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Abstract: Background: Amoebae of the genus Acanthamoeba cause a sight-threatening infection
called Acanthamoeba keratitis. It is considered a rare disease in humans but poses an increasing
threat to public health worldwide, including in Poland. We present successive isolates from serious
keratitis preliminary examined in terms of the identification and monitoring of, among others, the
in vitro dynamics of the detected strains. Methods: Clinical and combined laboratory methods were
applied; causative agents of the keratitis were identified at the cellular and molecular levels; isolates
were cultivated in an axenic liquid medium and regularly monitored. Results: In a phase-contrast
microscope, Acanthamoeba sp. cysts and live trophozoites from corneal samples and in vitro cultures
were assessed on the cellular level. Some isolates that were tested at the molecular level were found
to correspond to A. mauritanensis, A. culbertsoni, A. castellanii, genotype T4. There was variability in
the amoebic strain dynamics; high viability was expressed as trofozoites’ long duration ability to
intense multiply. Conclusions: Some strains from keratitis under diagnosis verification and dynamics
assessment showed enough adaptive capability to grow in an axenic medium, allowing them to
exhibit significant thermal tolerance. In vitro monitoring that was suitable for verifying in vivo
examinations, in particular, was useful to detect the strong viability and pathogenic potential of
successive Acanthamoeba strains with a long duration of high dynamics.

Keywords: Acanthamoeba keratitis; corneal strain diagnostics; confocal microscopy; molecular tech-
niques; monitoring in vivo/in vitro; dynamics of amoeba forms

1. Introduction

The primary free-living acanthamoebae (FLA) distributed in natural and man-made
environments exist in two forms: as the active vegetative trophozoites with character-
istic protrusions—acanthopodia—and as double-walled dormant cysts developing after
the growth phase and in harsh conditions. The amoebae occur in soil, air, dust, on/in
vegetables, in animals, and in different aquatic habitats; they survive in domestic tap
water, municipal sewage systems, in chlorinated swimming pools, and in air conditioning
units [1–7]. They have also been detected in hospital environments on equipment surfaces,
on accessories, in dialyzers, on surgical instruments, in dental irrigation units, and in
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contact lenses and their boxes. As Acanthamoeba strains can enter human tissues and exist
as endozoic forms, they are believed to be amphizoic organisms able to exist as free-living
forms and as facultative parasites. The amoebae were detected on skin, in paranasal sinuses
and lungs, and among oral cavity microbiota associated with gingivitis and periodonti-
tis [8–10]. They are known as causative agents of granulomatous amoebic encephalitis
(GAE), a rare, usually fatal disease developing in immunocompromised persons, patients
under immunosuppressive therapy, and HIV/AIDS patients [2,5,11].

Some Acanthamoeba strains generate serious human health threats as the causative
agents of vision-threatening Acanthamoeba keratitis (AK). The disease occurs mainly in
immunocompetent persons; nowadays, contact lens wearers are at the highest risk of this
disease [12–26]. AK can also occur in persons not using contact lenses: micro-injuries of
corneal epithelium, ocular surgery, and exposure of the eye to natural water bodies contain-
ing Acanthamoeba forms are predisposing circumstances for this ocular amoebic infection in
humans [27–31]. Usually, one eye is affected; however, bilateral infections have also been
reported. Some Acanthamoeba strains, which are potential agents of this ocular disease in hu-
mans, are common in natural and man-made environments. AK includes non-specific symp-
toms similar to those observed in the course of viral, fungal, or bacterial keratitis. In the
AK diagnosis, non-invasive in vivo methods are applied [31–48]. Examinations of corneal
scrapings may directly identify Acanthamoeba developmental forms by detection of the live
protozoans. The in vitro cultivation of samples acquired from corneal scrapings is useful
for the confirmation of the diagnosis of AK and the assessment of morpho-physiological
amoebic characteristics. The evaluation of Acanthamoeba isolates at the molecular level
should be made by PCR and other molecular techniques [18,24,29–31,38–40,49–57].

Acanthamoeba keratitis is challenging in terms of differential diagnosis, among others,
because the amoebae may transmit endosymbionts that are potentially pathogenic for
humans and are able to survive/proliferate intracellularly within the amoebae [32–38].

