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Abstract: Growing evidence suggests that the gut microbiota and their metabolites are associated
with bone homeostasis and fragility. However, this association is limited to microbial taxonomic
differences. This study aimed to explore whether gut bacterial community associations, composition,
and functions are associated with osteopenia and osteoporosis. We compared the gut bacterial
community composition and interactions of healthy postmenopausal women with normal bone
density (n = 8) with those of postmenopausal women with osteopenia (n = 18) and osteoporosis
(n = 21) through 16S rRNA sequencing coupled with network biology and statistical analyses. The
results of this study showed reduced alpha diversity in patients with osteoporosis, followed by that
in patients with osteopenia, then in healthy controls. Taxonomic analysis revealed that significantly
enriched bacterial genera with higher abundance was observed in patients with osteoporosis and
osteopenia than in healthy subjects. Additionally, a co-occurrence network revealed that, compared
to healthy controls, bacterial interactions were higher in patients with osteoporosis, followed by those
with osteopenia. Further, NetShift analysis showed that a higher number of bacteria drove changes
in the microbial community structure of patients with osteoporosis than osteopenia. Correlation
analysis revealed that most of these driver bacteria had a significant positive relationship with several
significant metabolic pathways. Further, ordination analysis revealed that height and T-score were
the primary variables influencing the gut microbial community structure. Taken together, this study
evaluated that microbial community interaction is more important than the taxonomic differences in
knowing the critical role of gut microbiota in postmenopausal women associated with osteopenia
and osteoporosis. Additionally, the significantly enriched bacteria and functional pathways might be
potential biomarkers for the prognosis and treatment of postmenopausal women with osteopenia
and osteoporosis.

Keywords: osteopenia; osteoporosis; gut microbiota; 16S rRNA sequencing; functional prediction;
driver bacteria
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1. Introduction

Osteopenia is a metabolic bone disorder characterized by reduced bone mineral den-
sity (BMD), a common precursor of osteoporosis, which is considered a significant global
health issue among elderly individuals, leading to an increased risk of bone fragility [1–4].
Osteoporosis in postmenopausal women is typically associated with estrogen deficiency,
and it is estimated to affect more than 200 million women globally, leading to significant
medical and economic burdens worldwide [5,6]. Bone resorption and formation are tightly
linked to the balance between osteoclasts and osteoblasts [7,8]. Several factors, including
estrogen deficiency, aging, smoking, and continuous calcium loss, have been reported to be
responsible for disturbing this tightly coupled process, eventually leading to osteoporosis
in postmenopausal women [1,9,10]. Growing evidence suggests that gut microbes play a
vital role in bone health by transporting and absorbing the necessary nutrients [2]. Previous
studies have reported that gut microbiota can regulate bone health [11] through the inter-
vention of the immune system [12], intestinal calcium absorption [13], and neurotransmitter
release [14]. However, the mechanistic understanding of the effects of these microorganisms
on particular physiological processes is still in its infancy.

The human gut microbiota consists of vast and complex microbial communities com-
prising 1013–1014 microorganisms and approximately 100–500 different species per individ-
ual [15,16]. These microbial cells remain in complex metabolic and ecological associations
that ultimately influence the functional and taxonomic profiles of the microbial community
and host health [17]. To infer the microbial community, it is important not only to focus
on microbial abundance but also to enumerate the changes observed among the microbial
interactions and associations [18]. However, the majority of earlier studies focused only on
taxonomic differences between the gut microbial communities of patients with osteopenia
and osteoporosis in comparison with healthy controls [1,11,19,20]. Although such compar-
isons are valuable, profiling of the microbial community is not sufficient to elucidate the
underlying microbial interactions and their effects on both the microbial ecosystem and
host health [17,18]. As a result, our understanding of how the gut microbial community is
associated with osteopenia and osteoporosis remains unclear.

