 111491. [CrossRef]

https://doi.org/10.1128/jvi.70.12.8624-8629.1996
https://www.ncbi.nlm.nih.gov/pubmed/8970987
https://doi.org/10.3390/pathogens11111320
https://www.ncbi.nlm.nih.gov/pubmed/36365071
https://doi.org/10.3390/v13122362
https://www.ncbi.nlm.nih.gov/pubmed/34960631
https://doi.org/10.1016/S0166-0934(01)00287-7
https://doi.org/10.3390/ijms22115486
https://doi.org/10.1128/IAI.00789-06
https://doi.org/10.1002/JLB.4RU0820-232R
https://doi.org/10.15252/embr.201540473
https://www.ncbi.nlm.nih.gov/pubmed/26265006
https://doi.org/10.3389/fimmu.2020.00003
https://www.ncbi.nlm.nih.gov/pubmed/32117216
https://doi.org/10.1164/arrd.1986.134.5.1040
https://www.ncbi.nlm.nih.gov/pubmed/3777666
https://doi.org/10.3389/fimmu.2018.02275
https://doi.org/10.1128/mBio.00172-11
https://www.ncbi.nlm.nih.gov/pubmed/21933918
https://doi.org/10.1128/IAI.70.2.620-630.2002
https://www.ncbi.nlm.nih.gov/pubmed/11796591
https://doi.org/10.1165/rcmb.2007-0417OC
https://doi.org/10.1152/ajplung.00283.2020
https://doi.org/10.1128/IAI.00471-20
https://doi.org/10.1128/JVI.01623-05
https://doi.org/10.1016/j.jtbi.2006.12.015
https://doi.org/10.1128/JVI.02078-09
https://www.ncbi.nlm.nih.gov/pubmed/20130053
https://doi.org/10.1128/JVI.00266-10
https://doi.org/10.1128/JVI.01318-10
https://www.ncbi.nlm.nih.gov/pubmed/21191031
https://doi.org/10.1371/journal.pcbi.1001081
https://doi.org/10.1371/journal.pcbi.1002588
https://doi.org/10.1016/j.jtbi.2015.03.017
https://doi.org/10.1016/j.jtbi.2023.111491


Microorganisms 2023, 11, 2974 16 of 18

79. Mochan, E.; Swigon, D.; Ermentrout, G.B.B.; Lukens, S.; Clermont, G. A Mathematical Model of Intrahost Pneumococcal
Pneumonia Infection Dynamics in Murine Strains. J. Theor. Biol. 2014, 353, 44–54. [CrossRef]

80. Mochan-Keef, E.; Swigon, D.; Ermentrout, G.B.B.; Clermont, G. A Three-Tiered Study of Differences in Murine Intrahost Immune
Response to Multiple Pneumococcal Strains. PLoS ONE 2015, 10, e0134012. [CrossRef]

81. Diep, J.K.; Russo, T.A.; Rao, G.G. Mechanism-Based Disease Progression Model Describing Host-Pathogen Interactions During
the Pathogenesis of Acinetobacter baumannii Pneumonia. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 507–516. [CrossRef] [PubMed]

82. Schirm, S.; Ahnert, P.; Wienhold, S.; Mueller-Redetzky, H.; Nouailles-Kursar, G.; Loeffler, M.; Witzenrath, M.; Scholz, M. A
Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice. PLoS ONE 2016, 11, e0156047.
[CrossRef] [PubMed]

83. Schirm, S.; Ahnert, P.; Berger, S.; Nouailles, G.; Wienhold, S.-M.; Müller-Redetzky, H.; Suttorp, N.; Loeffler, M.; Witzenrath, M.;
Scholz, M. A Biomathematical Model of Immune Response and Barrier Function in Mice with Pneumococcal Lung Infection.
PLoS ONE 2020, 15, e0243147. [CrossRef] [PubMed]

84. Smith, A.M.; Adler, F.R.; Ribeiro, R.M.; Gutenkunst, R.N.; McAuley, J.L.; McCullers, J.A.; Perelson, A.S. Kinetics of Coinfection
with Influenza A Virus and Streptococcus pneumoniae. PLoS Pathog. 2013, 9, e1003238. [CrossRef] [PubMed]

85. Smith, A.M.; Smith, A.P. A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics during Influenza. Sci.
Rep. 2016, 6, 38703. [CrossRef] [PubMed]

