Recent Progress of Reclassification of the Genus Streptomyces
Abstract
:1. Introduction
2. Developments of Molecular Identification Methods
3. Materials and Methods
4. Recent Reclassification of Members in the Genus Streptomyces
4.1. Transfer to Other Genera
Species | Reclassified to | Reference |
---|---|---|
S.aburaviensis | Kitasatospora aburaviensis comb. nov. | Labeda et al., 2017 [45] |
S. albolongus | Kitasatospora albolonga comb. nov. | |
S. aureofaciens | Kitasatospora aureofaciens comb. nov. | |
S. avellaneus | Kitasatospora aureofaciens | |
S. cinereorectus | Kitasatospora cinereorecta comb. nov. | |
S. herbaricolor | Kitasatospora herbaricolor comb. nov. | |
S. misakiensis | Kitasatospora misakiensis comb. nov. | |
S. psammoticus | Kitasatospora psammotica comb. nov. | |
S. purpeofuscus | Kitasatospora purpeofusca comb. nov. | |
S. indigoferus | Kitasatospora indigofera comb. nov. | Nouioui et al., 2018 [46] |
S. xanthocidicus | Kitasatospora xanthocidica comb. nov. | |
S. scabrisporus | Embleya scabrispora gen. nov., comb. nov. | |
S. aomiensis | Yinghuangia aomiensis gen. nov., comb. nov. | |
S. griseoplanus | Streptacidiphilus griseoplanus comb. nov. | Nouioui et al., 2019 [57] |
S. catbensis | Yinghuangia catbensis comb. nov. | Komaki et al., 2019 [48] |
S. seranimatus | Yinghuangia seranimata comb. nov. | |
“S. hyalinum” | Embleya hyalina sp. nov. | Komaki et al., 2020 [49] |
S. caeruleus | Actinoalloteichus caeruleus comb. nov. | Teo et al., 2021 [53] |
S. thermoautotrophicus | Carbonactinospora thermoautotrophica gen. nov., comb. nov. | Volpiano et al., 2021 [55] |
S. yeochonensis | Actinacidiphila yeochonensis, gen. nov., comb. nov. | Madhaiyan et al. 2022 [56] |
S. acididurans | Actinacidiphila acididurans comb. nov. | |
S. alni | Actinacidiphila alni comb. nov. | |
S. bryophytorum | Actinacidiphila bryophytorum comb. nov. | |
S. epipremni | Actinacidiphila epipremni comb. nov. | |
S. glauciniger | Actinacidiphila glaucinigra comb. nov. | |
S. guanduensis | Actinacidiphila guanduensis comb. nov. | |
S. oryziradicis | Actinacidiphila oryziradicis comb. nov. | |
S. paucisporeus | Actinacidiphila paucisporea comb. nov. | |
S. rubidus | Actinacidiphila rubida comb. nov. | |
“S. soli” | Actinacidiphila soli sp. nov. | |
S. yanglinensis | Actinacidiphila yanglinensis comb. nov. | |
“S. gilvigriseus” | Mangrovactinospora gilvigrisea gen. nov., sp. nov. | |
“S. cattleya” | Streptantibioticus cattleyicolor gen. nov., sp. nov. | |
S. vitaminophilus | Wenjunlia vitaminophila gen. nov., comb. nov. | |
S. tyrosinilyticus | Wenjunlia tyrosinilytica comb. nov. |
4.2. Reclassification of Subspecies
Taxa | Reclassified to | Reference |
---|---|---|
S. albus subsp. pathocidicus | S. pathocidicus sp. nov. | Labeda et al., 2014 [28] |
S. chrysomallus subsp. fumigatus | “Kitasatospora fumigate” comb. nov. | Labeda et al., 2017 [45] |
S. rimosus subsp. paromomycinus | S. paromomycinus sp. nov. | Komaki et al., 2019 [58] |
S. diastaticus subsp. ardesiacus | S. ardesiacus sp. nov | Komaki et al., 2020 [59] |
S. achromogenes subsp. rubradiris | S. rubradiris sp. nov. | Komaki et al., 2021 [47] |
S. albosporeus subsp. labilomyceticus | S. labilomyceticus sp. nov. | |
S. cacaoi subsp. asoensis | S. asoensis sp. nov. | |
S. cinereoruber subsp. fructofermentans | S. fructofermentans sp. nov. | |