Recently, growing evidence has suggested that gut microbial metabolites could also
induce bone remodeling in both animal and human models [21,22]. According to Ling
et al. (2020) and Yan et al. (2016), low BMD in osteopenia might be associated with several
microbial functional pathways, including membrane transport and lipopolysaccharide
biosynthesis. However, few studies have evaluated the association or relationship between
the predicted microbial functions and bone health associated with humans [20,23]. Owing
to the lack of sufficient knowledge about the associations of gut microbial communities and
their functions pertaining to bone health, it is not yet clear whether the onset of osteoporosis
occurs due to disruption of the gut microbiota community. Therefore, inferring the gut
microbial taxonomic compositional changes and microbial interactions associated with
bone health is essential to categorize the underpinning microbial taxa and investigate
their functions, which will help researchers understand the association between the gut
microbial community and bone mass disorders. Hence, this study aimed to explore the
gut bacterial community associations, composition, and functional changes associated
with osteopenia and osteoporosis in postmenopausal Taiwanese women using 16S rRNA
sequencing coupled with network biology and statistical analysis.

2. Materials and Methods
2.1. Characterization of Healthy Participants and Patients

A total of 47 postmenopausal women were enrolled in the analysis of fecal samples.
Qualifying patients were postmenopausal women, older than 50 years, who have com-
pleted BMD assessment using dual-energy X-ray absorptiometry in the last 3 months.
Participants were excluded if they had lower BMD resulting from secondary factors, includ-
ing underlying endocrine, autoimmune, gastrointestinal, hepatic, and nutritional disorders,
or drug-induced bone loss (e.g., steroids and proton pump inhibitors). Participants who are
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alcoholics or drug addicts, who have been on antibiotics or probiotics for the past 3 months,
have symptoms of constipation for more than one week or diarrhea for more than 2 weeks,
or have a surgical history of the gastrointestinal tract were also excluded.

All participants underwent DXA assessment (Prodigy, GEHC Lunar, Madison, WI,
USA) to analyze the BMD of the lumbar spine and bilateral proximal femurs to determine
the T-score of all parts of interest. The T-score was recorded as the lowest T-score of the bilateral
hip and spine regions, reflecting a comparison of BMD with that of healthy young adults
(aged 20 years) [24]. A T-score higher than −1, between −1 and −2.5, and lower than −2.5
indicates normal bone density, osteopenia, and osteoporosis, respectively. Overall, this study
enrolled 8 healthy subjects with normal BMD, 18 patients with osteopenia, and 21 patients
with osteoporosis. The characteristics of the enrolled participants are shown in Table S1.

2.2. Sample Collection and Genomic DNA Extraction

The fecal specimens of healthy subjects and postmenopausal women with osteopenia
and osteoporosis were collected in a sterile stool box and cryopreserved at the Taipei Mu-
nicipal Wanfang Hospital, Taiwan. Samples were then transported according to biosafety
procedures and under controlled temperature conditions to the laboratory at the National
Chung Cheng University, Taiwan. Fecal gDNA was extracted from a 200 mg stool sample
using a QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, Germany) according to the manu-
facturer’s instructions. Additionally, a bead-beating step was performed using a previously
designed protocol [25]. In brief, 250 µL of the stool sample was put in a 2 mL sterilized tube;
subsequently, 1.2 mL ASL lysis buffer and 0.3 g sterile 0.1 mm zirconia beads (BioSpec,
Bartlesville, OK, USA) were added and vortex-mixed for 2 min. The samples were heated
for 15 min at 95 ◦C and then homogenized using a Qiagen TissueLyser II. After treatment
with an InhibitEX Tablet, 350 µL of the supernatant was transferred to another tube to
perform the subsequent purification steps using a QIAcube system.

The purity and concentration of the extracted gDNA were determined using a Nan-
odrop 2000 spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA) at
230–280 nm. The quality of the gDNA was examined using gel electrophoresis (1.5% gel in
Tris-acetate ethylenediaminetetraacetic acid buffer) at 110 V for 30 min. The DNA bands
were visualized under ultraviolet light. The purified gDNA was stored at −20 ◦C until
further analysis.