86. Cheng, Y.-H.; You, S.-H.; Lin, Y.-J.; Chen, S.-C.; Chen, W.-Y.; Chou, W.-C.; Hsieh, N.-H.; Liao, C.-M. Mathematical Modeling
of Postcoinfection with Influenza A Virus and Streptococcus pneumoniae, with Implications for Pneumonia and COPD-Risk
Assessment. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1973–1988. [CrossRef]

87. Shrestha, S.; Foxman, B.; Weinberger, D.M.; Steiner, C.; Viboud, C.; Rohani, P. Identifying the Interaction between Influenza and
Pneumococcal Pneumonia Using Incidence Data. Sci. Transl. Med. 2013, 5, 191ra84. [CrossRef]

88. Shrestha, S.; Foxman, B.; Dawid, S.; Aiello, A.E.; Davis, B.M.; Berus, J.; Rohani, P. Time and Dose-Dependent Risk of Pneumococcal
Pneumonia Following Influenza: A Model for within-Host Interaction between Influenza and Streptococcus pneumoniae. J. R. Soc.
Interface 2013, 10, 20130233. [CrossRef]

89. Boianelli, A.; Nguyen, V.K.; Ebensen, T.; Schulze, K.; Wilk, E.; Sharma, N.; Stegemann-Koniszewski, S.; Bruder, D.; Toapanta,
F.R.; Guzmán, C.A.; et al. Modeling Influenza Virus Infection: A Roadmap for Influenza Research. Viruses 2015, 7, 5274–5304.
[CrossRef]

90. Handel, A.; Longini, I.M.; Antia, R. Towards a Quantitative Understanding of the Within-Host Dynamics of Influenza A Infections.
J. R. Soc. Interface 2010, 7, 35–47. [CrossRef]

91. Shrestha, S.; Foxman, B.; Berus, J.; van Panhuis, W.G.; Steiner, C.; Viboud, C.; Rohani, P. The Role of Influenza in the Epidemiology
of Pneumonia. Sci. Rep. 2015, 5, 15314. [CrossRef] [PubMed]

92. Handel, A.; Longini, I.M.; Antia, R. Intervention Strategies for an Influenza Pandemic Taking into Account Secondary Bacterial
Infections. Epidemics 2009, 1, 185–195. [CrossRef] [PubMed]

93. Kanyiri, C.W.; Luboobi, L.; Kimathi, M. Application of Optimal Control to Influenza Pneumonia Coinfection with Antiviral
Resistance. Comput. Math. Methods Med. 2020, 2020, 5984095. [CrossRef] [PubMed]

94. Crowe, S.; Utley, M.; Walker, G.; Grove, P.; Pagel, C. A Model to Evaluate Mass Vaccination against Pneumococcus as a
Countermeasure against Pandemic Influenza. Vaccine 2011, 29, 5065–5077. [CrossRef] [PubMed]

95. Calvo, C.; Garcia-Garcia, M.L.; Pozo, F.; Paula, G.; Molinero, M.; Calderon, A.; Gonzalez-Esguevillas, M.; Casas, I. Respiratory
Syncytial Virus Coinfections with Rhinovirus and Human Bocavirus in Hospitalized Children. Medicine 2015, 94, e1788. [CrossRef]
[PubMed]

96. Karppinen, S.; Toivonen, L.; Schuez-Havupalo, L.; Waris, M.; Peltola, V. Interference between Respiratory Syncytial Virus and
Rhinovirus in Respiratory Tract Infections in Children. Clin. Microbiol. Infect. 2016, 22, 208.e1–208.e6. [CrossRef] [PubMed]

97. Brand, H.K.; De Groot, R.; Galama, J.M.D.; Brouwer, M.L.; Teuwen, K.; Hermans, P.W.M.; Melchers, W.J.G.; Warris, A. Infection
with Multiple Viruses Is Not Associated with Increased Disease Severity in Children with Bronchiolitis. Pediatr. Pulmonol. 2012,
47, 393–400. [CrossRef]

98. Zhang, G.; Hu, Y.; Wang, H.; Zhang, L.; Bao, Y.; Zhou, X. High Incidence of Multiple Viral Infections Identified in Upper
Respiratory Tract Infected Children under Three Years of Age in Shanghai, China. PLoS ONE 2012, 7, e44568. [CrossRef]