The treatment of AK is often unsuccessful due to extremely high resistance of the cysts
of Acanthamoeba to chemical agents, disinfectants, and drugs [20,38,51].

The literature and our studies emphasize that human AK that easily leads to blindness
caused by pathogenic strains of Acanthamoeba has recently been diagnosed more often
worldwide [12–15,41–46,51,56].

In this interdisciplinary study, we present successive isolates originating from com-
plicated keratitis incidents previously recognized incorrectly and unsuccessfully treated
in various units. We examined and evaluated the material to identify etiological agents of
this keratitis, assess the usefulness of particular methods for a comparison of the detected
strains that are pathogenic for humans, and monitor of their population dynamics.

2. Materials and Methods

The study pertains to material originating from incidents of serious eye infections in
12 women aged 22–48 years and 8 men aged 18–70 years who were ineffectively treated in
various ophthalmic units. Because of previous unsuccessful treatment of keratitis, there
was a need for diagnostic verification. The study was performed in accordance with the
tenets of the Declaration of Helsinki. In the search for pathogenic agents of keratitis, clinical
symptoms that were visible in slit-lamp and in vivo confocal microscopy, appearing in the
early and advanced infection stages, were taken into account.

Laboratory methods of species identification were based on combination of morpho-
logical and molecular characterization.

Samples originating from keratitis material that were initially examined using the phase-
contrast microscope were assessed in wet-mount slides based on the amoebic morphology.

Ten samples of the material were investigated for specific identification using molecu-
lar techniques. DNA extraction from the material was performed using the commercial Sher-
lock AX Kit (A&ABiotechnology, Gdynia, Poland). The ASA.S1 fragment of Acanthamoeba
18S ribosomal RNA gene was amplified using JDP1 (5′GGCCCAGATCGTTTACCGTGAA3′)
and JDP2 (5′TCTCACAAGCTGCTAGGGAGTCA3′) primers targeting ~450 bp fragment
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of the gene [57]. The reaction mixture consisted of 12.5 µL PCR Master MixPlus High
GC (ready-to-use PCR mixture containing Taq DNA polymerase, PCR buffer, MgCl2, and
dNTPs; A&A Biotechnology), 1 µL each primer (concentration 10 µm), and 2.5 µL DNA
template, supplemented with deionized water up to 25 µL. Amplifications were performed
in a GeneAmp PCR System 9700 thermocycler (Applied Biosystems, Waltham, MA, USA)
according to following protocol: 3 min at 95 ◦C (initial denaturation) followed by 35 cycles
of denaturation at 95 ◦C for 60 s, annealing of primers at 60 ◦C for 60 s, strand elongation at
72 ◦C for 3 min, and a final extension step of 10 min at 72 ◦C. PCR products were analyzed
using the GelDoc-It Imaging Systems (UVP, Upland, CA, USA) after electrophoresis on
agarose gel (Sigma, St. Louis, MO, USA), stained with Midori Green DNA Stain (Nippon
Genetics Europe, Duren, Germany). Direct sequencing was performed using standard
procedures and amplification primers; obtained sequences were analyzed using GeneStu-
dio™ Professional (Thermo Fisher Scientific, Waltham, MA, USA) and compared with the
sequences available in the GenBank using NCBI BLAST (identification of Acanthamoeba
isolates to species level) (http://www.ncbi.nlm.nih.gov/BLAST (accessed on 1 September
2021–30 January 2023).

Simultaneously, to assess in vitro dynamics of particular strain, the cultivation of
the samples was performed under axenic conditions in the absence of external live food
organisms, as in our earlier studies [31,39,50,58,59]. Cultures were grown in vitro in sterile
15 mL tubes with the liquid medium composed of Bacto Casitone, Difco (BSC) dissolved
in water enriched with 10% calf serum, with addition of aqueous solution of antibiotics,
namely streptomycin and penicilin, at 24 ◦C and sub-cultured into this medium twice a
month. The dynamics of Acanthamoeba strains parallel cultivated were in vitro monitored
and compared to one another. Changes in overall numbers of amoebae, the ability of
trophozoites to multiply, and trophozoite and cyst proportions were directly counted with
aid of the Bürker hemocytometer. Ranges of three counts of amoebae calculated for 1 mL of
the medium were compared for particular strains and assays. Samples of several amoeba
strains were also exposed to 37 ◦C (near human eye temperature) to test a tolerance to
changes in temperature on 5th day after a sub-culturing and monitored from 7th day 3–5
times a week in the exponential growth phase during in vitro cultivation. Dynamics of
amoebic strains were monitored during each sub-culturing for 7 days in the logarithmic
growth phase. Results were analyzed statistically (ANOVA, Student–Newman–Keuls
method; the level of statistical significance was set at p < 0.05).

