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Abstract: Atherosclerosis (AS) is a chronic inflammatory disease of large- and medium-sized arteries
that causes ischemic heart disease, strokes, and peripheral vascular disease, collectively called
cardiovascular disease (CVD), and is the leading cause of CVD resulting in a high rate of mortality
in the population. AS is pathological by plaque development, which is caused by lipid infiltration
in the vessel wall, endothelial dysfunction, and chronic low-grade inflammation. Recently, more
and more scholars have paid attention to the importance of intestinal microecological disorders in
the occurrence and development of AS. Intestinal G-bacterial cell wall lipopolysaccharide (LPS) and
bacterial metabolites, such as oxidized trimethylamine (TMAO) and short-chain fatty acids (SCFAs),
are involved in the development of AS by affecting the inflammatory response, lipid metabolism, and
blood pressure regulation of the body. Additionally, intestinal microecology promotes the progression
of AS by interfering with the normal bile acid metabolism of the body. In this review, we summarize
the research on the correlation between maintaining a dynamic balance of intestinal microecology
and AS, which may be potentially helpful for the treatment of AS.

Keywords: intestinal microecology; atherosclerosis; TMAO; SCFAs; atherosclerotic plaque

1. Introduction
1.1. Intestinal Microecology

Intestinal microecology is a dynamic and balanced system consisting of four parts:
the intestinal anatomy, mucosal secretions, food intake, and microorganisms colonizing
the intestine [1]. The human intestine, a part of the digestive tract, is divided into the
small intestine and large intestine according to its morphology, function, and structure.
The wall of the small intestine consists of a mucosal layer, sub-mucosal layer, muscular
layer, and outer membrane, and the mucosal epithelium is composed of absorptive cells,
cup cells, and Paneth cells, which make the small intestine the main part of nutrient ab-
sorption in the human body. The wall of the large intestine is similar to the wall of the
small intestine, but its epithelial lamina propria contains dense colonic glands, which are
the main sites for absorbing water from food residues and forming feces [2–5] (Figure 1).
The intestinal microbiota consists of over 100 trillion microorganisms, with bacteria ac-
counting for 90% of the total intestinal microorganisms, primarily from the Bacteroides and
Firmicutes phyla [6]. Other intestinal microflora, such as Fusobacteria, Bacteroidetes, and
Verrucomicrobiaphylum, are present in much smaller quantities [7].

The structure and function of intestinal flora vary across populations and are primarily
influenced by the hosts’ diet, age, and living environment. The proportion of intestinal
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microflora varies among different age groups, with the bifidobacteria-dominated microbiota
in infants shifting to a microbiota dominated by Bacteroidetes and Firmicutes in adults, while
the relative proportion of the phylum Bacteroides dominates in the elderly [8]. Diet structure
can also change the colonization environment of normal intestinal flora, affecting their
growth, development, and reproduction, such as a high-fat diet increases the proportion of
thick-walled bacteria phylum and decreases the proportion of bacteriophage phylum [9].
Antibiotic use leads to a downregulation of the density of the normal flora which is
sensitive to antibiotics, while the non-sensitive flora proliferates and becomes dominant,
thus showing a dysbiosis of microecology. With the development of molecular tools and
technologies, such as macroeconomics, metabolomics, lipidomic, and Meta transcriptomics,
it has been found that alterations in the intestinal flora are associated with obesity, type 2
diabetes, hepatic steatosis, intestinal diseases (IBDs), and various cancers. This discovery
may provide a new way of thinking for the treatment of associated diseases [10] (Table 1).
Furthermore, it has been demonstrated that gut microecology is indispensable in human
immune regulation, metabolism, and food catabolism and metabolism [10].
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Table 1. Common omics techniques and their application.

Common Omics Application

16S rRNA sequencing analysis
1. Diversity analyses of microbial communities.
2. Abundance and density of species in microbial communities.
3. Interrelationships between microorganisms and hosts.

Macrogenomics
1. Genome assembly analysis of microbial communities.
2. Identification of microorganisms down to species level or
even strain level.

Proteomics

1. Protein structure and activity of microbial communities.
2. Complementary or corrected genomic data.
3. Less influenced by the extraction process and more stable
than RNA sequencing.

Metabonomics 1. Dynamic changes of metabolites in gut microbiota.
2. Screening for differential metabolites of intestinal flora.

Lipidomics 1. Effect of altered microbiota on lipid metabolism.
2. Interrelationships between microorganisms and hosts.

Transcriptomics
1. Expression levels of mRNAs in microbial communities
2. Metabolic potential of microbial communities
3. Metabolically active members of microbial communities
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1.2. Atherosclerosis

Atherosclerosis (AS) is a pathological process characterized by chronic inflammatory
changes, lipid accumulation, fibrous tissue proliferation, and calcium deposition in the arte-
rial vessel wall. This condition is accompanied by intraplaque hemorrhage, plaque rupture,
and local thrombosis, which are the main causes of ischemic heart disease (IHD). According
to the Global Burden of Disease study, the world prevalence of coronary heart disease (CHD)
has increased from 100 million cases in 1990 to 180 million in 2019, with AS being the
leading cause of CHD [11]. The concept of AS was first introduced in 1904 by the German
pathologist Marchand, and subsequently, Russian pathologist Nikolai Anitschkow success-
fully induced rabbit AS models by feeding them cholesterol-rich sunflower oil [11]. AS is a
multifactorial process that develops due to imbalances in lipid metabolism, inflammation,
atherothrombosis, and changes in blood pressure. Inflammatory response, which is a major
influencing factor, interacts with unbalanced lipid metabolism and other traditional risk
factors that jointly contribute to the development of AS [12]. Low-density lipoprotein (LDL)
is a particle encapsulated by Apo B that transports cholesterol to peripheral tissue cells,
and AS occurs when the concentration of LDL is high [13–15]. These lipid particles can
readily cross the intima and bind to chondroitin sulfate proteoglycans in the arterial wall
matrix, leading to the deposition of cholesterol and cholesterol esters in the intima, which
causes hyperplasia of arterial tissue and thickening and hardening of the arterial well [16].

