Optimal Fast Integral Decontamination of Bacillus thuringiensis Aerosols and Fast Disinfection of Contaminated Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media Selection for Spore Production
2.2. Spore Preparation, Air Dispersion, and Measure of Spore Removal Rate
2.3. Air Disinfection Using Water Fog
2.4. Test Materials and Coupons Inoculation for Surface Disinfection Tests
2.5. Surface Disinfection Procedure
- Position 1: horizontal facing downward, just above the nozzle.
- Position 2: on the ceiling facing downward, 1 m away from the nozzle.
- Position 3: 1 m high, vertical on the middle of the left wall.
- Position 4: 1 m high, horizontal on the middle of the left wall.
- Position 5: on the floor facing upward.
- Position 6: on the floor facing downward.
- Position 7: 1 m on the vertical wall, 2.88 m in front of the nozzle.
- Position 8: 1 m high, horizontal downward on the wall, 2.88 m in front of the nozzle.
- Position 9: 1 m high vertically on the wall with the door.
- Position 10: 1 m high, horizontal upward.
2.6. Sample Processing and Quantification of Spore Survival in Surface Disinfection Tests
2.7. Sanitation and Disinfection Efficacy Calculations and Statistical Analysis
3. Results
3.1. Aerosolization
3.2. Air Disinfection
3.3. Surface Disinfection Using Counterfog® System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jernigan, J.A.; Stephens, D.S.; Ashford, D.A. Bioterrorism-Related Inhalational Anthrax: The First 10 Cases Reported in the United States. Emerg. Infect. Dis. 2001, 7, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Gerberding, J.L.; Hughes, J.M.; Koplan, J.P. Bioterrorism Preparedness and Response: Clinicians and Public Health Agencies as Essential Partners. J. Am. Med. Assoc. 2002, 287, 898–900. [Google Scholar] [CrossRef]
- Fitch, J.P.; Raber, E.; Imbro, D.R. Technology Challenges in Responding to Biological or Chemical Attacks in the Civilian Sector. Science 2003, 302, 1350–1354. [Google Scholar] [CrossRef] [PubMed]
- Buttner, M.P.; Cruz, P.; Stetzenbach, L.D.; Klima-Comba, A.K.; Stevens, V.L.; Cronin, T.D. Determination of the Efficacy of Two Building Decontamination Strategies by Surface Sampling with Culture and Quantitative PCR Analysis. Appl. Environ. Microbiol. 2004, 70, 4740–4747. [Google Scholar] [CrossRef] [PubMed]
- Raber, E.; Hirabayashi, J.M.; Mancieri, S.P.; Jin, A.L.; Folks, K.J.; Carlsen, T.M.; Estacio, P. Chemical and Biological Agent Incident Response and Decision Process for Civilian and Public Sector Facilities. Risk Anal. 2002, 22, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Raber, E.; McGuire, R. Oxidative Decontamination of Chemical and Biological Warfare Agents Using L-Gel. J. Hazard. Mater. 2002, 93, 339–352. [Google Scholar] [CrossRef]
- DeQueiroz, G.A.; Day, D.F. Disinfection of Bacillus Subtilis Spore-Contaminated Surface Materials with a Sodium Hypochlorite and a Hydrogen Peroxide-Based Sanitizer. Lett. Appl. Microbiol. 2008, 46, 176–180. [Google Scholar] [CrossRef]