During laboratory differential diagnosis, samples obtained from corneal material
were also routinely tested with microbiological techniques. Preliminary identification of
Gram-positive and Gram-negative bacteria strains and conventional in vitro techniques
were used for detection of fungi and bacteria.

3. Results

The material assessed in our study originated from 20 keratitis cases in which one of
the two eyes was affected. In 14 of the incidents (70%), antibacterial or/and antifungal
medications were unsuccessfully applied in other units; thus, misdiagnoses were taken into
account by us. Investigations were performed to identify the etiological factors of keratitis
to verify diagnoses.

Wearing contact lenses (CL), which is a predisposing risk factor for amoebic eye
infections, was documented in 17 cases (85%). Among these cases, several were associated
with washing CL in tap water and showering and/or swimming in a pool with CL on. In
the patients who were not wearing contact lenses, swimming in lakes and swimming in
pools were probable risk factors.

There were different durations as well as intensities of clinical symptoms in 18 keratitis
cases—ranging from 5 to 38 days—until proper diagnosis and various times when the anti-
Acanthamoeba therapy was started. In two other misdiagnosed keratitis cases, the affected
eyes were treated unsuccessfully over six months. Drug-combined therapy involved
mainly chlorhexidine digluconate, polyhexamethylene biguanide PHMB, and propamidine
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isethionate Brolene with an addition of antibiotics; steroids were also used. In some cases
of AK, surgical interventions, deep anterior lamellar keratoplasty (DALK) or penetrating
keratoplasty, amniotic membrane transplantations, or cataract surgery were needed.

In the clinical picture of the keratitis incidents included in our study, photophobia,
reduced visual acuity, lid edema, and redness appeared in all cases with different intensities.
Symptoms that were visible in slit-lamp and in vivo confocal microscopy, appearing in
the early and advanced infection stages, were taken into account. The hyperreflective
tissues, epithelial inflammation, size and depth of stromal infiltration or ulcer, and pres-
ence or absence of hypopyon were assessed by non-invasive in vivo tests in the slit-lamp
biomicroscopy. The occurrence of unbearable pain, epithelial diffuse edema progress to
dendriform ulcer, and characteristic ring-shaped infiltration successively involving deep
stromal layers, which were considered as factors indicating Acanthamoeba keratitis, were
found in 12 incidents during the monitoring of clinical pictures.

In vivo confocal microscopy was applied in 14 cases for the assessment/verification of
the diagnosis. The presence of hyper-reflective objects scattered or arranged in characteristic
chains—double-walled, polygonal, or round Acanthamoeba cysts, with their outer wall more
reflective than the internal walls—was detected by this technique. The visualization of
hyper-reflective objects was positive in 16 incidents (80%). However, there were various
effects of monitoring related to the previous lack of progress of therapy; in the majority
of incidents, hyper-reflective objects, namely amoeba cysts, were detected in the confocal
microscopy three weeks after the first keratitis symptoms appeared. The duration of the
severe keratitis symptoms was longer, and proper diagnosis was delayed, ranging from
21 to 38 days. Representative confocal microscopy images of corneal layers showed the
presence of the hyper-reflective objects; the double-walled Acanthamoeba cysts are presented
in Figure 1.
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Figure 1. Representative in vivo confocal microscopy of corneal epithelial layer showing the pres-
ence of hyper-reflective objects—double-walled Acanthamoeba cysts scattered or/and arranged in
characteristic chains. (A–C) HRT3 RCM images (Heidelberg Engineering, Heidelberg, Germany),
(D–F) ConfoScan4TM images (Nidek Technologies, Padua, Italy).