2.3. Sequencing, Library Construction, and Microbial Community Analysis

The gDNA purified from healthy subjects and patients was used to amplify the V3–V4
hypervariable regions of 16S rRNA using the paired-end Illumina MiSeq platform (Illumina
Inc., San Diego, CA, USA). The targeted sequence was amplified using PCR with forward
and reverse primers, as previously described by Fang et al. [16]. The primer sequences and
PCR amplification conditions were set as described by Hussain et al. (2021). The quality and
quantity of the amplified DNA were examined using standard quality checks, as mentioned
in the gDNA extraction section. Next, sequencing was performed using 20 µL amplicons
from each sample following the pair-end method with the MiSeq Illumina platform (Illu-
mina Inc., San Diego, CA, USA) at the National Yang-Ming University Genome Research
Center, Taiwan. The Illumina Nextera XT kit was used to ligate the sequence adapters and
index, according to the manufacturer’s instructions. Additionally, sequence data ligation
of forward and reverse reads was performed using the CLC bio plate form (Genomic
Workbench v.8.5). FASTA files were generated as described by Huang et al. [26]. We used
QIIME2 as a sequence analysis tool to further analyze the FASTA files. After merging and
removing duplicate sequences using DADA2, high-quality sequences were clustered into
amplicon sequence variants (ASVs) at a 97% similarity index. To analyze bacterial diversity,
the first rarefaction was performed at the lowest sequence depth, and alpha diversity was
measured based on experimental groups. Additionally, beta diversity was measured based
on the Bray–Curtis index, followed by the permutational multivariate analysis of variance
(PERMANOVA) method. The relative abundance of microbes at the phylum and genus
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levels in each sample was determined using the QIIME2 view. Furthermore, the significant
difference in the relative abundance at the genus level among the experimental groups
was analyzed using statistical analysis of taxonomic and functional profiles based on a
two-tailed Welch t-test (p < 0.05) followed by the Benjamini–Hochberg method to control
the false discovery rate. Pearson analysis at the genus level was performed to analyze
co-occurrence correlation based on two-sided pseudo p < 0.05, using the MetagenoNet
tool [27]. Furthermore, NetShift analysis [18] was conducted to detect the driver bacteria
at the genus level among the experimental groups based on the networks generated by
Pearson analysis.

2.4. Functional Profiling Analysis among the Experimental Groups Based on 16S rRNA
Gene Signatures

Bacterial functional prediction of experimental groups was performed using the phy-
logenetic investigation of community reconstruction of the Unobserved States (PICRUSt2)
pipeline (https://github.com/picrust/picrust2; accessed on 1 June 2022) based on the
Metacyc database (https://metacyc.org/; accessed on 1 June 2022). The representative
sequence and denoised ASV abundance table were used as inputs for PICRUSt2. All ASVs
with the nearest-sequenced taxon index (cutoff value of >2) were removed by default to
reliably annotate metabolic functions using the KEGG reference database, as previously
described by Douglas et al. (2020) [28]. Finally, pathways that were statistically significant
based on a two-tailed Welch t-test (p < 0.05) with Benjamini–Hochberg FDR were selected
to evaluate the differences between experimental groups. Pearson correlation analysis was
performed to evaluate the significant correlations between bacterial taxa and potential
functional prediction considering p ranging from 0.01–0.05 using IBM SPSS Statistics 24
(IBM, Armonk, North Castle, NY, USA) software to evaluate the significant correlations
between bacterial taxa and potential functional prediction.

3. Results
3.1. Sequencing and ASV Analysis among the Experimental Groups (Normal Control, Osteopenia,
and Osteoporosis) Based on 16S rRNA Gene Signatures

The 16S rRNA gene sequence based on the V3 and V4 regions was analyzed to
compare the differences in bacterial community diversity and abundance in the normal
control, osteopenia, and osteoporosis groups. A total of 615,572 sequences were obtained
from 47 samples belonging to three groups: normal control, osteopenia, and osteoporosis.
Among them, there were 322,786 good quality sequence reads for downstream analysis
after chimeric sequence removal and quality filtering by considering the 97% cut-off range.
Rarefaction of these obtained sequences was performed at the lowest sequence depth to
compare bacterial diversity among the normal control, osteopenia, and osteoporosis groups,
as shown in Figure S1A. The rarefaction analysis showed a high diversity associated with
the normal control group, followed by the osteopenia and osteoporosis groups. In this study,
a total of 1940 ASVs were obtained based on a 97% threshold. Among them, 4.4% ASVs
were common among the normal control, osteopenia, and osteoporosis groups with a high
number of shared ASVs observed between the osteopenia and osteoporosis groups (5.9%),
as shown in Figure S1B. The number of unique ASVs was higher in the osteoporosis (34.3%)
and osteopenia (32.5%) groups than in the normal control group (19%).

