A Novel Relapsing Fever Group Borrelia Isolated from Ornithodoros Ticks of the Brazilian Caatinga
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Collection of Ornithodoros Ticks
2.2. Taxonomic Identification of Ornithodoros Ticks
2.3. Isolation of Spirochetes from Ornithodoros Ticks
2.4. Molecular Analyses
2.5. Phylogenetic Analyses
2.6. Ethics Statement
3. Results
3.1. Collected Ornithodoros Ticks
3.2. Isolation of Spirochetes from Ornithodoros Ticks
3.3. Molecular Characterization of Spirochetes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trevisan, G.; Cinco, M.; Trevisini, S.; di Meo, N.; Chersi, K.; Ruscio, M.; Forgione, P.; Bonin, S. Borreliae part 1: Borrelia lyme group and echidna-reptile group. Biology 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, G.; Cinco, M.; Trevisini, S.; di Meo, N.; Ruscio, M.; Forgione, P.; Bonin, S. Borreliae part 2: Borrelia relapsing fever group and unclassified Borrelia. Biology 2021, 10, 1117. [Google Scholar] [CrossRef] [PubMed]
- Adeolu, M.; Gupta, R.S. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: The emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek 2014, 105, 1049–1072. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.G.; Gupta, R.S. The family Borreliaceae (Spirochaetales), a diverse group in two genera of tick-borne spirochetes of mammals, birds, and reptiles. J. Med. Entomol. 2021, 58, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Margos, G.; Gofton, A.; Wibberg, D.; Dangel, A.; Marosevic, D.; Loh, S.-M.; Oskam, C.; Fingerle, V. The genus Borrelia reloaded. PLoS ONE 2018, 13, e0208432. [Google Scholar] [CrossRef] [PubMed]
- Margos, G.; Wormser, G.P.; Schwartz, I.; Markowicz, M.; Henningsson, A.J.; Lienhard, R.; Stevenson, B.; Estrada-Peña, A.; Sing, A.; Fingerle, V.; et al. Evidence of taxonomic bias in public databases: The example of the genus Borrelia. Ticks Tick Borne Dis. 2022, 13, 101994. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.J. Relapsing fever borreliae: A global review. Clin. Lab. Med. 2015, 35, 847–865. [Google Scholar] [CrossRef]
- Talagrand-Reboul, E.; Boyer, P.H.; Bergström, S.; Vial, L.; Boulanger, N. Relapsing fevers: Neglected tick-borne diseases. Front. Cell. Infect. Microbiol. 2018, 8, 98. [Google Scholar] [CrossRef]
- Burgdorfer, W.; Mavros, A.J. Susceptibility of various species of rodents to the relapsing fever spirochete, Borrelia hermsii. Infect. Immun. 1970, 2, 256–259. [Google Scholar] [CrossRef]
- Boardman, K.; Rosenke, K.; Safronetz, D.; Feldmann, H.; Schwan, T.G. Host competency of the multimammate rat mastomys natalensis demonstrated by prolonged spirochetemias with the African relapsing fever spirochete borrelia crocidurae. Am. J. Trop. Med. Hyg. 2019, 101, 1272–1275. [Google Scholar] [CrossRef]