S. hygroscopicus subsp. ossamyceticus | S. ossamyceticus sp. nov. | |
S. rutgersensis subsp. rutgersensis | synonym of S. diastaticus | Komaki et al., 2020 [59] |
S. hygroscopicus subsp. glebosus | synonym of S. platensis | Komaki et al., 2020 [60] |
S. libani subsp. rufus | synonym of S. platensis | |
S. libani subsp. libani | synonym of S. nigrescens | |
S. sporocinereus | S. hygroscopicus subsp. sporocinereus subsp. nov. | Komaki et al., 2022 [61] |
4.3. Synonym
Taxa | Reclassified to a Synonym of | Reference |
---|---|---|
S. albovinaceus | S. globisporus | Kim et al., 2012 [15] |
S. fimicarius | S. setonii | |
S. griseinus | S. globisporus | |
S. almquistii | S. albus | Labeda et al., 2014 [28] |
S. flocculus | S. albus | |
S. gibsonii | S. albus | |
S. rangoonensis | S. albus | |
S. bambergiensis | S. prasinus | Labeda et al., 2016 [62] |
S. cyanoalbus | S. hirsutus | |
S. emeiensis | S. prasinopilosus | |
S. endus | S. hygroscopicus subsp. S. hygroscopicus | Komaki et al., 2017 [63] |
S. canchipurensis | S. muensis | Wink et al., 2017 [64] |
S. ghanaensis | S. viridosporus | Goodfellow et al., 2017 [65] |
S. melanogenes | S. noboritoensis | Idris et al., 2017 [66] |
S. phaeopurpureus | S. griseorubiginosus | Kämpfer et al., 2017 [67] |
S. ciscaucasicus | S. canus | Kämpfer et al., 2018 [68] |
S. citreofluorescens | S. anulatus | Nouioui et al., 2018 [46] |
S. fluorescens | S. anulatus | |
S. avellaneus1 | S. aureofaciens | |
S. ciscaucasicus2 | S. canus | |
S. phaeopurpureus3 | S. griseorubiginosus | |
S. griseolus | S. halstedii | |
S. spheroides | S. niveus | |
S. californicus | S. puniceus | |
S. floridae | S. puniceus | |
S. emeiensis4 | S. prasinopilosus | |
S. helvaticus | S. chryseus | Cortés-Albayay et al., 2019 [69] |
S. castelarensis | S. antimycoticus | Komaki et al., 2020 [71] |
S. sporoclivatus | S. antimycoticus | |
S. gougerotii | S. diastaticus | Komaki et al., 2020 [59] |
S. fulvissimus | S. microflavus | Komaki et al., 2020 [70] |
S. galilaeus | S. bobili | Saygin et al., 2020 [73] |
S. griseofuscus | S. murinus | Madhaiyan et al., 2020 [74] |
S. kasugaensis | S. celluloflavus | |
S. luridiscabiei | S. fulvissimus | |
S. pharetrae | S. glaucescens | |
S. stelliscabiei | S. bottropensis | |
S. cinnamonensis | S. virginiae | Komaki et al., 2021 [75] |
S. costaricanus | S. murinus | Komaki, 2021 [76] |
S. phaeogriseichromatogenes | S. murinus | |
S. enissocaesilis | S. rochei | Komaki, 2021 [12] |
S. geysiriensis | S. rochei | |
S. plicatus | S. rochei | |
S. vinaceusdrappus | S. rochei | |
S. luteus | S. mutabilis | |
S. flavoviridis | S. pilosus | |
S. asterosporus | S. calvus | |
S. erythrogriseus | S. griseoincarnatus | |
S. variabilis | S. griseoincarnatus | |
S. griseorubens | S. althioticus | |
S. matensis | S. althioticus | |
S. viridodiastaticus | S. albogriseolus | |
S. coelescens | S. anthocyanicus | |
S. humiferus | S. anthocyanicus | |
S. violaceolatus | S. anthocyanicus | |
S. aureorectus | S. calvus | Li et al., 2021 [77] |
S. ederensis | S. umbrinus | Saygin, 2021 [78] |
S. glomeroaurantiacus | S. aurantiacus | |
S. michiganensis | S. xanthochromogenes | Hu et al., 2021 [79] |
S. endus | S. hygroscopicus subsp. hygroscopicus | Komaki et al., 2022 [61] |
S. demainii | S. hygroscopicus subsp. sporocinereus | |
S. anthocyanicus | S. violaceoruber | Komaki, 2022 [80] |