3.1. Laboratory Differential Diagnosis

During the differential diagnosis, the material obtained from affected eyes was tested
in the parasitological laboratory for confirmation of Acanthamoeba keratitis. Initially, during
the light microscopy examinations, samples of scrapings were directly examined in wet-
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mount slides using a phase-contrast light microscope (100× and 400×) to visualize cysts
or/and trophozoites and assess amoebic strains at the cellular level. Isolated amoebae
were identified at the group level (Acanthamoeba spp., group I–III), according to Pussard
and Pons (1977) [60], mainly based on size, cyst morphology, and the number of opercula.
The most commonly detected amoebae corneal isolates were identified and classified as
belonging to Acanthamoeba sp., group II: live trophozoites (14–38 µm), with pseudopodia
and characteristic protrusions, acanthopodia with a nucleus and a prominent centrally
placed nucleolus, cysts (7–24 µm) with their two cyst walls wrinkled ectocyst, and a
polygonal or round-to-ovoid endocyst.

The results of 10 corneal isolates examined at the molecular level revealed 99.1–100%
homology in the obtained sequences, with those available in the GenBank identifying
particular isolates as belonging to the T4 genotypes. The material was derived from AK
cases: eight contact lens wearers and two non-contact-lens wearers. The obtained sequences
are deposited in GenBank under accession numbers MZ401143–MZ401152; the cultured
subsequent isolates were in line with A. mauritanensis, A. culbertsoni, and A. castellanii,
genotype T4. These results were in line with those from the corneal isolates that were
identified on the cellular level as species belonging to the Acanthamoeba genus.

A compilation of data on the material investigated for the confirmation of Acanthamoeba
keratitis (AK) is presented in Table 1.

Table 1. Compilation of data on material investigated for confirmation of Acanthamoeba Keratitis (AK).

Corneal
Sample

Acanthamoeba
Strain

Probable Factors
Predisposing to

AK

Duration of
Symptoms Before
Proper Diagnosis

Amoebic Forms Visualized in Contrast Phase
Microscopic Slides of:

Corneal Scrapings In vitro Cultures

1f A. polyphaga swimming
in a lake 35 days # cysts and moving

trophozoites cysts and trophozoites

2f A. castellanii CL 30 days cysts cysts and trophozoites

3f A. castellanii not identified 24 days no amoebae detected a few cysts and trophozoites

4f A. castellanii CL 5 days no amoebae detected cysts and trophozoites

5f A. mauritanensis CL 35 days # cysts multiple cysts and
trophozoites

6f A. mauritanensis CL, washing
in tap water 30 days # cysts and trophozoites multiple cysts and

trophozoites

7f Acanthamoeba sp. CL 7 days a few cysts detected no amoebae detected

8m A. castellanii CL, swimming
in a pool 26 days # cysts cysts and trophozoites

9m A. castellanii CL 38 days # cysts cysts and trophozoites

10f Acanthamoeba sp. CL, eye
injuries

6 months #;
misdiagnosis cysts cysts and trophozoites

11f A. culbertsoni CL 8 days # a few cysts detected cysts and trophozoites

12f Acanthamoeba sp. CL 10 days # cysts cysts and trophozoites

13m A. castellanii CL 26 days # multiple cysts
and trophozoites cysts and trophozoites

14m Acanthamoeba sp. swimming with CL
in a pool 10 days # several cysts no amoebae detected

15m Acanthamoeba sp. CL 21 days # cysts cysts and trophozoites

16f Acanthamoeba sp. CL 8 days # cysts and trophozoites
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Table 1. Cont.

Corneal
Sample

Acanthamoeba
Strain

Probable Factors
Predisposing to

AK

Duration of
Symptoms Before
Proper Diagnosis

Amoebic Forms Visualized in Contrast Phase
Microscopic Slides of:

Corneal Scrapings In vitro Cultures

17m Acanthamoeba sp. swimming with CL
in a pool 8 days # no scrapings not cultivated

18m Acanthamoeba sp. not identified 6 months #;
misdiagnosis cysts cysts and trophozoites

19f Acanthamoeba sp. showering with CL 26 days # cysts no amoebae developed

20m Acanthamoeba sp. CL, swimming
in a pool 8 days # no scrapings not cultivated

CL-wearing contact lenses; # cysts detected by in vivo confocal microscope.