- Faccini-Martínez, Á.A.; Silva-Ramos, C.R.; Santodomingo, A.M.; Ramírez-Hernández, A.; Costa, F.B.; Labruna, M.B.; Muñoz-Leal, S. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasit. Vectors 2022, 15, 196. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.E. Observations on the biology of the argasid tick, Ornithodoros brasiliensis Aragão, 1923; with the recovery of a spirochete Borrelia brasiliensis, n. sp. J. Parasitol. 1952, 5, 473–476. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Faccini-Martínez, Á.A.; Costa, F.B.; Marcili, A.; Mesquita, E.T.K.C.; Marques, E.P., Jr.; Labruna, M.B. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick Borne Dis. 2018, 9, 864–871. [Google Scholar] [CrossRef]
- Kneubehl, A.R.; Krishnavajhala, A.; Leal, S.M.; Replogle, A.J.; Kingry, L.C.; Bermúdez, S.E.; Labruna, M.B.; Lopez, J.E. Comparative genomics of the Western Hemisphere soft tick-borne relapsing fever borreliae highlights extensive plasmid diversity. BMC Genomics. 2022, 23, 410. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Leal, S.; Faccini-Martínez, Á.A.; Teixeira, B.M.; Martins, M.M.; Serpa, M.C.A.; Oliveira, G.M.B.; Jorge, F.R.; Pacheco, R.C.; Costa, F.B.; Luz, H.R.; et al. Relapsing fever group borreliae in human-biting soft ticks, Brazil. Emerg. Infect. Dis. 2021, 27, 322–324. [Google Scholar] [CrossRef]
- Faccini-Martínez, Á.A.; Muñoz-Leal, S.; Labruna, M.B.; Angerami, R.N. Borrelioses in Brazil: Is it time to consider tick-borne relapsing fever a neglected disease in Brazil? Rev. Soc. Bras. Med. Trop. 2021, 54, e0443. [Google Scholar] [CrossRef]
- da Silva, J.M.C.; Leal, I.R.; Tabarelli, M. Caatinga, the Largest Tropical Dry Forest Region in South America; Springer: Cham, Switzerland, 2017; pp. 1–482. [Google Scholar]
- Dantas-Torres, F.; Fernandes Martins, T.; Muñoz-Leal, S.; Onofrio, V.C.; Barros-Battesti, D.M. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated species checklist and taxonomic keys. Ticks Tick Borne Dis. 2019, 10, 101252. [Google Scholar] [CrossRef]
- Labruna, M.B.; Nava, S.; Marcili, A.; Barbieri, A.R.; Nunes, P.H.; Horta, M.C.; Venzal, J.M. A new argasid tick species (Acari: Argasidae) associated with the rock cavy, Kerodon rupestris Wied-Neuwied (Rodentia: Caviidae), in a semiarid region of Brazil. Parasit. Vectors 2016, 9, 1–15. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Venzal, J.M.; Jorge, F.R.; Teixeira, B.M.; Labruna, M.B. A new species of soft tick from dry tropical forests of Brazilian Caatinga. Ticks Tick-Borne Dis. 2021, 12, 101748. [Google Scholar] [CrossRef]
- Sangioni, L.A.; Horta, M.C.; Vianna, M.C.; Gennari, S.M.; Soares, R.M.; Galvão, M.A.; Schumaker, T.T.; Ferreira, F.; Vidotto, O.; Labruna, M.B. Rickettsial infection in animals and Brazilian spotted fever endemicity. Emerg. Infect. Dis. 2005, 11, 265–270. [Google Scholar] [CrossRef]
- Mangold, A.J.; Bargues, M.D.; Mas-Coma, S. Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitol. Res. 1998, 84, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Sands, A.F.; Apanaskevich, D.A.; Matthee, S.; Horak, I.G.; Matthee, C.A. The effect of host vicariance and parasite life history on the dispersal of the multi-host ectoparasite, Hyalomma truncatum. J. Biogeogr. 2017, 44, 1124–1136. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Margos, G.; Gatewood, A.G.; Aanensen, D.M.; Hanincová, K.; Terekhova, D.; Vollmer, S.A.; Cornet, M.; Piesman, J.; Donaghy, M.; Bormane, A.; et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 2008, 105, 8730–8735. [Google Scholar] [CrossRef]