S. tricolor | S. violaceoruber |
5. Further Perspectives
Funding
Conflicts of Interest
Abbreviations
References
- Takahashi, Y.; Nakashima, T. Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küster, E. Simple working key for the classification and identification of named taxa included in the International Streptornyces Project. Int. J. Syst. Bacteriol. 1972, 22, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Nonomura, H. Key for classification and identification of 458 species of the Streptomycetes included in ISP. J. Ferment. Technol. 1974, 52, 78–92. [Google Scholar]
- Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966, 16, 313–340. [Google Scholar] [CrossRef] [Green Version]
- Shirling, E.B.; Gottlieb, D. Cooperative description of type cultures of Streptomyces. II. Species descriptions from first study. Int. J. Syst. Bacteriol. 1968, 18, 69–189. [Google Scholar] [CrossRef]
- Shirling, E.B.; Gottlieb, D. Cooperative description of type cultures of Streptomyces. III. Additional species descriptions from first and second studies. Int. J. Syst. Bacteriol. 1968, 18, 279–392. [Google Scholar] [CrossRef] [Green Version]
- Shirling, E.B.; Gottlieb, D. Cooperative description of type cultures of Streptomyces. IV. Species descriptions from the second, third and fourth studies. Int. J. Syst. Bacteriol. 1969, 19, 391–512. [Google Scholar] [CrossRef] [Green Version]
- Shirling, E.B.; Gottlieb, D. Cooperative description of type strain of Streptomyces. V. Additional species descriptions. Int. J. Syst. Bacteriol. 1972, 22, 265–394. [Google Scholar] [CrossRef] [Green Version]
- Tindall, B.J.; Rossello-Mora, R.; Busse, H.J.; Ludwig, W.; Kampfer, P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef] [Green Version]
- Wayne, L.G.; Brenner, D.J.; Colwell, R.R.; Grimont, P.A.D.; Kandler, O.; Krichevsky, M.I.; Moore, L.H.; Moore, W.E.C.; Murray, R.G.E.; Stackebrandt, E.; et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 1987, 37, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Meier-Kolthoff, J.P.; Goker, M.; Sproer, C.; Klenk, H.P. When should a DDH experiment be mandatory in microbial taxonomy? Arch. Microbiol. 2013, 195, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Komaki, H. Reclassification of 15 Streptomyces species as synonyms of Streptomyces albogriseolus, Streptomyces althioticus, Streptomyces anthocyanicus, Streptomyces calvus, Streptomyces griseoincarnatus, Streptomyces mutabilis, Streptomyces pilosus or Streptomyces rochei. Int. J. Syst. Evol. Microbiol. 2021, 71, 004718. [Google Scholar]
- Tamura, T.; Ishida, Y.; Otoguro, M.; Hatano, K.; Labeda, D.; Price, N.P.; Suzuki, K. Reclassification of Streptomyces caeruleus as a synonym of Actinoalloteichus cyanogriseus and reclassification of Streptomyces spheroides and Streptomyces laceyi as later synonyms of Streptomyces niveus. Int. J. Syst. Evol. Microbiol. 2008, 58, 2812–2814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, Y.; Goodfellow, M. Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces angustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov., Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingtoniae sp. nov. Int. J. Syst. Evol. Microbiol. 2010, 60, 769–775. [Google Scholar]