3.2. Bacterial Diversity Analysis among the Experimental Groups Based on 16S rRNA
Gene Signatures

The bacterial diversity and richness among the normal control, osteopenia, and osteo-
porosis groups were evaluated based on alpha diversity indices, including observed_ASV,
Chao1, and Shannon. These alpha diversity indices revealed a high diversity and richness
associated with the normal control group, followed by the osteopenia and osteoporosis
groups, as shown in Figure 1. However, all of these indices showed nonsignificant differ-
ences in alpha diversity among the experimental groups based on the Kruskal–Wallis group
and pairwise comparisons. Similarly, beta diversity based on the Bray–Curtis index using

https://github.com/picrust/picrust2
https://metacyc.org/
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principal coordinate analysis revealed a lower dissimilarity in beta diversity among the
three experimental groups, showing no clear separation. Additionally, the adonis function
based on PARMANOVA was applied to further determine the significant difference in beta
diversity, which revealed nonsignificant differences among the three experimental groups
based on a p-value of <0.05.
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Figure 1. Comparison of bacterial community diversity among the experimental groups: normal
control, osteopenia, and osteoporosis. Alpha diversity among the experimental groups was measured
by Observed_ASV, Chao1, and Shannon, whereas beta diversity based on Bray–Curtis was measured
using principal coordinate analysis.

3.3. Bacterial Community Profiling and Pattern Analysis at Taxonomic Levels in the Experimental
Groups Based on 16S rRNA Gene Signatures

A total of 197 classifiable genera were identified from the 16S rRNA gene sequence by
targeting the V3–V4 regions. Among them, 75 highly abundant genera were retained in
each experimental group for comparison and further downstream analysis after considering
a low filter count at 10% abundance in each sample. The Venn diagram (Figure 2A) showed
only one unique genus associated with the normal control group, and five unique genera
were only present in the osteopenia group. However, no unique genera were identified
in the osteoporosis group. A total of 40 genera were shared among the normal control,
osteopenia, and osteoporosis groups. Similarly, 28% of the genera were common between
the osteopenia and osteoporosis groups, 6.7% genera in the normal control and osteopenia
groups, and 4% were common between the normal control and osteoporosis groups. The
heatmap analysis (Figure S2) revealed a distinct pattern of these predicted genera based on
the relative abundance in each experimental group. Additionally, we applied a combination
of heatmap and correlation analysis to determine the extent of highly dominant genera
among the experimental groups. Among the top 25 genera, 13 were positively correlated
among the experimental groups (Figure 2B). The majority of these bacteria, including
Dorea, Erysipelotrichacea, Streptococcus, Collinsella, Flavonifactor, Butyricicoccus, Paraprevotella,
Parabacteriodes, and Colidextribacter, showed a higher abundance in the osteoporosis group
than in the healthy controls and osteopenia groups. Conversely, two genera, Prevotella
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and Eubacterium_rumina, were more abundantly associated with the osteopenia group,
followed by that in the osteoporosis group than in healthy controls. However, all negatively
correlated genera were in high abundance in healthy controls, and the majority of their
abundance reduced in the osteopenia followed by osteoporosis groups.
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Figure 2. Comparison of bacterial community composition and abundance associated with experi-
mental groups: normal control, osteopenia, and osteoporosis. Venn diagram (A) representing the
shared and unique genera. Correlation analysis (B) showing the positive correlation (red bars) and
negative correlation (blue bars) with a heatmap that denotes the pattern or shift of genus among the
experimental groups.

3.4. Bacterial Community Shift Analysis at the Genus Level among the Experimental Groups

To further understand the significant shift of the bacterial community at the genus level
among the experimental groups, we applied a two-sided Welch’s test, p < 0.05, as shown in
Figure 3. The comparison of the normal control and osteopenia groups revealed that seven
genera, namely Blautia, Alloprevotella, Bacteriodes, Dorea, unassigned, NK4A214_group, and
Streptococcus, were statistically enriched between the two groups. Among them, all genera
high in abundance were associated with osteopenia, except Bacteroides, which was high in
abundance in the normal control group. Similarly, nine genera were statistically enriched
between the normal control and osteoporosis groups. The majority of genera, including
Barnesiella, Dorea, Subdoligranulum, unassigned, Streptococcus, Tyzzerella, Oscilibacter, and
Prevotella, in higher abundance were associated with osteoporosis more than healthy con-
trols. However, only Bacteroides abundance was high in healthy controls, and a reduced
abundance was observed in the osteoporosis group. In contrast, four genera, namely
subdoligranulum, Collinsella, Desulfovibrio, and Flavonifractor, were significantly enriched
between the osteopenia and osteoporosis groups. However, all the genera with high
abundance were associated with osteoporosis, except Desulfovibrio, which was in high
abundance in the osteopenia group.
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Figure 3. Enriched bacterial genera based on 16S rRNA among the experimental group. The left
panel of each figure shows the bacterial abundance of differentially enriched genera. The right panel
represents the significant difference at p < 0.05. The middle panel indicates the mean proportion of
differentially enriched bacterial genera at a 95% confidence interval.