- Ataliba, A.C.; Resende, J.S.; Yoshinari, N.; Labruna, M.B. Isolation and molecular characterization of a Brazilian strain of Borrelia anserina, the agent of fowl spirochaetosis. Res. Vet. Sci. 2007, 83, 145–149. [Google Scholar] [CrossRef]
- Ras, N.M.; Lascola, B.; Postic, D.; Cutler, S.J.; Rodhain, F.; Baranton, G.; Raoult, D. Phylogenesis of relapsing fever Borrelia spp. Int. J. Syst. Bacteriol. 1996, 46, 859–865. [Google Scholar] [CrossRef]
- Schwan, T.G.; Raffel, S.J.; Schrumpf, M.E.; Policastro, P.F.; Rawlings, J.A.; Lane, R.S.; Breitschwerdt, E.B.; Porcella, S.F. Phylogenetic analysis of the spirochetes Borrelia parkeri and Borrelia turicatae and the potential for tick-borne relapsing fever in Florida. J. Clin. Microbiol. 2005, 43, 3851–3859. [Google Scholar] [CrossRef]
- Stromdahl, E.Y.; Williamson, P.C.; Kollars, T.M.; Evans, S.R.; Barry, R.K.; Vince, M.A.; Dobbs, N.A. Evidence of Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) removed from humans. J. Clin. Microbiol. 2003, 41, 5557–5562. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. Maximum-likelihood models for combined analyses of multiple sequence data. J. Mol. Evol. 1996, 42, 587–596. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Lanfear, R.; Calcott, B.; Ho, S.Y.W.; Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Larget, B.; Alfaro, M.E. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol. 2004, 21, 1123–1133. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Rannala, B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 2004, 53, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Kisinza, W.N.; McCall, P.J.; Mitani, H.; Talbert, A.; Fukunaga, M. A new identified tick-borne Borrelia species and relapsing fever in Tanzania. Lancet 2003, 362, 1283–1284. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Nakao, R.; Hang’ombe, B.M.; Sato, K.; Kajihara, M.; Kanchela, S.; Changula, K.; Eto, Y.; Ndebe, J.; Sasaki, M.; et al. Human borreliosis caused by a new world relapsing fever borrelia-like organism in the old world. Clin. Infect. Dis. 2019, 69, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.J.; Rudenko, N.; Golovchenko, M.; Cramaro, W.J.; Kirpach, J.; Savic, S.; Christova, I.; Amaro, A. Diagnosing borreliosis. Vector-Borne Zoonotic Dis. 2017, 17, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.L.; Fischer, R.J.; Raffel, S.J.; Schwan, T.G. Host associations and genomic diversity of Borrelia hermsii in an endemic focus of tick-borne relapsing fever in western North America. Parasit. Vectors 2016, 9, 575. [Google Scholar] [CrossRef]
- Rowe, D.L.; Honeycutt, R.L. Phylogenetic relationships, ecological correlates, and molecular evolution within the Cavioidea (Mammalia, Rodentia). Mol. Biol. Evol. 2002, 19, 263–277. [Google Scholar] [CrossRef] [Green Version]
Genes and Primers | DNA Sequences (5′-3′) of Forward (F) and Reverse (R) Primers of Each Pair of Primers | Amplicon Size (bp) | References |
---|---|---|---|
rrs | |||
FD3 | F- AGAGTTTGATCCTGGCTTAG | 1540 | [28] |
T50 | R- GTTACGACTTCACCCTCCT | ||