- Kim, K.; Shin, K.; Kim, M.N.; Shin, K.; Labeda, D.P.; Han, J.; Kim, S.B. Reassessment of the status of Streptomyces setonii and reclassification of Streptomyces fimicarius as a later synonym of Streptomyces setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus based on combined 16S rRNA/gyrB gene sequence analysis. Int. J. Syst. Evol. Microbiol. 2012, 62, 2978–2985. [Google Scholar]
- Gevers, D.; Cohan, F.M.; Lawrence, J.G.; Spratt, B.G.; Coenye, T.; Feil, E.J.; Stackebrandt, E.; Van de Peer, Y.; Vandamme, P.; Thompson, F.L.; et al. Opinion: Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 2005, 3, 733–739. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Frederiksen, W.; Garrity, G.M.; Grimont, P.A.D.; Kampfer, P.; Maiden, M.C.J.; Nesme, X.; Rossello-Mora, R.; Swings, J.; Truper, H.G.; et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 2002, 52, 1043–1047. [Google Scholar]
- Wu, L.; Ma, J. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: Providing services to taxonomists for standard genome sequencing and annotation. Int. J. Syst. Evol. Microbiol. 2019, 69, 895–898. [Google Scholar] [CrossRef]
- Lee, N.; Hwang, S.; Kim, J.; Cho, S.; Palsson, B.; Cho, B. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput. Struct. Biotechnol. J. 2020, 18, 1548–1556. [Google Scholar] [CrossRef]
- Chun, J.; Rainey, F.A. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int. J. Syst. Evol. Microbiol. 2014, 64, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Labeda, D.P.; Goodfellow, M.; Brown, R.; Ward, A.C.; Lanoot, B.; Vanncanneyt, M.; Swings, J.; Kim, S.; Liu, Z.; Chun, J.; et al. Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 2012, 101, 73–104. [Google Scholar] [CrossRef]
- Hatano, K.; Nishii, T.; Kasai, H. Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA-DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 2003, 53, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Kasai, H.; Tamura, T.; Harayama, S. Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 1, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaeser, S.P.; Kampfer, P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst. Appl. Microbiol. 2015, 38, 237–245. [Google Scholar] [CrossRef]
- Guo, Y.; Zheng, W.; Rong, X.; Huang, Y. A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: Use of multilocus sequence analysis for streptomycete systematics. Int. J. Syst. Evol. Microbiol. 2008, 58, 149–159. [Google Scholar] [CrossRef]
- Rong, X.; Huang, Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst. Appl. Microbiol. 2012, 35, 7–18. [Google Scholar] [CrossRef]
- Labeda, D.P. Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces. Int. J. Syst. Evol. Microbiol. 2011, 61, 2525–2531. [Google Scholar] [CrossRef] [Green Version]
- Labeda, D.P.; Doroghazi, J.R.; Ju, K.S.; Metcalf, W.W. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 894–900. [Google Scholar] [CrossRef] [Green Version]
- Rong, X.; Guo, Y.; Huang, Y. Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst. Appl. Microbiol. 2009, 32, 314–322. [Google Scholar] [CrossRef]