99. Williams, B.G.; Gouws, E.; Boschi-Pinto, C.; Bryce, J.; Dye, C. Estimates of World-Wide Distribution of Child Deaths from Acute
Respiratory Infections. Lancet Infect. Dis. 2002, 2, 25–32. [CrossRef]

100. Lee, Y.-M.; Kim, T.; Park, K.-H.; Choi, S.-H.; Kwak, Y.G.; Choo, E.J.; Chung, J.-W.; Lee, M.S. Dual Respiratory Virus Detection in
Adult Patients with Acute Respiratory Illness. BMC Infect. Dis. 2021, 21, 997. [CrossRef]

101. Goka, E.; Vallely, P.; Mutton, K.; Klapper, P. Influenza A Viruses Dual and Multiple Infections with Other Respiratory Viruses and
Risk of Hospitalisation and Mortality. Influenza Other Respir. Viruses 2013, 7, 1079–1087. [CrossRef] [PubMed]

102. Glezen, W.P.; Taber, L.H.; Frank, A.L.; Kasel, J.A. Risk of Primary Infection and Reinfection With Respiratory Syncytial Virus. Am.
J. Dis. Child. 1986, 140, 543–546. [CrossRef] [PubMed]

103. Jartti, T.; Jartti, L.; Peltola, V.; Waris, M.; Ruuskanen, O. Identification of Respiratory Viruses in Asymptomatic Subjects:
Asymptomatic Respiratory Viral Infections. Pediatr. Infect. Dis. J. 2008, 27, 1103–1107. [CrossRef]

104. Drori, Y.; Jacob-Hirsch, J.; Pando, R.; Glatman-Freedman, A.; Friedman, N.; Mendelson, E.; Mandelboim, M. Influenza A Virus
Inhibits RSV Infection via a Two-Wave Expression of IFIT Proteins. Viruses 2020, 12, 1171. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jtbi.2014.02.021
https://doi.org/10.1371/journal.pone.0134012
https://doi.org/10.1002/psp4.12312
https://www.ncbi.nlm.nih.gov/pubmed/29761668
https://doi.org/10.1371/journal.pone.0156047
https://www.ncbi.nlm.nih.gov/pubmed/27196107
https://doi.org/10.1371/journal.pone.0243147
https://www.ncbi.nlm.nih.gov/pubmed/33270742
https://doi.org/10.1371/journal.ppat.1003238
https://www.ncbi.nlm.nih.gov/pubmed/23555251
https://doi.org/10.1038/srep38703
https://www.ncbi.nlm.nih.gov/pubmed/27974820
https://doi.org/10.2147/COPD.S138295
https://doi.org/10.1126/scitranslmed.3005982
https://doi.org/10.1098/rsif.2013.0233
https://doi.org/10.3390/v7102875
https://doi.org/10.1098/rsif.2009.0067
https://doi.org/10.1038/srep15314
https://www.ncbi.nlm.nih.gov/pubmed/26486591
https://doi.org/10.1016/j.epidem.2009.09.001
https://www.ncbi.nlm.nih.gov/pubmed/20161493
https://doi.org/10.1155/2020/5984095
https://www.ncbi.nlm.nih.gov/pubmed/32256682
https://doi.org/10.1016/j.vaccine.2011.04.034
https://www.ncbi.nlm.nih.gov/pubmed/21539879
https://doi.org/10.1097/MD.0000000000001788
https://www.ncbi.nlm.nih.gov/pubmed/26496310
https://doi.org/10.1016/j.cmi.2015.10.002
https://www.ncbi.nlm.nih.gov/pubmed/26482269
https://doi.org/10.1002/ppul.21552
https://doi.org/10.1371/journal.pone.0044568
https://doi.org/10.1016/S1473-3099(01)00170-0
https://doi.org/10.1186/s12879-021-06699-z
https://doi.org/10.1111/irv.12020
https://www.ncbi.nlm.nih.gov/pubmed/23078095
https://doi.org/10.1001/archpedi.1986.02140200053026
https://www.ncbi.nlm.nih.gov/pubmed/3706232
https://doi.org/10.1097/INF.0b013e31817e695d
https://doi.org/10.3390/v12101171
https://www.ncbi.nlm.nih.gov/pubmed/33081322