3.5. Bacterial Association and Interaction Analysis among the Experimental Groups

To identify the association and interactions within the bacterial community in osteope-
nia (Figure 4B) and osteoporosis (Figure 4C) with respect to healthy controls (Figure 4A),
network analysis was performed, and significant positive and negative genus-level specific
co-occurrence interactions were visualized. The network results revealed that bacterial
interactions were higher in the osteoporosis group followed by the osteopenia group than
in healthy controls. A total of 50 nodes were observed in both the osteopenia and osteo-
porosis groups, whereas only 29 nodes were observed in the control group, as shown
in Figure S3A. Among these nodes, 15 were common among the experimental groups
with a higher number of unique nodes associated with osteopenia (n = 12), followed by
osteoporosis (n = 9), than in healthy controls (n = 1). Additionally, the number of edges
increased in the osteoporosis group, followed by osteopenia group, than in healthy controls,
as shown in Figure S3B. Moreover, eccentricity revealed a higher value of association with
osteoporosis, followed by osteopenia, than in healthy controls.

NetShift analysis was used to further identify the driver genera that may cause bacte-
rial community shifts in osteopenia and osteoporosis groups. NetShift analysis based on
the comparison of the osteopenia group with the normal control group revealed that Ru-
minococcaceae UCG002 was the main driver genus showing bigger red nodes (higher NESH
score), followed by unidentified genera with a smaller red node (lower NESh score), as
shown in Figure 5A,C. The Ruminococcaceae UCG002 genus was positively associated with
Christensenellaceae_77_group, Veillonella, and unidentified genera, whereas the unidentified
genus was positively correlated with UCG002 and Sutterella. Similarly, NetShift analysis
based on the comparison of the osteoporosis group with the normal control group revealed
three driver genera, indicated as red nodes, which were Agathobacter, Clostridia_UCG014,
and Ruminococcaceae UCG002. Among these, Ruminococcaceae UCG002 was the main diver
(NESH score = 2.6), followed by Agathobacter (NESH score = 2.33), and Clostridia_UCG014
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(NESH score = 2), as shown in Figure 5B,C. Ruminococcaceae UCG002, the main driver
genus, was positively associated with Faecalibacterium, Megamonas, and unidentified genera,
whereas Agathobacter was positively associated with unidentified and Roseburia genera.
Additionally, the third driver genus, Clostridia_UCG014, was positively associated with
Eubacteriumcoprostanoligenes_group and the uncultured genera.