- Rong, X.; Huang, Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int. J. Syst. Evol. Microbiol. 2010, 60, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Alanjary, M.; Steinke, K.; Ziemert, N. AutoMLST: An automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 2019, 47, W276–W282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blom, J.; Kreis, J.; Spanig, S.; Juhre, T.; Bertelli, C.; Ernst, C.; Goesmann, A. EDGAR 2.0: An enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 2016, 44, W22–W28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, T.; Hashimoto, Y.; Takeuchi, N.; Yamamoto, H.; Liu, S.L.; Miura, H.; Matsui, K.; Yabuuchi, E. Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J. Clin. Microbiol. 1988, 26, 1708–1713. [Google Scholar] [CrossRef] [Green Version]
- Ezaki, T.; Hashimoto, Y.; Yabuuchi, E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 1989, 39, 224–229. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Ha, S.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Goker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Goker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labeda, D.P.; Dunlap, C.A.; Rong, X.; Huang, Y.; Doroghazi, J.R.; Ju, K.; Metcalf, W.W. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 2017, 110, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Nouioui, I.; Carro, L.; Garcia-Lopez, M.; Meier-Kolthoff, J.P.; Woyke, T.; Kyrpides, N.C.; Pukall, R.; Klenk, H.P.; Goodfellow, M.; Goker, M. Genome-based taxonomic classification of the phylum Actinobacteria. Front. Microbiol. 2018, 9, 2007. [Google Scholar] [PubMed] [Green Version]
- Komaki, H.; Tamura, T. Reclassification of four subspecies in the genus Streptomyces to Streptomyces rubradiris sp. nov., Streptomyces asoensis sp. nov., Streptomyces fructofermentans sp. nov. and Streptomyces ossamyceticus sp. nov. Int. J. Syst. Evol. Microbiol. 2021, 71, 005078. [Google Scholar] [CrossRef]
- Komaki, H.; Tamura, T. Transfer of Streptomyces catbensis Sakiyama et al. 2014 and Streptomyces seranimatus Wang et al. 2012 to Yinghuangia catbensis comb. nov. and Yinghuangia seranimata comb. nov. Int. J. Syst. Evol. Microbiol. 2019, 69, 2263–2267. [Google Scholar] [CrossRef]
- Komaki, H.; Hosoyama, A.; Kimura, A.; Ichikawa, N.; Igarashi, Y.; Tamura, T. Classification of ‘Streptomyces hyalinum’ Hamada and Yokoyama as Embleya hyalina sp. nov., the second species in the genus Embleya, and emendation of the genus Embleya. Int. J. Syst. Evol. Microbiol. 2020, 70, 1591–1595. [Google Scholar] [CrossRef]
- Rodriguez-Pena, K.; Gomez-Roman, M.P.; Macias-Rubalcava, M.L.; Rocha-Zavaleta, L.; Rodriguez-Sanoja, R.; Sanchez, S. Bioinformatic comparison of three Embleya species and description of steffimycins production by Embleya sp. NF3. Appl. Microbiol. Biotechnol. 2022, 106, 3173–3190. [Google Scholar] [CrossRef]
- Wang, H.; Sun, T.; Song, W.; Guo, X.; Cao, P.; Xu, X.; Shen, Y.; Zhao, J. Taxonomic characterization and secondary metabolite analysis of NEAU-wh3-1: An Embleya strain with antitumor and antibacterial activity. Microorganisms 2020, 8, 441. [Google Scholar] [CrossRef] [Green Version]
- Hashizume, H.; Harada, S.; Sawa, R.; Iijima, K.; Kubota, Y.; Shibuya, Y.; Nagasaka, R.; Hatano, M.; Igarashi, M. New chloptosins B and C from an Embleya strain exhibit synergistic activity against methicillin-resistant Staphylococcus aureus when combined with co-producing compound L-156,602. J. Antibiot. 2021, 74, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.F.A.; Tan, G.Y.A.; Li, W. Taxonomic note on the family Pseudonocardiaceae based on phylogenomic analysis and descriptions of Allosaccharopolyspora gen. nov. and Halosaccharopolyspora gen. nov. Int. J. Syst. Evol. Microbiol. 