Microorganisms 2023, 11, 2974 17 of 18

105. Van Leuven, J.T.; Gonzalez, A.J.; Ijezie, E.C.; Wixom, A.Q.; Clary, J.L.; Naranjo, M.N.; Ridenhour, B.J.; Miller, C.R.; Miura,
T.A. Rhinovirus Reduces the Severity of Subsequent Respiratory Viral Infections by Interferon-Dependent and -Independent
Mechanisms. mSphere 2021, 6, e00479-21. [CrossRef] [PubMed]

106. Cox, G.; Gonzalez, A.J.; Ijezie, E.C.; Rodriguez, A.; Miller, C.R.; Van Leuven, J.T.; Miura, T.A. Priming With Rhinovirus Protects
Mice Against a Lethal Pulmonary Coronavirus Infection. Front. Immunol. 2022, 13, 886611. [CrossRef] [PubMed]

107. Vanderwall, E.R.; Barrow, K.A.; Rich, L.M.; Read, D.F.; Trapnell, C.; Okoloko, O.; Ziegler, S.F.; Hallstrand, T.S.; White, M.P.; Debley,
J.S. Airway Epithelial Interferon Response to SARS-CoV-2 Is Inferior to Rhinovirus and Heterologous Rhinovirus Infection
Suppresses SARS-CoV-2 Replication. Sci. Rep. 2022, 12, 6972. [CrossRef]

108. Piret, J.; Boivin, G. Viral Interference between Respiratory Viruses. Emerg. Infect. Dis. 2022, 28, 273–281. [CrossRef]
109. Laurie, K.L.; Guarnaccia, T.A.; Carolan, L.A.; Yan, A.W.C.; Aban, M.; Petrie, S.; Cao, P.; Heffernan, J.M.; McVernon, J.; Mosse, J.;

et al. Interval between Infections and Viral Hierarchy Are Determinants of Viral Interference Following Influenza Virus Infection
in a Ferret Model. J. Infect. Dis. 2015, 212, 1701–1710. [CrossRef]

110. Nickbakhsh, S.; Mair, C.; Matthews, L.; Reeve, R.; Johnson, P.C.D.; Thorburn, F.; von Wissmann, B.; Reynolds, A.; McMenamin, J.;
Gunson, R.N.; et al. Virus-Virus Interactions Impact the Population Dynamics of Influenza and the Common Cold. Proc. Natl.
Acad. Sci. USA 2019, 116, 27142–27150. [CrossRef]

111. Anestad, G.; Nordbo, S.A. Interference between Outbreaks of Respiratory Viruses. Eurosurveillance 2009, 14, 19359. [CrossRef]
[PubMed]

112. Price, O.H.; Sullivan, S.G.; Sutterby, C.; Druce, J.; Carville, K.S. Using Routine Testing Data to Understand Circulation Patterns of
Influenza A, Respiratory Syncytial Virus and Other Respiratory Viruses in Victoria, Australia. Epidemiol. Infect. 2019, 147, e221.
[CrossRef] [PubMed]

113. Chan, K.F.; Carolan, L.A.; Korenkov, D.; Druce, J.; Mccaw, J.; Reading, P.C.; Barr, I.G.; Laurie, K.L. Investigating Viral Interference
between Influenza a Virus and Human Respiratory Syncytial Virus in a Ferret Model of Infection. J. Infect. Dis. 2018, 218, 406–417.
[CrossRef] [PubMed]

114. Greer, R.M.; McErlean, P.; Arden, K.E.; Faux, C.E.; Nitsche, A.; Lambert, S.B.; Nissen, M.D.; Sloots, T.P.; Mackay, I.M. Do
Rhinoviruses Reduce the Probability of Viral Co-Detection during Acute Respiratory Tract Infections? J. Clin. Virol. 2009, 45,
10–15. [CrossRef] [PubMed]

115. Ånestad, G.; Nordbø, S.A. Virus Interference. Did Rhinoviruses Activity Hamper the Progress of the 2009 Influenza A (H1N1)
Pandemic in Norway? Med. Hypotheses 2011, 77, 1132–1134. [CrossRef] [PubMed]

116. Huang, I.-C.; Li, W.; Sui, J.; Marasco, W.; Choe, H.; Farzan, M. Influenza A Virus Neuraminidase Limits Viral Superinfection. J.
Virol. 2008, 82, 4834–4843. [CrossRef]

117. Shinjoh, M.; Omoe, K.; Saito, N.; Matsuo, N.; Nerome, K. In Vitro Growth Profiles of Respiratory Syncytial Virus in the Presence
of Influenza Virus. Acta Virol. 2000, 44, 91–97.