Assessment of In Vitro Cultivation

The cultures were maintained as long as Acanthamoeba corneal strains survived.
In vitro cultured corneal samples were examined with a phase-contrast light microscope
as the direct scraping material. Regular monitoring confirmed AK for 12 cases by the
detection of live amoebae. The Acanthamoeba infections were confirmed based on the
morpho-physiology of the developmental stages. The trophozoites (~18–40 µm) moving
by acanthopodia with spine-like protrusions and the double-walled cysts of Acanthamoeba
(~10–20 µm) were revealed. Light micrographs of live Acanthamoeba trophozoites and cysts
in the wet-mount slides from cultured corneal isolates are presented in Figure 2.
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Figure 2. Light micrographs of live Acanthamoeba trophozoites and cysts in wet-mount slides from 

axenically cultured corneal isolates. (A), 9m A. castellanii trophozoite and double-walled cyst; (B), 
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Figure 2. Light micrographs of live Acanthamoeba trophozoites and cysts in wet-mount slides from
axenically cultured corneal isolates. (A), 9m A. castellanii trophozoite and double-walled cyst; (B), 8m
dividing A.castellanii trophozoite; (C), 5f trophozoites A.mauritanensis with numerous acanthopodia;
(D), 1f A.polyphaga trophozoites with numerous digestive vacuoles; (E,F) Acanthamoeba sp. cysts and
trophozoites; note characteristic acanthopodia and double-walled cysts. Scale bars = 10 µm.

A comparative assessment of the cultures showed changes in protozoan density that
appeared with varying intensity in particular amoebic populations. A low overall number
of amoebae was detected in the cultures of some strains with short symptom duration
before proper diagnosis.

Acanthamoeba corneal isolate dynamics were evaluated in regard to in vitro viability
of the particular strains and were expressed as, among others, the trophozoites’ ability to
intensely multiply, the overall amoeba number, and the duration of the survival time of
the cultivated amoebae. For example, the lowest number of amoebae, 12.0–28.0 × 103 (in
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the range of three counts), detected in the log growth phase was revealed for the weak
corneal strain that indicated a short survival time of about one cycle of sub-culturing. For
comparison, a distinctly higher number of amoebae was revealed in the corneal strains,
which indicated high in vitro activity during 6 or 24 cycles of sub-culturing, in the range
of amoeba numbers 24.0–60.0 × 103, 54.3–80.0 × 103, respectively (the level of statistical
significance was set at p < 0.05).

A comparison of the in vitro dynamics of particular Acanthamoeba strains cultured in
BSC medium is presented in Table 2.

Table 2. Comparison of in vitro dynamics of particular Acanthamoeba strains cultured in BSC medium.

Corneal Sample
Acanthamoeba

Strain/Accession
No in GenBank

Duration of Cultures Survival Ability to Intense Multiply
in Culture Medium

1f A. polyphaga
MZ401143 35 months, still active all time of cultivation, still

3f A. castellanii
MZ401144 15 days during 2 cycles of sub-culturing

4f A. castellanii
MZ401145 10 days during 1 cycle of sub-culturing

5f A. mauritanensis
MZ401146 25 months, still active all time of cultivation

8m A. castellanii
MZ401150 3 months during 2 cycles of sub-culturing

9m A. castellanii
MZ401151 3.5 months during 3 cycles of sub-culturing

10f Acanthamoeba sp.
MZ401148 6 months, still active during 10 cycles of sub-culturing

11f A. culbertsoni
MZ401149 7 months, still active all time of cultivation

13m A. castellanii
MZ401152 2 months during 2 cycles of sub-culturing

15m Acanthamoeba sp. 4 weeks during 2 cycles of sub-culturing

16f Acanthamoeba sp. 5 weeks during 2 cycles of sub-culturing

18m Acanthamoeba sp. 2.5 months during 5 cycles of sub-culturing

The population density of subsequent Acanthamoeba isolates with the long-time culti-
vation (3.5 months and more) transferred to 37 ◦C and monitored during many cycles of
sub-culturing was compared with the effect obtained for samples of the strain that were
surviving in a culture medium during only one cycle of sub-culturing; there was a statisti-
cally significantly higher overall number of amoebae cells revealed in strains after exposure
to 37 ◦C in comparison with their density in 24 ◦C. Simultaneously, some reduction in
Acanthamoeba population density was found in the strain, with short survival times in
cultures exposed to changed, higher temperatures.