2021, 71, 005075. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Zhiheng, L.; Yamei, Z.; Hatano, K. Actinoalloteichus cyanogriseus gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 4, 1435–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volpiano, C.G.; Sant’Anna, F.H.; da Mota, F.F.; Sangal, V.; Sutcliffe, I.; Munusamy, M.; Saravanan, V.S.; See-Too, W.S.; Passaglia, L.M.P.; Rosado, A.S. Proposal of Carbonactinosporaceae fam. nov. within the class Actinomycetia. Reclassification of Streptomyces thermoautotrophicus as Carbonactinospora thermoautotrophica gen. nov., comb. nov. Syst. Appl. Microbiol. 2021, 44, 126223. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Saravanan, V.S.; See-Too, W.; Volpiano, C.G.; Sant’Anna, F.H.; Faria da Mota, F.; Sutcliffe, I.; Sangal, V.; Passaglia, L.M.P.; Rosado, A.S. Genomic and phylogenomic insights into the family Streptomycetaceae lead to the proposal of six novel genera. Int. J. Syst. Evol. Microbiol. 2022, 72, 005570. [Google Scholar] [CrossRef]
- Nouioui, I.; Klenk, H.P.; Igual, J.M.; Gulvik, C.A.; Lasker, B.A.; McQuiston, J.R. Streptacidiphilus bronchialis sp. nov., a ciprofloxacin-resistant bacterium from a human clinical specimen; reclassification of Streptomyces griseoplanus as Streptacidiphilus griseoplanus comb. nov. and emended description of the genus Streptacidiphilus. Int. J. Syst. Evol. Microbiol. 2019, 69, 1047–1056. [Google Scholar] [CrossRef]
- Komaki, H.; Tamura, T. Reclassification of Streptomyces rimosus subsp. paromomycinus as Streptomyces paromomycinus sp. nov. Int. J. Syst. Evol. Microbiol. 2019, 69, 2577–2583. [Google Scholar] [CrossRef]
- Komaki, H.; Tamura, T. Reclassification of Streptomyces diastaticus subsp. ardesiacus, Streptomyces gougerotii and Streptomyces rutgersensis. Int. J. Syst. Evol. Microbiol. 2020, 70, 4291–4297. [Google Scholar] [CrossRef]
- Komaki, H.; Tamura, T. Reclassification of Streptomyces hygroscopicus subsp. glebosus and Streptomyces libani subsp. rufus as later heterotypic synonyms of Streptomyces platensis. Int. J. Syst. Evol. Microbiol. 2020, 70, 4398–4405. [Google Scholar] [CrossRef]
- Komaki, H.; Igarashi, Y.; Tamura, T. Taxonomic positions of a nyuzenamide-producer and its closely related strains. Microorganisms 2022, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Labeda, D.P.; Rong, X.; Huang, Y.; Doroghazi, J.R.; Ju, K.S.; Metcalf, W.W. Taxonomic evaluation of species in the Streptomyces hirsutus clade using multi-locus sequence analysis and proposals to reclassify several species in this clade. Int. J. Syst. Evol. Microbiol. 2016, 66, 2444–2450. [Google Scholar] [CrossRef] [Green Version]
- Komaki, H.; Ichikawa, N.; Oguchi, A.; Hamada, M.; Tamura, T.; Fujita, N.; Suzuki, K.I. Genome analysis-based reclassification of Streptomyces endus and Streptomyces sporocinereus as later heterotypic synonyms of Streptomyces hygroscopicus subsp. hygroscopicus. Int. J. Syst. Evol. Microbiol. 2017, 67, 343–345. [Google Scholar] [CrossRef]