- Buhr, T.L.; Young, A.A.; Minter, Z.A.; Wells, C.M.; McPherson, D.C.; Hooban, C.L.; Johnson, C.A.; Prokop, E.J.; Crigler, J.R. Test Method Development to Evaluate Hot, Humid Air Decontamination of Materials Contaminated with Bacillus Anthracis Sterne and B. Thuringiensis Al Hakam Spores. J. Appl. Microbiol. 2012, 113, 1037–1051. [Google Scholar] [CrossRef]
- Wood, J.P.; Worth, M.; Clayton, M.; Griffin-gatchalian, N.; Touati, A.; Egler, K. Evaluation of Peracetic Acid Fog for the Inactivation of Bacillus Anthracis Spore Surrogates in a Large Decontamination Chamber. J. Hazard. Mater. 2013, 250–251, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Sagripanti, J.L.; Carrera, M.; Insalaco, J.; Ziemski, M.; Rogers, J.; Zandomeni, R. Virulent Spores of Bacillus Anthracis and Other Bacillus Species Deposited on Solid Surfaces Have Similar Sensitivity to Chemical Decontaminants. J. Appl. Microbiol. 2007, 102, 11–21. [Google Scholar] [CrossRef]
- Spotts Whitney, E.A.; Beatty, M.E.; Taylor, T.H.; Weyant, R.; Sobel, J.; Arduino, M.J.; Ashford, D.A. Inactivation of Bacillus Anthracis Spores. Emerg. Infect. Dis. 2003, 9, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.V.; Richter, W.R.; Shaw, M.Q.; Shesky, A.M. Large-Scale Inactivation of Bacillus Anthracis Ames, Vollum, and Sterne Spores Using Vaporous Hydrogen Peroxide. Appl. Biosaf. 2009, 14, 127–134. [Google Scholar] [CrossRef]
- Krause, J.; Mcdonnell, G.; Riedesel, H. Biodecontamination of Animal Rooms and Heat-Sensitive Equipment with Vaporized Hydrogen Peroxide. Contemp. Top. Lab. Anim. Sci. 2001, 40, 18–21. [Google Scholar]
- Davies, A.; Pottage, T.; Bennett, A.; Walker, J. Gaseous and Air Decontamination Technologies for Clostridium Difficile in the Healthcare Environment. J. Hosp. Infect. 2011, 77, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.M.; Rasch, M.; Hochlin, K.; Jensen, F.H.; Wismar, P.; Fredriksen, J.E. Decontamination of Rooms, Medical Equipment and Ambulances Using an Aerosol of Hydrogen Peroxide Disinfectant. J. Hosp. Infect. 2006, 62, 149–155. [Google Scholar] [CrossRef]
- Rogers, J.V.; Sabourin, C.L.K.; Choi, Y.W.; Richter, W.R.; Rudnicki, D.C.; Riggs, K.B.; Taylor, M.L.; Chang, J. Decontamination Assessment of Bacillus Anthracis, Bacillus Subtilis, and Geobacillus Stearothermophilus Spores on Indoor Surfaces Using a Hydrogen Peroxide Gas Generator. J. Appl. Microbiol. 2005, 99, 739–748. [Google Scholar] [CrossRef]
- Rastogi, V.K.; Ryan, S.P.; Wallaces, L.; Smith, L.S.; Shah, S.S.; Blair Martin, G. Systematic Evaluation of the Efficacy of Chlorine Dioxide in Decontamination of Building Interior Surfaces Contaminated with Anthrax Spores. Appl. Environ. Microbiol. 2010, 76, 3343–3351. [Google Scholar] [CrossRef]
- Macellaro, A.; Karlsson, L.; Emmoth, E.; Dergel, I.; Metreveli, G.; Bengtsson, U.A.; Byström, M.; Hultén, C.; Johansson, A.L. Evaluation of Biological Indicator Spores as Tools for Assessment of Fumigation Decontamination Effectiveness. Appl. Biosaf. 2015, 20, 183–191. [Google Scholar] [CrossRef]
- Richter, W.R.; Wood, J.P.; Wendling, M.Q.S.; Rogers, J.V. Inactivation of Bacillus Anthracis Spores to Decontaminate Subway Railcar and Related Materials via the Fogging of Peracetic Acid and Hydrogen Peroxide Sporicidal Liquids. Adv. Ecol. Res. 2018, 60, 800–806. [Google Scholar] [CrossRef]
