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Ruminants represent a highly successful group of herbivores that have not only
evolved to thrive across a wide range of habitats, but have also played a central role
throughout human history [1]. Even to this day, the ability of domesticated ruminants
to transform inedible plant biomass into products that can be consumed or utilized by
humans is essential in meeting the demands for animal protein by a rapidly growing and
urbanizing global population [2]. Ruminants are able to metabolize cellulosic biomass
because of the metabolic activities of symbiotic microbial communities that reside in the
rumen compartment of their gastrointestinal tract [3,4]. Elucidating the complexities
of ruminal microbial communities remains a challenging subject for basic and applied
scientists. The Special Issue ‘Rumen Microbial Communities’ featured ten peer-reviewed
research articles that contributed to expanding our knowledge of rumen symbionts in the
context of ruminant production, adaptation to natural habitats as well as basic physiology.

Ruminant livestock production is an integral part of the agriculture sector. Since
microbial metabolism precedes host digestion in ruminants [4], a great deal of effort has
been dedicated to further elucidating the development of the rumen environment in young
animals; improvements in reducing the weaning period or modulating the development
of the rumen microbial ecosystem would for instance greatly benefit ruminant livestock
production. In this context, Amat et al. (2021) evaluated whether the ruminal microbiota,
as well as nasopharyngeal and vaginal bacterial communities, would be affected in virgin
heifers that were raised from dams that were restricted in maternal gain during the first
trimester of gestation [5]. Wang et al. (2022) investigated the temporal dynamics of rumen
microbiota in early weaned lambs, as this area remains poorly explored compared to our
knowledge on conventionally weaned lambs [6].

In a continued effort to increase the efficiency of ruminant production, elucidating
the response of rumen microbial communities to transitions in diet or to supplementation
with particular nutrients or direct-fed microbials remains of high interest in this field, as
demonstrated by the four articles on this topic. In their study, Hao et al. (2021) aimed
to gain a deeper understanding of the effects of diet and age on rumen function and on
the ruminal bacteria communities of dairy cattle [7]. On their part, Cancino-Padilla et al.
(2021) investigated the long-term effects of supplementing ruminant diets with olive oil
on the rumen microbiome of dairy cows [8]. While supplementation with dietary lipids
can be for the purpose of increasing the energy density in a diet, it can also be used as
a strategy to increase the beneficial fatty acid profile in ruminant products. In this context,
Mavrommatis et al. (2021) investigated the effects of supplementation with the PUFA-rich
marine microalgae Schizochytrium spp. on the goat rumen microbiome [9]. Finally, the report
by Zhang et al. (2021) described a study on the effects of thiamine supplementation on the
abundance of the microorganisms and enzymes involved in carbohydrate degradation in
the rumen of goats [10].

Gaining deeper insights on wild ruminants is also a critical line of research in this field.
This information can contribute to the development of strategies for species and habitat
conservation, such as the report by Park et al. (2021) on populations of the Long-Tailed
Goral (Naemorhedus caudatus), an endangered species found in the mountains of eastern and
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northern Asia. In this study, seven populations of Long-Tailed Goral from South Korea were
assigned to three groups based on the composition of their gut microbiome [11]. Another
important contribution from investigating wild ruminants is the potential for insights on
basic ruminal functions that not only contribute to our fundamental knowledge base, but
also can benefit production from traditional domesticated ruminant species or can be used
for biotechnological applications such as conversion of plant biomass into biofuels. In this
context, Wu et al. (2022) explored the metabolic potential of ruminal microorganisms in the
Muskox (Ovibos moschatus). As the largest herbivore in the High Arctic, it is an example
of a ruminant that has evolved to efficiently utilize the scarce and highly lignified forages
in its habitat; it was thus hypothesized to harbor previously uncharacterized microbial
enzymes that would be capable of efficiently metabolizing plant biomass [12].

Finally, the other articles in this Special Issue aimed at providing insights on more
basic or fundamental aspects of the rumen microbial environment. Pacifico et al. (2021)
performed a meta-analysis using 11 publicly available datasets from studies on rumen
epimural microbiota [13]. These sub-communities play a number of important roles in
the rumen, but as they consist of microorganisms that are firmly attached to the rumen
wall, it is very challenging to investigate them. On their part, Bandarupalli and St-Pierre
(2020) described the identification of a previously uncharacterized candidate strain of
Prevotella albensis, which was identified based on its ability to grow from rumen fluid batch
cultures with starch as the only substrate provided; this metabolic capacity was confirmed
by a metagenomics assessment of its encoded proteome [14].
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