- Wink, J.; Schumann, P.; Atasayar, E.; Klenk, H.P.; Zaburannyi, N.; Westermann, M.; Martin, K.; Glaeser, S.P.; Kampfer, P. ‘Streptomyces caelicus’, an antibiotic-producing species of the genus Streptomyces, and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonyms of Streptomyces muensis Ningthoujam et al. 2014. Int. J. Syst. Evol. Microbiol. 2017, 67, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, M.; Busarakam, K.; Idris, H.; Labeda, D.P.; Nouioui, I.; Brown, R.; Kim, B.Y.; Del Carmen Montero-Calasanz, M.; Andrews, B.A.; Bull, A.T. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek 2017, 110, 1133–1148. [Google Scholar] [CrossRef]
- Idris, H.; Labeda, D.P.; Nouioui, I.; Castro, J.F.; Del Carmen Montero-Calasanz, M.; Bull, A.T.; Asenjo, J.A.; Goodfellow, M. Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957. Antonie Van Leeuwenhoek 2017, 110, 705–717. [Google Scholar] [CrossRef] [Green Version]
- Kämpfer, P.; Ruckert, C.; Blom, J.; Goesmann, A.; Wink, J.; Kalinowski, J.; Glaeser, S.P. Streptomyces phaeopurpureus Shinobu 1957 (Approved Lists 1980) and Streptomyces griseorubiginosus (Ryabova and Preobrazhenskaya 1957) Pridham et al. 1958 (Approved Lists 1980) are heterotypic subjective synonyms. Int. J. Syst. Evol. Microbiol. 2017, 67, 3111–3116. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, P.; Ruckert, C.; Blom, J.; Goesmann, A.; Wink, J.; Kalinowski, J.; Glaeser, S.P. Streptomyces ciscaucasicus Sveshnikova et al. 1983 is a later subjective synonym of Streptomyces canus Heinemann et al. 1953. Int. J. Syst. Evol. Microbiol. 2018, 68, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Albayay, C.; Dorador, C.; Schumann, P.; Schniete, J.K.; Herron, P.; Andrews, B.; Asenjo, J.; Nouioui, I. Streptomyces altiplanensis sp. nov., an alkalitolerant species isolated from Chilean Altiplano soil, and emended description of Streptomyces chryseus (Krasil’nikov et al. 1965) Pridham 1970. Int. J. Syst. Evol. Microbiol. 2019, 69, 2498–2505. [Google Scholar] [CrossRef]
- Komaki, H.; Tamura, T. Reclassification of Streptomyces fulvissimus as a later heterotypic synonym of Streptomyces microflavus. Int. J. Syst. Evol. Microbiol. 2020, 70, 5156–5162. [Google Scholar] [CrossRef]
- Komaki, H.; Tamura, T. Reclassification of Streptomyces castelarensis and Streptomyces sporoclivatus as later heterotypic synonyms of Streptomyces antimycoticus. Int. J. Syst. Evol. Microbiol. 2020, 70, 1099–1105. [Google Scholar] [CrossRef]
- Komaki, H.; Sakurai, K.; Hosoyama, A.; Kimura, A.; Igarashi, Y.; Tamura, T. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci. Rep. 2018, 8, 6888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saygin, H.; Ay, H.; Guven, K.; Cetin, D.; Sahin, N. Streptomyces cahuitamycinicus sp. nov., isolated from desert soil and reclassification of Streptomyces galilaeus as a later heterotypic synonym of Streptomyces bobili. Int. J. Syst. Evol. Microbiol. 2020, 70, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Madhaiyan, M.; Saravanan, V.S.; See-Too, W. Genome-based analyses reveal the presence of 12 heterotypic synonyms in the genus Streptomyces and emended descriptions of Streptomyces bottropensis, Streptomyces celluloflavus, Streptomyces fulvissimus, Streptomyces glaucescens, Streptomyces murinus, and Streptomyces variegatus. Int. J. Syst. Evol. Microbiol. 2020, 70, 3924–3929. [Google Scholar] [PubMed]
- Komaki, H.; Tamura, T. Reclassification of Streptomyces cinnamonensis as a later heterotypic synonym of Streptomyces virginiae. Int. J. Syst. Evol. Microbiol. 2021, 71, 004813. [Google Scholar] [CrossRef] [PubMed]