- Holty, J.C.; Bravata, D.M.; Liu, H.; Olshen, R.A.; Mcdonald, K.M.; Owens, D.K. Annals of Internal Medicine Review Systematic Review: A Century of Inhalational Anthrax Cases From. Ann. Intern. Med. 2006, 144, 270–280. [Google Scholar] [CrossRef]
- Doganay, M.; Metan, G.; Alp, E. A Review of Cutaneous Anthrax and Its Outcome. J. Infect. Public Health 2010, 3, 98–105. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Zargar, B.; Wright, K.E.; Rubino, J.R.; Sattar, S.A. Generic Aspects of the Airborne Spread of Human Pathogens Indoors and Emerging Air Decontamination Technologies. Am. J. Infect. Control. 2016, 44, S109–S120. [Google Scholar] [CrossRef]
- Koburger, T.; Below, H.; Dornquast, T.; Kramer, A. Decontamination of Room Air and Adjoining Wall Surfaces by Nebulizing Hydrogen Peroxide. GMS Krankenhhyg. Interdiszip. 2011, 6, Doc09. [Google Scholar] [CrossRef]
- Sattar, S.A.; Zargar, B.; Wright, K.E.; Rubino, J.R.; Khalid Ijazb, M. Airborne Pathogens inside Automobiles for Domestic Use: Assessing In-Car Air Decontamination Devices Using Bacterium. Appl. Environ. Microbiol. 2017, 83, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.L.; Busch, J.D.; Keim, P.; Wagner, D.M. Identifying Experimental Surrogates for Bacillus Anthracis Spores: A Review. Investig. Genet. 2010, 1, e17836. [Google Scholar] [CrossRef] [PubMed]
- Tufts, J.A.M.; Calfee, M.W.; Lee, S.D.; Ryan, S.P. Bacillus Thuringiensis as a Surrogate for Bacillus Anthracis in Aerosol Research. World J. Microbiol. Biotechnol. 2014, 30, 1453–1461. [Google Scholar] [CrossRef]
- Montville, T.J.; Dengrove, R.; De Siano, T.; Bonnet, M.; Schaffner, D.W. Thermal Resistance of Spores from Virulent Strains of Bacillus Anthracis and Potential Surrogates. J. Food Prot. 2005, 68, 2362–2366. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.W.; Adcock, N.J.; Sivaganesan, M.; Rose, L.J. Inactivation of Spores of Bacillus Anthracis Sterne, Bacillus Cereus, and Bacillus Thuringiensis Subsp. Israelensis by Chlorination. Appl. Environ. Microbiol. 2005, 71, 5587–5589. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Ivanov, O.; Peshev, Z.; Álvarez-Valenzuela, M.A.; Valiente-Blanco, I.; Evgenieva, T.; Dreischuh, T.; Gueorguiev, O.; Todorov, P.V.; Vaseashta, A. Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health. Water 2017, 9, 807. [Google Scholar] [CrossRef]
- Pascual, L.; Fernández, M.; Amigo, L.J.; Pérez, J.L.; Quiñones, J. First Measurement Using COUNTERFOG Device: Nuclear and Radiological Scenario. Eur. Phys. J. Plus 2018, 133, 291. [Google Scholar] [CrossRef]
- Pascual, L.; Fernández, M.; Dominguez, J.A.; Amigo, L.J.; Mazanec, K.; Pérez- Díaz, J.L.; Quiñones, J. First Measurement Using COUNTERFOG Device: Chemical Warfare Agent Scenario. In Proceedings of the Enhancing CBRNE Safety & Security: Proceedings of the SICC 2017 Conference; Springer: Berlin/Heidelberg, Germany, 2018; pp. 93–102. [Google Scholar]
- Pérez-Díaz, J.L.; Llerena-Aguilar, F.J.; Martín-Pérez, T.; Sánchez-García-Casarrubios, J.; Ruiz-Navas, E. Decontamination of Diesel Particles from Air by Using the Counterfog® System. Air Qual. Atmos. Health 2019, 12, 305–310. [Google Scholar] [CrossRef]