FD3 | F- AGAGTTTGATCCTGGCTTAG | 729 * | [29] |
16S-1 | R- TAGAAGTTCGCCTTCGCCTCTG | ||
16S-2 | F- TACAGGTGCTGCATGGTTGTCG | 513 * | [29] |
T50 | R- GTTACGACTTCACCCTCCT | ||
Rec-4 | F- ATGCTAGAAACTGCATGA | 520 * | [28] |
Rec-9 | R- TCGTCTGAGTCCCCATCT | ||
flaB | |||
FlaLL | F- ACATATTCAGATGCAGACAGAGGT | 665 | [30] |
FlaRL | R- GCAATCATAGCCATTGCAGATTGT | ||
FlaLL | F- ACATATTCAGATGCAGACAGAGGT | 485 * | [30] |
FlaRS | R- CTTTGATCACTTATCATTCTAATAGC | ||
FlaLS | F- AACAGCTGAAGAGCTTGGAATG | 522 * | [30] |
FlaRL | R- GCAATCATAGCCATTGCAGATTGT | ||
glpQ | |||
glpQ F + 1 | F- GGGGTTCTGTTACTGCTAGTGCCATTAC | 1386 | [29] |
Rev-2 | R- CAATACTAAGACCAGTTGCTCCTCCGCC | ||
glpQ F + 1 | F- GGGGTTCTGTTACTGCTAGTGCCATTAC | 802 * | [29] |
glpQ F − 1 | R- CAATTTTAGATATGTCTTTACCTTGTTGTTTATGCC | ||
gyrB | |||
gyrB 5′ | F- GGTTTATGAGTTATGTTGCTAGTAATATTCAAGTGC | 2026 | [29] |
gyrB 3′ | R- GGCTCTTGAAACAATAACAGACATCGC | ||
gyrB 3′ | F- GGTTTATGAGTTATGTTGCTAGTAATATTCAAGTGC | 542 * | [29] |
gyrB 5′ + 3 | R- GCTGATGCTGATGTTGATGG |
Locality | Tick Species | No. Ticks Released in the Feeding Chamber of Guinea Pigs a | Isolation of Spirochetes though Guinea Pigs and Experimental Animals b | |||
---|---|---|---|---|---|---|
Guinea Pigs | Passages into Experimental Animals c | |||||
No. | Spirochetemia | Rodent | Spirochetemia | |||
Buíque | Ornithodoros rietcorreai | 25 (4F, 3M, 18N) | 1 | No | ||
Ornithodoros cf. tabajara | 143 (32F, 31M, 80N) | 2 | Yes | Guinea pig | Yes | |
Mouse | Yes | |||||
Floresta | O. rietcorreai | 365 (18F, 29M, 318N) | 3 | No | ||
O. cf. tabajara | 289 (44F, 51M, 194N) | 4 | Yes | Guinea pig | Yes | |
Hamster | Yes | |||||
Serrita | O. rietcorreai | 445 (16F, 34M, 395N) | 5 | No | ||
O. cf. tabajara | 136 (18F, 11M, 107N) | 6 | Yes | Guinea pig | Yes | |
Petrolina | O. rietcorreai | 90 (3F, 4M, 83N) | 7 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, G.M.B.d.; Muñoz-Leal, S.; Santodomingo, A.; Weck, B.C.; Faccini-Martínez, Á.A.; Horta, M.C.; Labruna, M.B. A Novel Relapsing Fever Group Borrelia Isolated from Ornithodoros Ticks of the Brazilian Caatinga. Microorganisms 2023, 11, 370. https://doi.org/10.3390/microorganisms11020370
Oliveira GMBd, Muñoz-Leal S, Santodomingo A, Weck BC, Faccini-Martínez ÁA, Horta MC, Labruna MB. A Novel Relapsing Fever Group Borrelia Isolated from Ornithodoros Ticks of the Brazilian Caatinga. Microorganisms. 2023; 11(2):370. https://doi.org/10.3390/microorganisms11020370
Chicago/Turabian StyleOliveira, Glauber M. B. de, Sebastián Muñoz-Leal, Adriana Santodomingo, Barbara C. Weck, Álvaro A. Faccini-Martínez, Maurício C. Horta, and Marcelo B. Labruna. 2023. "A Novel Relapsing Fever Group Borrelia Isolated from Ornithodoros Ticks of the Brazilian Caatinga" Microorganisms 11, no. 2: 370. https://doi.org/10.3390/microorganisms11020370
APA StyleOliveira, G. M. B. d., Muñoz-Leal, S., Santodomingo, A., Weck, B. C., Faccini-Martínez, Á. A., Horta, M. C., & Labruna, M. B. (2023). A Novel Relapsing Fever Group Borrelia Isolated from Ornithodoros Ticks of the Brazilian Caatinga. Microorganisms, 11(2), 370. https://doi.org/10.3390/microorganisms11020370