The representative effects of Acanthamoeba T4 corneal strains to changed temperatures
in the exponential growth phase of the cultivation are presented in Table 3.

The microbiological examinations of scrapings from corneas performed for the verifi-
cation of initial diagnoses revealed concomitant infections in 10 of 20 AK incidents. The
Gram-positive strain Enterococcus faecalis, the Gram-negative Pantoea agglomerans, Enter-
obacter cloacae, Pseudomonas aeruginosa, and fungal co-infections with Fusarium sp. and
Candida spp. were detected. In this interdisciplinary study, the data on infections with
Acanthamoeba spp. alone as well as the etiologically mixed keratitis, namely Acanthamoeba
spp. and concomitant fungal and/or bacterial infections, have been included.



Microorganisms 2023, 11, 1174 8 of 12

Table 3. Effect of in vitro exposure of Acanthamoeba corneal strains from exponential growth phase of
the cultivation to changed temperature.

No. Acanthamoeba
Strain

Range of Overall Acanthamoeba
Number (×103)
Range of Cysts (%)

AVG SD
Range of Overall
Acanthamoeba Number (×103)
Range of Cysts (%)

AVG SD

24 ◦C 37 ◦C

1f A. polyphaga 66.75 97.50 114.60 92.95 24.25 105.00 120.80 140.65 122.15 17.86
1.20 2.80 3.20 2.40 1.06 2.00 3.00 3.50 2.83 0.76

4f A. castellanii
12.40 15.75 28.12 18.76 8.28 10.15 14.05 15.80 13.33 2.89
2.20 6.00 12.20 6.80 5.05 2.40 3.50 7.20 4.37 2.51

5f A. mauritanensis
52.24 60.55 73.40 62.06 10.66 61.30 79.30 105.50 82.03 22.23
5.20 7.00 8.20 6.80 1.51 4.00 6.50 8.00 6.17 2.02

9m A. castellanii
24.05 45.60 62.24 43.96 19.15 46.50 62.40 80.82 63.24 17.18
2.30 4.00 6.00 4.10 1.85 3.00 3.80 7.00 4.60 2.12

11f A. culbertsoni
55.50 75.20 88.00 72.90 16.37 67.00 87.78 97.80 84.19 15.71
1.80 3.20 5.50 3.50 1.87 3.00 4.70 5.30 4.33 1.19

The range of three counts calculated for 1 mL of culture medium is compared for five strains. The level of statistical
significance was set at p < 0.05; statistically significant differences in relation to data of 24 ◦C have been bolded.

4. Discussion

The progressive, devastating, sight-threatening Acanthamoeba keratitis is still consid-
ered a rare eye disease but is an emerging public health threat worldwide, including in
Poland; during the last decades, incidents of human infections caused by pathogenic
Acanthamoeba strains have been detected and reported in a constantly increasing fre-
quency [24,26,30,31,38–40,54,55,61–64].

The cases included in the study presented challenges in terms of AK. There was a
wide range of initial non-specific, confusing clinical symptoms, the incorrect identification
of pathogenic factors, and ambiguous initial diagnoses or misdiagnoses influencing the
prolonged and severe course of this eye disease.

Although a standardized protocol is missing in AK management, it is emphasized
that the clinical picture alone is not sufficient to identify the etiological agent of amoe-
bic keratitis in humans [38,39,48]. Clinical manifestations of AK are similar to those
appearing in viral, bacterial, or fungal keratitis. Moreover, the amoebae are known as
vehicles/reservoirs/sources of various bacteria, fungi, viruses, and protists, which can
survive and multiply within the amphizoic amoebae [32–37]. These microorganisms may
be causative agents of concomitant/secondary/mixed corneal infections.