- Del Álamo, C.; Vázquez-Calvo, Á.; Sanchiz, Á.; Rodríguez-Caravaca, G.; Martín, R.; Hernáez, B.; Carranza, P.M.-V.-; García-Casarrubios, J.S.; Alcamí, A.; Pérez-Díaz, J.L. Fast Air-to-Liquid Sampler Detects Surges in SARS-CoV-2 Aerosol Levels in Hospital Rooms. Int. J. Environ. Res. Public Health 2022, 20, 576. [Google Scholar] [CrossRef]
- Martín-Pérez, T.; Llerena-Aguilar, F.-J.; Pérez-Serrano, J.; Copa-Patiño, J.L.; de Carranza, J.S.; Orellana-Muriana, J.-M.; Pérez-Díaz, J.-L. Eco-Friendly Air Decontamination of Biological Warfare Agents Using “Counterfog” System. In Proceedings of the Enhancing CBRNE Safety & Security: Proceedings of the SICC 2017 Conference; Springer: Cham, Switzerland, 2018; pp. 111–118. [Google Scholar]
- Del Álamo, C.; Vázquez-Calvo, Á.; Alcamí, A.; Sánchez-García-Casarrubios, J.; Pérez-Díaz, J.L. Assessment of Surface Disinfection Effectiveness of Decontamination System COUNTERFOG® SDR-F05A+ Against Bacteriophage Φ29. Food Environ. Virol. 2022, 14, 304–313. [Google Scholar] [CrossRef]
- Carrera, M.; Zandomeni, R.O.; Fitzgibbon, J.; Sagripanti, J.L. Difference between the Spore Sizes of Bacillus Anthracis and Other Bacillus Species. J. Appl. Microbiol. 2007, 102, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Yapa, P.D. Buoyant Velocity of Spherical and Nonspherical Bubbles/Droplets. J. Hydraul. Eng. 2000, 126, 852–854. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Quiñones-Diez, J.; Qin, Y.; Tian, Y.; Horning, W. Atomizing Nozzle. European Patent Office. No EP17382233.9 28 April 2017.
- Pérez-Díaz, J.L.; Sánchez García-Casarrubios, J.; Méndez-Vigo Carranza, P.; Ruiz Navas, E.M.; Petrov, M.I.; Alcamí Pertejo, A.; Vázquez, Á.; Rastrojo, A.; Archilla, V.; Sánchez García, M.; et al. Fast Surface Disinfection with COUNTERFOG® SDR-F05A+. Eur. Phys. J. Plus 2021, 136, 393. [Google Scholar] [CrossRef]
- Cheung, H.Y.; Brown, M.R.W. Evaluation of Glycine as an Inactivator of Glutaraldehyde. J. Pharm. Pharmacol. 1982, 34, 211–214. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Qin, Y.; Ivanov, O.; Quiñones, J.; Stengl, V.; Nylander, K.; Hornig, W.; Álvarez, J.; Manzanec, K.; Ruiz-Navas, E.-M.; et al. Fast Response CBRN High-Scale Decontamination System: COUNTERFOG. In Proceedings of the Enhancing CBRNE Safety & Security: Proceedings of the SICC 2017 Conference; Springer: Cham, Switzerland, 2018; pp. 61–69. [Google Scholar]
- Han, Y.; Applegate, B.; Linton, R.H.; Nelson, P.E. Decontamination of Bacillus Thuringiensis Spores on Selected Surfaces by Chlorine Dioxide Gas. J. Environ. Health 2003, 66, 16–21. [Google Scholar] [PubMed]
- Sattar, S.A.; Kibbee, R.J.; Zargar, B.; Wright, K.E.; Rubino, J.R.; Ijaz, M.K. Decontamination of Indoor Air to Reduce the Risk of Airborne Infections: Studies on Survival and Inactivation of Airborne Pathogens Using an Aerobiology Chamber. Am. J. Infect. Control 2016, 44, e177–e182. [Google Scholar] [CrossRef]
- USEPA. Product Performance Test Guidelines OCSPP 810.2500: Air Sanitizers—Efficacy Data Recommendations; Docket ID EPA 730-C-11-003; USEPA: Washington, DC, USA, 2012.