118. Wu, A.; Mihaylova, V.T.; Landry, M.L.; Foxman, E.F. Interference between Rhinovirus and Influenza A Virus: A Clinical Data
Analysis and Experimental Infection Study. Lancet Microbe 2020, 1, e254–e262. [CrossRef]

119. Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.;
et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific
Cell Subsets across Tissues. Cell 2020, 181, 1016–1035.e19. [CrossRef]

120. Bai, L.; Zhao, Y.; Dong, J.; Liang, S.; Guo, M.; Liu, X.; Wang, X.; Huang, Z.; Sun, X.; Zhang, Z.; et al. Coinfection with Influenza A
Virus Enhances SARS-CoV-2 Infectivity. Cell Res. 2021, 31, 395–403. [CrossRef]

121. Pinky, L.; Dobrovolny, H.M. Coinfections of the Respiratory Tract: Viral Competition for Resources. PLoS ONE 2016, 11, e0155589.
[CrossRef] [PubMed]

122. Pinky, L.; Dobrovolny, H.M. The Impact of Cell Regeneration on the Dynamics of Viral Coinfection. Chaos 2017, 27, 63109.
[CrossRef] [PubMed]

123. Pinky, L.; Gonzalez-Parra, G.; Dobrovolny, H.M. Effect of Stochasticity on Coinfection Dynamics of Respiratory Viruses. BMC
Bioinform. 2019, 20, 191. [CrossRef] [PubMed]

124. Pinky, L.; González-Parra, G.; Dobrovolny, H.M. Superinfection and Cell Regeneration Can Lead to Chronic Viral Coinfections. J.
Theor. Biol. 2019, 466, 24–38. [CrossRef] [PubMed]

125. Cao, P.; Yan, A.W.C.; Heffernan, J.M.; Petrie, S.; Moss, R.G.; Carolan, L.A.; Guarnaccia, T.A.; Kelso, A.; Barr, I.G.; McVernon, J.;
et al. Innate Immunity and the Inter-Exposure Interval Determine the Dynamics of Secondary Influenza Virus Infection and
Explain Observed Viral Hierarchies. PLoS Comput. Biol. 2015, 11, e1004334. [CrossRef]

126. Pinky, L.; Burke, C.W.; Russell, C.J.; Smith, A.M. Quantifying Dose-, Strain-, and Tissue-Specific Kinetics of Parainfluenza Virus
Infection. PLoS Comput. Biol. 2021, 17, e1009299. [CrossRef]

127. Cao, P.; McCaw, J.M. The Mechanisms for Within-Host Influenza Virus Control Affect Model-Based Assessment and Prediction of
Antiviral Treatment. Viruses 2017, 9, 197. [CrossRef]

128. Merler, S.; Poletti, P.; Ajelli, M.; Caprile, B.; Manfredi, P. Coinfection Can Trigger Multiple Pandemic Waves. J. Theor. Biol. 2008,
254, 499–507. [CrossRef]

129. Chen, S.; Ran, Y.; Huang, H.; Wang, Z.; Shang, K. Epidemic Dynamics of Two-Pathogen Spreading for Pairwise Models.
Mathematics 2022, 10, 1906. [CrossRef]

https://doi.org/10.1128/mSphere.00479-21
https://www.ncbi.nlm.nih.gov/pubmed/34160242
https://doi.org/10.3389/fimmu.2022.886611
https://www.ncbi.nlm.nih.gov/pubmed/35711419
https://doi.org/10.1038/s41598-022-10763-2
https://doi.org/10.3201/eid2802.211727
https://doi.org/10.1093/infdis/jiv260
https://doi.org/10.1073/pnas.1911083116
https://doi.org/10.2807/ese.14.41.19359-en
https://www.ncbi.nlm.nih.gov/pubmed/19883536
https://doi.org/10.1017/S0950268819001055
https://www.ncbi.nlm.nih.gov/pubmed/31364539
https://doi.org/10.1093/infdis/jiy184
https://www.ncbi.nlm.nih.gov/pubmed/29746640
https://doi.org/10.1016/j.jcv.2009.03.008
https://www.ncbi.nlm.nih.gov/pubmed/19376742
https://doi.org/10.1016/j.mehy.2011.09.021
https://www.ncbi.nlm.nih.gov/pubmed/21975051
https://doi.org/10.1128/JVI.00079-08
https://doi.org/10.1016/S2666-5247(20)30114-2
https://doi.org/10.1016/j.cell.2020.04.035
https://doi.org/10.1038/s41422-021-00473-1
https://doi.org/10.1371/journal.pone.0155589
https://www.ncbi.nlm.nih.gov/pubmed/27196110
https://doi.org/10.1063/1.4985276
https://www.ncbi.nlm.nih.gov/pubmed/28679223
https://doi.org/10.1186/s12859-019-2793-6
https://www.ncbi.nlm.nih.gov/pubmed/30991939
https://doi.org/10.1016/j.jtbi.2019.01.011
https://www.ncbi.nlm.nih.gov/pubmed/30639572
https://doi.org/10.1371/journal.pcbi.1004334
https://doi.org/10.1371/journal.pcbi.1009299
https://doi.org/10.3390/v9080197
https://doi.org/10.1016/j.jtbi.2008.06.004
https://doi.org/10.3390/math10111906