- Komaki, H. Reclassification of Streptomyces costaricanus and Streptomyces phaeogriseichromatogenes as later heterotypic synonyms of Streptomyces murinus. Int. J. Syst. Evol. Microbiol. 2021, 71, 004638. [Google Scholar] [CrossRef]
- Li, K.; Hu, S.; Wang, Y.; Guo, Y.; Zhou, M.; Tang, X.; Gao, J. Proposal of Streptomyces aureorectus (ex Taig et al. 1969) Taig and Solovieva 1986 as a later heterotypic synonym of Streptomyces calvus Backus et al. 1957 (Approved Lists 1980) on the basis of a polyphasic taxonomic approach. Int. J. Syst. Evol. Microbiol. 2021, 71, 004955. [Google Scholar] [CrossRef] [PubMed]
- Saygin, H. Genomic insight into the Streptomyces aurantiacus clade: Reclassification of Streptomyces ederensis as a later heterotypic synonym of Streptomyces umbrinus and Streptomyces glomeroaurantiacus as a later heterotypic synonym of Streptomyces aurantiacus. Int. J. Syst. Evol. Microbiol. 2021, 71, 004797. [Google Scholar] [CrossRef]
- Hu, S.; Li, K.; Wang, Y.; Guo, Y.; Zhou, M.; Tang, X.; Gao, J. Streptomyces genisteinicus sp. nov., a novel genistein-producing actinomycete isolated from a Chinese medicinal plant and proposal of Streptomyces michiganensis Corbaz et al. 1957 as a later heterotypic synonym of Streptomyces xanthochromogenes Arishima et al. 1956. Int. J. Syst. Evol. Microbiol. 2021, 71, 004954. [Google Scholar]
- Komaki, H. Resolution of housekeeping gene sequences used in MLSA for the genus Streptomyces and reclassification of Streptomyces anthocyanicus and Streptomyces tricolor as heterotypic synonyms of Streptomyces violaceoruber. Int. J. Syst. Evol. Microbiol. 2022, 72, 005370. [Google Scholar] [CrossRef]
- Yamamura, H.; Ashizawa, H.; Hamada, M.; Hosoyama, A.; Komaki, H.; Otoguro, M.; Tamura, T.; Hayashi, Y.; Nakagawa, Y.; Ohtsuki, T.; et al. Streptomyces hokutonensis sp. nov., a novel actinomycete isolated from the strawberry root rhizosphere. J. Antibiot. 2014, 67, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Komaki, H.; Tamura, T. Differences at species level and in repertoires of secondary metabolite biosynthetic gene clusters among Streptomyces coelicolor A3(2) and type strains of S. coelicolor and its taxonomic neighbors. Appl. Microbiol. 2021, 1, 573–585. [Google Scholar] [CrossRef]
- Komaki, H.; Sakurai, K.; Hosoyama, A.; Kimura, A.; Trujilo, M.E.; Igarashi, Y.; Tamura, T. Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor. J. Antibiot. 2020, 73, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Komaki, H.; Hosoyama, A.; Igarashi, Y.; Tamura, T. Streptomyces lydicamycinicus sp. nov. and its secondary metabolite biosynthetic gene clusters for polyketide and nonribosomal peptide compounds. Microorganisms 2020, 8, 370. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komaki, H. Recent Progress of Reclassification of the Genus Streptomyces. Microorganisms 2023, 11, 831. https://doi.org/10.3390/microorganisms11040831
Komaki H. Recent Progress of Reclassification of the Genus Streptomyces. Microorganisms. 2023; 11(4):831. https://doi.org/10.3390/microorganisms11040831
Chicago/Turabian StyleKomaki, Hisayuki. 2023. "Recent Progress of Reclassification of the Genus Streptomyces" Microorganisms 11, no. 4: 831. https://doi.org/10.3390/microorganisms11040831
APA StyleKomaki, H. (2023). Recent Progress of Reclassification of the Genus Streptomyces. Microorganisms, 11(4), 831. https://doi.org/10.3390/microorganisms11040831