3.6. Predicted Functional Shift among the Experimental Groups

PICRUSt2 based on 16S rRNA gene sequences using the metacyc database revealed a
total of 384 pathways associated with the experimental groups. Statistical analysis based
on a p-value of <0.05 showed 11 predicted pathways that were significantly enriched be-
tween the normal control and osteopenia groups, as shown in Figure 6. Among them,
five predicted pathways, namely PWY1G-0 (mycothiol biosynthesis), PWY-7007 (methyl
ketone biosynthesis), PWY-7255 (ergothioneine biosynthesis), PWY-7098 (vanillin and vanil-
late degradation), and denitrification-PWY, were highly abundant in the normal control
group, and their abundance reduced significantly in the osteopenia group. In contrast, six
predicted pathways, namely PWY-6174 (mevalonate pathway), PWY-3661(glycine betaine
degradation), PWY-6731(starch degradation), PWY-7286 [7-(3-amino-3-carboxypropyl)-
wyosine biosynthesis], and methanogenesis-PWY, were more abundant in the normal
control group. Comparison of normal controls and osteoporosis revealed nine statis-
tically significant predicted pathways. Five of them, including PWY0-1296 (purine ri-
bonucleoside degradation), PWY0-1297 (super pathway of purine deoxyribonucleoside
degradation), PWY-7255 (ergothioneine biosynthesis), PWY-6397 (mycolyl-arabinogalactan-
peptidoglycan complex biosynthesis), and PWY-5178 (toluene degradation), were abun-
dant in the osteoporosis group compared to normal controls. The remaining significant
pathways, including PWY-7456 (β-(1,4)-mannan degradation), PWY-7255 (ergothioneine
biosynthesis), PWY-7644 (heparin degradation), and PWY-5651 (L-tryptophan degrada-
tion to 2-amino-3-carboxymuconate semialdehyde), were in high abundance in the con-
trol group, and their abundance reduced in the osteoporosis group. Additionally, ten
predicted functions were statistically enriched between the osteopenia and osteoporosis
groups. Among them, six predicted pathways, namely PWY-5651 (L-tryptophan degrada-
tion to 2-amino-3-carboxymuconate semialdehyde), PWY-5655 (L-tryptophan degradation),
PWY-6174 (mevalonate pathway), PWY-3661 (glycine betaine degradation), PWY-7295
(L-arabinose degradation), and PWY-6713 (L-rhamnose degradation), in high abundance
were associated with the osteopenia group, and reduced abundance was observed in
the osteoporosis group. Conversely, the remaining three significant pathways, namely
denitrification (PWY), PWY-6944 (androstenedione degradation), and PWY-6397 (mycolyl-
arabinogalactan-peptidoglycan complex biosynthesis), were in higher abundance in the
osteoporosis group than in the osteopenia group.

3.7. Correlation and Association Analyses among the Significant Taxa, Predicted Pathways, and
Physiological Parameters

Pearson analysis (p-value of <0.05) was applied to further explore the relationship
between the predicted pathways and bacterial taxa at the genus level. For better visu-
alization, the correlated pathways and genera are shown in Figure 7A. The correlation
analysis revealed that PWY-7286 and methanogenesis-PWY were significantly positively
correlated with Subdoligranulum, Ruminococcaceae UCG-002, and unassigned. Similarly,
PWY0-1297 and PWY0-1297 were significantly correlated with Streptococcus, Flavonifractor,
and unidentified genera. PWY-7456 was significantly positively correlated with Bacteroides,
Desulfovibrio, Clostridia_UC-014, and unidentified genera. Additionally, Ruminococcaceae
UCG-002, Blautia, unassigned genus, and Desulfovibrio were positively correlated with
PWY0-1297, PWY-51, PWY-3661, and PWY-7295, respectively. Further RDA analysis was
applied to evaluate the influence of physiological parameters, including height, weight, age,
and menopause period, as variables in controlling the bacterial community structure associ-
ated with reduced bone mass, as shown in Figure 7B. According to the length of the arrows,
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height and T-score had a strong effect on the distribution of gut microbiota, followed by
the menopause period and age, compared to weight. Height and weight were strongly
positively correlated with Desulfovibrio and unidentified genera, whereas age and T-score
were strongly positively correlated with Bacteroides, Agathobacter, Clostridia_UCS-014, and
Ruminococcaceae UCG-002.
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Figure 7. Pearson correlation analysis between the bacterial gut community at genus level and
predicted pathways based on 16S rRNA amplicon (A). The positive and negative correlations are
indicated in red and green colors, respectively, with significance at p < 0.05 as indicated *. Redundancy
analysis (B) shows the relationship between the bacterial taxa (blue arrows) and physiological
variables (red arrows).