Microorganisms 2023, 11, 2974 18 of 18

130. Palsson, S.; Hickling, T.P.; Bradshaw-Pierce, E.L.; Zager, M.; Jooss, K.; O’Brien, P.J.; Spilker, M.E.; Palsson, B.O.; Vicini, P. The
Development of a Fully-Integrated Immune Response Model (FIRM) Simulator of the Immune Response through Integration of
Multiple Subset Models. BMC Syst. Biol. 2013, 7, 95. [CrossRef]

131. Pienaar, E.; Cilfone, N.A.; Lin, P.L.; Dartois, V.; Mattila, J.T.; Butler, J.R.; Flynn, J.L.; Kirschner, D.E.; Linderman, J.J. A Compu-
tational Tool Integrating Host Immunity with Antibiotic Dynamics to Study Tuberculosis Treatment. J. Theor. Biol. 2015, 367,
166–179. [CrossRef] [PubMed]

132. Baldazzi, V.; Castiglione, F.; Bernaschi, M. An Enhanced Agent Based Model of the Immune System Response. Cell. Immunol.
2006, 244, 77–79. [CrossRef] [PubMed]

133. Castiglione, F.; Duca, K.; Jarrah, A.; Laubenbacher, R.; Hochberg, D.; Thorley-Lawson, D. Simulating Epstein-Barr Virus Infection
with C-ImmSim. Bioinformatics 2007, 23, 1371–1377. [CrossRef] [PubMed]

134. Vafadar, S.; Shahdoust, M.; Kalirad, A.; Zakeri, P.; Sadeghi, M. Competitive Exclusion during Co-Infection as a Strategy to Prevent
the Spread of a Virus: A Computational Perspective. PLoS ONE 2021, 16, e0247200. [CrossRef] [PubMed]

135. Gallagher, M.E.; Brooke, C.B.; Ke, R.; Koelle, K. Causes and Consequences of Spatial Within-Host Viral Spread. Viruses 2018, 10,
627. [CrossRef] [PubMed]

136. Chen, L.; Ghanbarnejad, F.; Brockmann, D. Fundamental Properties of Cooperative Contagion Processes. New J. Phys. 2017, 19,
103041. [CrossRef]

137. Kumberger, P.; Durso-Cain, K.; Uprichard, S.L.; Dahari, H.; Graw, F. Accounting for Space—Quantification of Cell-To-Cell
Transmission Kinetics Using Virus Dynamics Models. Viruses 2018, 10, 200. [CrossRef]

138. Moses, M.E.; Hofmeyr, S.; Cannon, J.L.; Andrews, A.; Gridley, R.; Hinga, M.; Leyba, K.; Pribisova, A.; Surjadidjaja, V.; Tasnim, H.;
et al. Spatially Distributed Infection Increases Viral Load in a Computational Model of SARS-CoV-2 Lung Infection. PLoS Comput.
Biol. 2021, 17, e1009735. [CrossRef]

139. Sego, T.J.; Aponte-Serrano, J.O.; Gianlupi, J.F.; Glazier, J.A. Generation of Multicellular Spatiotemporal Models of Population
Dynamics from Ordinary Differential Equations, with Applications in Viral Infection. BMC Biol. 2021, 19, 196. [CrossRef]

140. Swat, M.H.; Thomas, G.L.; Belmonte, J.M.; Shirinifard, A.; Hmeljak, D.; Glazier, J.A. Chapter 13—Multi-Scale Modeling of Tissues
Using CompuCell3D. In Computational Methods in Cell Biology; Asthagiri, A.R., Arkin, A.P., Eds.; Academic Press: Cambridge,
MA, USA, 2012; Volume 110, pp. 325–366, ISBN 0091-679X.