- Friedman, H.; Volin, E.; Laumann, D. Terminal Disinfection in Hospitals Wihh Quaternary Ammonium Compounds by Use of a Spray-Fog Technique. Appl. Microbiol. 1968, 16, 223–227. [Google Scholar] [CrossRef]
- Dunowska, M.; Morley, P.S.; Hyatt, D.R. The Effect of Virkon®S Fogging on Survival of Salmonella Enterica and Staphylococcus Aureus on Surfaces in a Veterinary Teaching Hospital. Vet. Microbiol. 2005, 105, 281–289. [Google Scholar] [CrossRef]
- Taneja, N.; Biswal, M.; Kumar, A.; Edwin, A.; Sunita, T.; Emmanuel, R.; Gupta, A.K.; Sharma, M. Hydrogen Peroxide Vapour for Decontaminating Air-Conditioning Ducts and Rooms of an Emergency Complex in Northern India: Time to Move On. J. Hosp. Infect. 2011, 78, 200–203. [Google Scholar] [CrossRef]
- Wood, J.P.; Wendling, M.; Richter, W.; Lastivka, A.; Mickelsen, L. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus Anthracis Spores. Appl. Environ. Microbiol. 2016, 82, 2003–2011. [Google Scholar] [CrossRef]
- Calfee, M.W.; Choi, Y.; Rogers, J.; Kelly, T.; Willenberg, Z.; Riggs, K. Lab-Scale Assessment to Support Remediation of Outdoor Surfaces Contaminated with Bacillus Anthracis Spores. J. Bioterr. Biodef. 2011, 2, 110. [Google Scholar] [CrossRef]
- Bovallius, A.; Anas, P. Surface-Decontaminating Action of Glutaraldehyde in the Gas-Aerosol Phase. Appl. Environ. Microbiol. 1977, 34, 129–134. [Google Scholar] [CrossRef]
2.5 µm Droplets | 5 µm Droplets | 10 µm Droplets | |
---|---|---|---|
Fog 1 | 50,000 | 750,000 | 700,000 |
Fog 2 | 50,000 | 750,000 | 350,000 |
Fog 3 | 700,000 | 750,000 | 150,000 |
Time Since Spore Release | Time Since Water Fog Production | |
---|---|---|
0 | Spore release | |
1 min | Sample t1 | |
2 min | 0 | Fog production |
3 min | 1 min | Sample t2 |
7 min | 5 min | Sample t3 |
10 min | 8 min | Sample t4 |
15 min | 13 min | Sample t5 |
20 min | 18 min | Sample t6 |
Phase | Parameter |
---|---|
Conditioning | Duration: 10 min Temperature: 20 °C Relative humidity: 80% |
Decontamination (Fog Release) | Duration: 1 min Flow rate: 0.005 m3/min Temperature: 20 °C Relative humidity: 80–100% |
Dwell | Duration: 60 min Temperature: 20 °C Relative humidity: 80–100% |
Aeration | Duration: 10 min Flow rate: 200 m3/h Temperature: 20 °C Relative humidity: 70–100% |
Samples | Fog 1 | Fog 2 | Fog 3 | |||
---|---|---|---|---|---|---|
Log10 Red | % Red | Log10 Red | % Red | Log10 Red | % Red | |
t1 | NA | NA | NA | NA | NA | NA |
t2 | 1.26 | 94.58 | 1.66 | 97.83 | 1.90 | 98.75 |
t3 | 1.33 | 95.30 | 1.66 | 97.83 | 2.08 | 99.16 |
t4 | 0.41 | 61.37 | 0.24 | 42.41 | 2.38 | 99.58 |
t5 | >3 | 100 | 2.03 | 99.07 | 2.20 | 99.37 |
t6 | 2.44 | 99.63 | >3 | 100 | >3 | 100 |
Test Material | Mean % Recovery |
---|---|
Wood | 12.54 |
Plasterboard | 12.12 |
Steel metal | 17.85 |
Galvanized steel | 14.56 |
PVC sign | 75.12 |