4. Discussion

This is the first study in which we compared gut bacterial diversity, abundance, and
functional pathways in Taiwanese postmenopausal women with osteopenia and osteo-
porosis using 16S rRNA amplicon sequencing. The bacterial diversity analysis in this
study revealed that women with osteoporosis had a reduced alpha diversity, followed
by those with osteopenia, as compared with that in healthy controls, which is consistent
with previous reports [9,11,20], indicating that disease progression is associated with re-
duced microbial diversity in patients with osteopenia and osteoporosis. Microbial diversity
analysis is widely considered a vital indicator of health conditions, and reduced microbial
diversity is correlated with several disease progressions [29]. Recent studies have reported
that dysbiosis of the gut microbiota might be a cause of imbalance reactions related to
osteogenesis and osteoclasts that ultimately lead to osteopenia and osteoporosis [20,30].
Additionally, we observed significant changes in the bacterial composition and abundance
at taxonomic levels in patients with osteopenia and osteoporosis compared with healthy
controls. Similar changes in the composition and abundance of gut microbiota associated
with osteoporosis have been reported in both human and animal studies [31]. Among
the positively correlated bacterial genera, Dorea, Streptococus, and Parabacteriodes showed
a higher abundance in the osteoporosis group, followed by the osteopenia group, com-
pared to healthy controls, showing that these bacteria could play an important role in
bone mineralization and the progression of disease. Additionally, microbial shift analysis
based on Welch’s t-test (p < 0.05) revealed that Blautia, Alloprevotella, Dorea, unassigned,
NK4A214_group, and Streptococcus were significantly higher in abundance in the osteopenia
group than in healthy controls, indicating that these highly enriched bacteria have a strong
association with the early development of bone mineralization and might cause osteopenia.
Previous studies have reported that the majority of these bacteria in significantly high
abundance were associated with subjects with low bone mass [32]. Similarly, Barnesiella,
Dorea, Subdoligranulum, unassigned, Streptococcus, Tyzzerella, Oscilibacter, and Prevotella in
significantly higher abundance were observed in the osteoporosis group than in healthy
controls, suggesting that these key bacteria may play an important role in the develop-
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ment of osteoporosis. The majority of these significantly enriched bacteria with high
abundance have been reported in previous studies associated with osteopenia and osteo-
porosis [11,22,33]. Growing evidence indicates that excessive growth of gut microbiota in
both animal and human models can lead to bone loss by modeling the immune system and
bone homeostasis [20,34,35]. However, the particular role of the majority of these highly
enriched bacteria associated with osteopenia and osteoporosis is still unknown. Further
studies are required to explore their roles using high-resolution approaches. Additionally,
these highly enriched bacterial taxa associated with osteopenia and osteoporosis might be
potential biomarkers for the early detection of osteopenia and osteoporosis and can aid in
the treatment and prevention of osteopenia and osteoporosis.

The microbial association and interaction in a community are crucial for determining
the overall structure and function of the community [17]. Network analysis is an invaluable
tool to capture the association among microorganisms that maintain the balance between
health and disease [36]. The co-occurrence network results revealed that bacterial interac-
tions and associations were higher in the osteoporosis group, followed by the osteopenia
group, than in healthy controls. Similarly, network eccentricity also revealed a higher
value of association with osteoporosis, followed by osteopenia, than in healthy controls.
These outcomes further indicated that the relationship of gut bacteria at the genus level
was higher in the osteoporosis group, followed by those in the osteopenia group, than in
healthy controls, suggesting a strong association in gut microbial community with disease
progression. It is evident that the progression of disease changes the host physiology
significantly, which, in turn, affects the pattern of microbial community interaction and
association [18]. However, in such conditions, a few microorganisms, called driver microor-
ganisms, act as key players [37]. This study further revealed that Ruminococcaceae UCG-002
was the main driver genus that played key roles in changing microbial associations and
interactions associated with osteopenia, whereas two other diver genera, Agathobacter and
Clostridia_UCG014, along with Ruminococcaceae UCG-002, were also found to be respon-
sible for changing the bacterial community in osteoporosis. These findings suggest that
these driver bacteria can play a key role in the initiation and progression of osteopenia
and osteoporosis. However, the biological significance of these bacteria in the milieu of
integrative bacterial community development is yet to be further explored. The genus
Ruminococcaceae UCG-002 belongs to the family Ruminococcaceae and has been previously
reported to be associated with osteopenia and osteoporosis. Previous studies have reported
that the abundance of Ruminococcaceae associated with animal and human models increased
following calcium supplementation [38,39]. Agathobacteria is a new genus that belongs to
the family Lachnospiraceae [40] and was recently reported to be an abundant genus along
with other bacteria in both primary osteopenia and healthy controls [20]. The primary
metabolite produced by this genus is butyrate, which is a short-chain fatty acid (SCFA) [41].
Many studies have indicated that SCFAs help in bone formation by increasing the produc-
tion of steopontine and sialoprotein [42,43]. Additionally, Clostridium usually initiates the
accumulation of Tregs, which are considered inhibitors of osteoclast differentiation in the
lamina propria of the colon [44]. The absence of Clostridium strains causes a reduction in
Foxp3 Treg levels with an increase in bone loss [44,45].