In the present study, mistakes in the initial identification of the infectious causative
agents of keratitis were found in most cases. It is noteworthy that while AK was finally
shown in all 20 incidents, concomitant infections with bacteria and/or fungi that are
pathogenic for humans were revealed in 50% of the analyzed cases. It was not possible
to assess if the microorganisms were endogenous or exogenous in origin; however, their
influence on the difficulties of the correct assessment of corneal isolates under suspicion
with AK cannot be excluded.

Diagnostic approaches for AK include methods with different sensitivities: in vivo
confocal microscopy, direct microscopic examinations of corneal material, in vitro cultures
useful for the detection of causative factors of keratitis, and PCR-based techniques. It
is considered that the direct detection of a causative agent in a cornel scrape specimen
is the only reliable diagnostic method for AK; culture remains the gold standard of the
Acanthamoeba laboratory diagnosis, and several PCR-based techniques have been well-
established and have increased sensitivity significantly [38,52,57,64].

In this study, the direct detection of the causative agents—amoeba developmental
forms—was very important for the proper diagnosis as well as for the verification of
common misdiagnoses. A comparison of characteristics of the successively detected isolates
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identified on the cellular level as Acanthamoeba sp. showed the suitability of contrast phase
microscopy for the direct visualization of trophozoites and cysts derived from both corneal
isolate material and from in vitro cultures, particularly for cases with a long duration of
symptoms until proper diagnosis.

Molecular examinations of cultured samples deriving from ten corneal isolates re-
vealed 99.1–100% homology obtained sequences with those available in the GenBank—
identifying the individual isolates to species level, e.g., A. mauritanensis, A. culbertsoni, and
A. castellanii belonging to the T4 genotype. The results of molecular tests were in line with
the effect of a cellular-level direct microscopic examination of Acanthamoeba based on the
morpho-physiology of trophozoites and cysts.

It is known that Acanthamoeba spp. are able to tolerate various conditions in natural
and man-made environments and growth in different culture media, e.g., non-nutrient
agar plates seeded with Escherichia coli, the most commonly used medium peptone–yeast
extract–glucose medium PYG, Bacto Casitone, Difco (Bactocasitone, BSC), and the hardly
used PYG–Bactocasitone [38,50,63,64].

In our comparative investigations, we used mainly BSC [31,53,59,62]. We considered
the axenic medium with the absence of external live food organisms suitable in this study
for in vitro cultivation and for monitoring the subsequent Acanthamoeba strains.

In the present study, the evaluation of in vitro cultivation of the Acanthamoeba corneal
strain populations performed under axenic conditions showed different durations of high
in vitro activity of amoebic strains from one cycle of sub-culturing to many months and
high viability. The thermo-tolerance detected in the subsequent Acanthamoeba isolates
cultured in vitro expressed that clear strong population dynamics, higher amoeba density,
and the ability to intense multiply at high temperatures corresponded to strong viability
and long survival time in the axenic culture medium. The ability shown in this study for
subsequent Acanthamoeba isolates is considered the indicator of the pathogenic potential of
a given isolate [31,38,53].

5. Conclusions

Our work, based on data from the verification process of Acanthamoeba corneal isolates
from complicated AK cases, provides information about the differences in amoeba popula-
tion density and in the duration and the in vitro ability to intensely multiply. To our best
knowledge, this is the first Polish study evaluating the amoeba strains A. mauritanensis and
A. culbertsoni in terms of their possibility to grow in vitro that resulted in the confirmation
of long survival time of the amoebae isolates in this cultivation conditions. Furthermore,
we demonstrated that some of the Acanthamoeba strains under dynamic assessments indi-
cated enough adaptive capability to grow in an axenic culture medium, allowing them to
exhibit significant thermal tolerance that is considered an indirect marker of pathogenic
strains. The in vitro monitoring was especially useful to reveal variability in the dynamics
of these Acanthamoeba strains that were obtained from keratitis cases with a long duration
of symptoms until proper diagnosis.

The results of the presented study, our experience, and the literature data indicate
the various levels of usefulness/value of particular methods of keratitis assessment that
depend on, among others, the amoebic population viability and density. Therefore, in
complicated incidents that are suspected to be AK, a combined approach involving different
methods is highly recommended.
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