PVC pipe | 53.39 |
Glass | 80.53 |
8% H2O2 Counterfog® | |||
---|---|---|---|
Position | CFU/mL | Log10 Reduction | % Reduction |
Control | 2.11 × 108 ± 1.73 × 103 | NA | NA |
1 | 1.23 × 105 ± 3.22 × 103 | 3.24 | 99.94 |
2 | 3.23 × 105 ± 3.16 × 105 | 2.59 | 99.74 |
3 | 2.85 × 103 ± 4.95 × 102 | 4.87 | 99.99 |
4 | 2.01 × 104 ± 1.34 × 104 | 4.02 | 99.99 |
5 | 6.20 × 103 ± 1.70 × 103 | 4.53 | 99.99 |
6 | 5.00 × 104 ± 5.52 × 104 | 3.63 | 99.98 |
7 | 2.48 × 105 ± 1.43 × 105 | 2.93 | 99.88 |
8 | 4.00 × 105 ± 7.07 × 104 | 2.72 | 99.81 |
9 | 6.00 × 105 ± 4.38 × 105 | 2.55 | 99.72 |
10 | 3.60 × 104 ± 8.49 × 103 | 3.77 | 99.98 |
2% Glutaraldehyde Counterfog® | |||
Position | CFU/mL | Log10 Reduction | % Reduction |
Control | 6.5 × 107 ± 1.84 × 107 | NA | NA |
1 | 4.80 × 105 ± 1.41 × 104 | 2.13 | 99.26 |
2 | 5.25 × 105 ± 2.90 × 105 | 2.09 | 99.19 |
3 | 2.32 × 107 ± 9.69 × 106 | 0.45 | 64.38 |
4 | 6.05 × 105 ± 8.28 × 105 | 2.03 | 99.07 |
5 | 9.75 × 104 ± 2.12 × 103 | 2.82 | 99.85 |
6 | 4.15 × 106 ± 1.77 × 106 | 1.19 | 93.62 |
7 | 3.56 × 105 ± 3.46 × 105 | 2.26 | 99.45 |
8 | 3.10 × 106 ± 7.77 × 105 | 1.32 | 95.23 |
9 | 6.95 × 107 ± 6.36 × 106 | 0.02 | 4.62 |
10 | 4.55 × 103 ± 2.19 × 103 | 4.15 | 99.99 |
8% H2O2 Counterfog® | |||
---|---|---|---|
Test Material | CFU/mL | Log10 Reduction | % Reduction |
Wood | |||
Control | 3.21 × 106 ± 3.53 × 106 | NA | NA |
Decontaminated | 3.50 × 102 ± 4.95 × 102 | 3.96 | 99.99 |
Plasterboard | |||
Control | 3.23 × 106 ± 2.59 × 104 | NA | NA |
Decontaminated | 2.17 × 102 ± 1.65 × 102 | 4.17 | 99.99 |
Steel metal | |||
Control | 5.25 × 106 ± 1.37 × 105 | NA | NA |
Decontaminated | 4.85 × 104 ± 4.48 × 103 | 2.03 | 99.08 |
Galvanized steel | |||
Control | 4.83 × 105 ± 3.77 × 104 | NA | NA |
Decontaminated | 8.82 × 103 ± 1.01 × 103 | 1.74 | 98.18 |
PVC sign | |||
Control | 3.03 × 106 ± 3.64 × 106 | NA | NA |
Decontaminated | 8.62 × 103 ± 1.25 × 103 | 2.54 | 99.72 |
PVC pipe | |||
Control | 8.03 × 106 ± 6.60 × 105 | NA | NA |
Decontaminated | 1.12 × 104 ± 7.54 × 102 | 2.86 | 99.86 |
Glass | |||
Control | 1.51 × 106 ± 1.41 × 105 | NA | NA |
Decontaminated | 3.17 × 102 ± 2.36 × 101 | 3.68 | 99.98 |
2% Glutaraldehyde Counterfog® | |||
Test Material | CFU/mL | Log10 Reduction | % Reduction |
Wood | |||
Control | 4.75 × 106 ± 1.34 × 106 | NA | NA |
Decontaminated | 6.15 × 105 ± 1.63 × 105 | 0.89 | 87.05 |
Plasterboard | |||
Control | 5.32 × 106 ± 2.09 × 106 | NA | NA |
Decontaminated | 5.07 × 104 ± 6.60 × 103 | 2.02 | 99.05 |
Steel metal | |||
Control | 5.40 × 106 ± 7.07 × 105 | NA | NA |
Decontaminated | 3.69 × 106 ± 8.98 × 105 | 0.16 | 31.76 |
Galvanized steel | |||
Control | 8.25 × 106 ± 4.22 × 106 | NA | NA |
Decontaminated | 5.67 × 106 ± 1.13 × 106 | 0.16 | 31.31 |
PVC sign | |||
Control | 4.88 × 106 ± 2.80 × 106 | NA | NA |