Recently, growing evidence has shown that gut microbiota can induce bone remod-
eling through metabolic pathways in both animal and human models [20,46]. In this
study, microbial functional prediction based on 16S rRNA sequencing revealed several
pathways that were significantly enriched in osteopenia and osteoporosis groups compared
with healthy controls. Three highly abundant pathways, namely mycothiol biosynthesis,
methyl ketone biosynthesis, and ergothioneine biosynthesis, were significantly reduced in
the osteopenia group compared with healthy controls, whereas the other three abundant
pathways (mevalonate pathway, glycine betaine degradation, and starch degradation)
were significantly high in abundance in the osteopenia group compared to the healthy
controls. Bacteria use mycothiol as a protectant to detoxify reactive nitrogen and oxygen
species [47]. Previous studies have reported that reactive nitrogen and oxygen species are
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vital for inducing various signaling events, such as intracellular Ca2+ levels, regulation of
mitogen-activated protein kinases (MAPKs), and transcription factors that are involved in
bone formation [48,49]. Similarly, ergothioneine is synthesized by various microorganisms
and is believed to protect cells from oxidative stress. Therefore, a reduced abundance
of these pathways compared with those in healthy controls might be a primary cause of
osteopenia. Previously, it has been reported that the mevalonate pathway is involved in
cholesterol biosynthesis, a vital regulatory pathway related to bone remodeling. Addi-
tionally, the mevalonate pathway produces geranylgeranyl and farnesyl pyrophosphates,
which are crucial for protein prenylation [50]. High production of protein prenylation
favors bone resorption over bone formation [51,52]. Additionally, glycine betaine degrada-
tion pathways have also been reported to be involved in low bone mass [53]. Compared
with healthy controls, the osteoporosis group showed a higher abundance of purine ri-
bonucleoside degradation and super pathway of purine deoxyribonucleoside degradation.
Both of these pathways are related to purine degradation. Previous studies have also
reported that purine degradation is associated with low bone mass. Correlation analysis
revealed that most of these significantly enriched pathways were positively correlated
with statistically enriched bacteria at the genus level, which were previously found to be
statistically enriched in osteopenia and osteoporosis groups [9,54,55]. These significantly
enriched pathways and bacteria and their positive correlation indicate that they are poten-
tially involved in the initiation and progression of osteopenia and osteoporosis. However,
these significant differential pathways need to be further validated using metabolomics
approaches and reliable quantitative methods. Additionally, further studies are warranted
to determine the relationship between these highly correlated pathways and their sig-
nificant bacteria using quantitative approaches. The association between physiological
parameters and gut microbial community is complex. However, previous studies have
reported that these parameters, including BMI and BMD, are involved in the alteration
of gut microbial community structure [23]. In this study, body height and T-score were
the primary factors controlling the gut microbial community structure, which is in line
with previous reports [56,57]. Height and weight were strongly positively correlated with
Desulfovibrio and unidentified genera, whereas age and T-score were strongly positively
correlated with Bacteroides, Agathobacter, Clostridia_UCS-014, and Ruminococcaceae UCG-002.
Desulfovibrio belongs to the H2S-producing Desulfovibrionaceae family and was previously
reported to be associated with weight loss [57]. Additionally, the correlation of Agathobacter,
Clostridia_UCS-014, and Ruminococcaceae UCG-002 with age and T-score is in line with our
analysis of driver microbes in which these three bacteria were responsible for changing
the microbial diversity structure. We believe these three driver bacteria might be the key
players in the initiation and progression of osteopenia and osteoporosis in Taiwanese post-
menopausal women. However, further studies are required to explore this association at a
laboratory scale.

In conclusion, the results of this study revealed that the gut microbial community
interaction is a crucial factor in the initiation and progression of osteopenia and osteoporosis
in postmenopausal women. Additionally, this is the first time we highlighted the driver
bacteria responsible for bacterial community shift, which might be the key players in
the initiation and progression of osteopenia and osteoporosis in postmenopausal women.
Overall, this study suggests that microbial community interaction is more important than
the taxonomic differences in knowing the critical role of gut microbiota in postmenopausal
women associated with osteopenia and osteoporosis. However, we did not consider diet
patterns, which may interfere with the composition and structure of the gut microbiome.
Additionally, this study was based on 16S rRNA sequencing, which does not have sufficient
resolution depth to identify the bacteria at the species level. Therefore, in future studies, a
high-resolution approach targeting long reads of 16S rRNA must be considered to identify
the bacteria at the species level.
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