141. Sego, T.J.; Aponte-Serrano, J.O.; Ferrari Gianlupi, J.; Heaps, S.R.; Breithaupt, K.; Brusch, L.; Crawshaw, J.; Osborne, J.M.;
Quardokus, E.M.; Plemper, R.K.; et al. A Modular Framework for Multiscale, Multicellular, Spatiotemporal Modeling of Acute
Primary Viral Infection and Immune Response in Epithelial Tissues and Its Application to Drug Therapy Timing and Effectiveness.
PLoS Comput. Biol. 2020, 16, e1008451. [CrossRef]

142. Aponte-Serrano, J.O.; Weaver, J.J.A.; Sego, T.J.; Glazier, J.A.; Shoemaker, J.E. Multicellular Spatial Model of RNA Virus Replication
and Interferon Responses Reveals Factors Controlling Plaque Growth Dynamics. PLoS Comput. Biol. 2021, 17, e1008874. [CrossRef]
[PubMed]

143. Ferrari Gianlupi, J.; Mapder, T.; Sego, T.J.; Sluka, J.P.; Quinney, S.K.; Craig, M.; Stratford, R.E.; Glazier, J.A. Multiscale Model of
Antiviral Timing, Potency, and Heterogeneity Effects on an Epithelial Tissue Patch Infected by SARS-CoV-2. Viruses 2022, 14, 605.
[CrossRef] [PubMed]

144. Sego, T.J.; Mochan, E.D.; Ermentrout, G.B.; Glazier, J.A. A Multiscale Multicellular Spatiotemporal Model of Local Influenza
Infection and Immune Response. J. Theor. Biol. 2022, 532, 110918. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/1752-0509-7-95
https://doi.org/10.1016/j.jtbi.2014.11.021
https://www.ncbi.nlm.nih.gov/pubmed/25497475
https://doi.org/10.1016/j.cellimm.2006.12.006
https://www.ncbi.nlm.nih.gov/pubmed/17416357
https://doi.org/10.1093/bioinformatics/btm044
https://www.ncbi.nlm.nih.gov/pubmed/17341499
https://doi.org/10.1371/journal.pone.0247200
https://www.ncbi.nlm.nih.gov/pubmed/33626106
https://doi.org/10.3390/v10110627
https://www.ncbi.nlm.nih.gov/pubmed/30428545
https://doi.org/10.1088/1367-2630/aa8bd2
https://doi.org/10.3390/v10040200
https://doi.org/10.1371/journal.pcbi.1009735
https://doi.org/10.1186/s12915-021-01115-z
https://doi.org/10.1371/journal.pcbi.1008451
https://doi.org/10.1371/journal.pcbi.1008874
https://www.ncbi.nlm.nih.gov/pubmed/34695114
https://doi.org/10.3390/v14030605
https://www.ncbi.nlm.nih.gov/pubmed/35337012
https://doi.org/10.1016/j.jtbi.2021.110918
https://www.ncbi.nlm.nih.gov/pubmed/34592264

	Introduction 
	Virus–Bacteria Coinfections: Immune Dysregulation and Mathematical Models 
	Changes and Dysregulation of the Immune Response after Virus–Bacteria Coinfection 
	Dysregulation of Cytokine Responses 
	Changes to Effector Cells’ Activation and Function 
	Effect of Damage to the Epithelium 
	Effect of Timing and Sequence of Inocula 

	Mathematical Modeling of Dynamics of Respiratory Virus–Bacteria Coinfection 
	Within-Host Ordinary Differential Equation (ODE) Models of Coinfection 
	Population-Level Dynamics of Virus–Bacteria Coinfection 


	Virus–Virus Coinfection: Viral Competition and Mathematical Models 
	Changes and Dysregulation of the Immune Response after Virus–Virus Coinfection 
	Interferon Stimulation and Antiviral Immunity 
	Resource Limitation and Competition 

	Mathematical Modeling of Dynamics of Virus–Virus Coinfection 
	Within-Host ODE Models of Virus–Virus Coinfection 
	Population-Level Models of Virus–Virus Coinfection Dynamics 


	Current Limitations in Coinfection Modeling 
	Conclusions 
	References