Decontaminated | 3.31 × 106 ± 1.90 × 106 | 0.17 | 32.22 |
PVC pipe | |||
Control | 1.38 × 107 ± 1.31 × 107 | NA | NA |
Decontaminated | 4.63 × 106 ± 5.94 × 106 | 0.48 | 66.49 |
Glass | |||
Control | 3.38 × 107 ± 3.98 × 107 | NA | NA |
Decontaminated | 3.36 × 106 ± 3.76 × 106 | 1.00 | 90.05 |
Test Material | CFU/mL | Log10 Reduction | % Reduction |
---|---|---|---|
Wood | |||
Control | 2.27 × 106 ± 1.80 × 106 | NA | NA |
Decontaminated | 1.00 × 105 ± 2.05 × 104 | 1.35 | 95.59 |
Plasterboard | |||
Control | 2.27 × 106 ± 1.44 × 106 | NA | NA |
Decontaminated | 2.04 × 104 ± 8.74 × 103 | 2.05 | 99.10 |
Steel metal | |||
Control | 2.47 × 106 ± 9.57 × 105 | NA | NA |
Decontaminated | 5.44 × 105 ± 2.73 × 105 | 0.66 | 77.98 |
Galvanized steel | |||
Control | 1.97 × 106 ± 2.97 × 105 | NA | NA |
Decontaminated | 1.00 × 106 ± 3.70 × 105 | 0.29 | 49.07 |
PVC sign | |||
Control | 4.73 × 107 ± 5.84 × 107 | NA | NA |
Decontaminated | 3.15 × 106 ± 9.88 × 105 | 1.18 | 93.35 |
PVC pipe | |||
Control | 1.74 × 107 ± 3.66 × 106 | NA | NA |
Decontaminated | 3.02 × 106 ± 1.78 × 106 | 0.76 | 82.62 |
Glass | |||
Control | 2.38 × 107 ± 1.53 × 107 | NA | NA |
Decontaminated | 5.72 × 105 ± 5.40 × 105 | 1.62 | 97.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Díaz, J.L.; Martín-Pérez, T.; del Álamo, C.; Sánchez-García-Casarrubios, J.; Copa-Patiño, J.L.; Soliveri, J.; Orellana-Muriana, J.M.; Pérez-Serrano, J.; Llerena-Aguilar, F.J. Optimal Fast Integral Decontamination of Bacillus thuringiensis Aerosols and Fast Disinfection of Contaminated Surfaces. Microorganisms 2023, 11, 1021. https://doi.org/10.3390/microorganisms11041021
Pérez-Díaz JL, Martín-Pérez T, del Álamo C, Sánchez-García-Casarrubios J, Copa-Patiño JL, Soliveri J, Orellana-Muriana JM, Pérez-Serrano J, Llerena-Aguilar FJ. Optimal Fast Integral Decontamination of Bacillus thuringiensis Aerosols and Fast Disinfection of Contaminated Surfaces. Microorganisms. 2023; 11(4):1021. https://doi.org/10.3390/microorganisms11041021
Chicago/Turabian StylePérez-Díaz, José Luis, Tania Martín-Pérez, Cristina del Álamo, Juan Sánchez-García-Casarrubios, José Luis Copa-Patiño, Juan Soliveri, José M. Orellana-Muriana, Jorge Pérez-Serrano, and Francisco José Llerena-Aguilar. 2023. "Optimal Fast Integral Decontamination of Bacillus thuringiensis Aerosols and Fast Disinfection of Contaminated Surfaces" Microorganisms 11, no. 4: 1021. https://doi.org/10.3390/microorganisms11041021
APA StylePérez-Díaz, J. L., Martín-Pérez, T., del Álamo, C., Sánchez-García-Casarrubios, J., Copa-Patiño, J. L., Soliveri, J., Orellana-Muriana, J. M., Pérez-Serrano, J., & Llerena-Aguilar, F. J. (2023). Optimal Fast Integral Decontamination of Bacillus thuringiensis Aerosols and Fast Disinfection of Contaminated Surfaces. Microorganisms, 11(4), 1021. https://doi.org/10.3390/microorganisms11041021