The loss of elastic fibers in arteries and the thickening of small arterial walls are
thought to be closely related to AS [17]. As atherosclerosis develops, the compliance of
the arterial wall gradually decreases, and the shear forces generated by blood flow are
highly susceptible to damage in the vascular endothelial cells, which leads to the adhesion
of monocytes in the blood to the endothelium, and subsequent migration of monocytes
to the subendothelial, where they differentiate into macrophages and then transform into
foam cells after phagocytosis of lipid particles [17–19]. Clinical complications of atheroscle-
rotic plaques include thrombosis caused by fibrous cap fracture or surface erosion of the
plaque, which prevents perfusion, causes an acute ischemic syndrome, and promotes
plaque healing and progressive intimal thickening. The combination of both will readily
lead to further aggravating arterial stenosis, which leads to the limitation of perfusion,
eventually resulting in ischemic tissue necrosis [20]. The intestinal flora analysis in patients
with hyperlipidemia and hypercholesterolemia combined with colon cancer showed alter-
ations in intestinal microbial composition, as evidenced by increased Escherichia/Shigella
ratios and abundance of Streptococcus, as well as a decreased mass of Clostridium XIVa
and Clostridium tumefaciens [21]. Jie et al. have conducted a metagenome-wide association
study on the stools of 218 atherosclerotic patients and 187 healthy controls and found
that increased E. coli and Streptococcus in the gut microbiome of atherosclerotic patients
affected the transport or metabolism of molecules critical to cardiovascular health [22]. In
recent years, the association between intestinal microecological alterations and AS devel-
opment has gained increased attention [18,23–26]. Microbial metabolites represented by
trimethylamine n-oxide (TMAO) have become important mediators in the development of
atherosclerosis, which serve as substrates required for biochemical reactions in the organ-
ism and are involved in regulating intestinal homeostasis and influencing the development
of atherosclerosis, thus yielding a wide range of potential therapeutic targets. In this review,
we detail how changes in gut microecology affect the development of AS in terms of gut
microbial composition, metabolites of gut microbes such as TMAO and SCFAs, cellular
components of gut flora, and interference of gut microbes with bile acid metabolism in the
body, and provide new ideas for the treatment and prevention of AS.

1.3. Intestinal Microecology and AS
1.3.1. Intestinal G− Bacterial Cell Wall Lipopolysaccharide (LPS) and AS

Endotoxin, also known as LPS, is present in the outer wall of the cell wall of Gram-
negative bacteria and consists of O antigen, core polysaccharide, and lipid A. Typically, it
is released during bacterial cell wall disruption or bacterial division, triggering a robust
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immune response in the host that results in acute infection symptoms, such as fever, sepsis,
infectious shock, and respiratory distress syndrome [27,28]. Additionally, LPS is closely
associated with other chronic diseases in the host that involve immune responses, and
lipid-A plays a major immunostimulatory role among them [29].

Several studies have demonstrated that individuals at high risk of AS exhibits in-
creased levels of LPS and its binding protein [25,30,31]. LPS, which is a component of the
outer membrane of Gram-negative bacteria, triggers Toll-like receptor 4 (TLR4) activation,
thereby promoting the development of AS through the activation of the body’s inflamma-
tory response [25]. LPS can bind with lipopolysaccharide-binding protein (LBP) and either
high-density lipoprotein-2 (HDL2) or chylomicrons, allowing it to reach the liver via the por-
tal vein or the body’s circulation via the lymphatic system [32]. Targeting intestinal-derived
oxidized phospholipids may reduce the uptake of LPS at the intestinal level, thus limiting
the inflammatory response that promotes AS [33]. LPS stimulates inflammatory responses
in a TLR4-dependent manner and plays an important role in pro-leukocyte activation and
release of inflammatory mediators, dendritic cell maturation and migration, macrophage
autophagy, increase in reactive oxygen species (ROS) and reactive nitrogen species (RNS)
formation, and exertion of a wide range of effects on vascular endothelial cells [34–36]. LPS
also promotes oxidized-LDL/IgM complex binding and foam cell formation by upregulat-
ing the expression of Fcα/µ receptors on the surface of macrophages [37]. Additionally,
subclinical doses of LPS can reduce interleukin-1 receptor-associated kinase M (IRAK-M) in
mice and induce increased expression of miR-24 in monocytes, thereby disrupting the low-
grade inflammatory phenotype of monocytes and promoting AS development [33,38]. It has
been demonstrated that LPS accelerates atherosclerotic plaque formation through TLR4 by
promoting lipid accumulation and the production of chemokines such as MCP-1 in human
extravascular fibroblasts via the TLR4-dependent pathway [39]. In contrast, inhibition of
Sema3A, a specific membrane-associated secretory protein, weakens LPS-stimulated inflam-
matory factor release by suppressing the NF-κB and MAPKs signaling pathways, alleviating
LPS-induced oxidative stress, and reducing IL-1β, IL-6, NLRP3, SOD-1 antioxidant protein,
and reactive oxygen species. This suggests that inhibition of Sema3A could be a potential
therapeutic strategy for treating AS [40]. In summary, the activation of TLR4 by LPS and its
downstream inflammatory responses play a critical role in the development of atheroscle-
rosis, and targeting this pathway may be a promising therapeutic strategy for treating this
disease (Figure 2).
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1.3.2. Trimethylamine Oxide (TMAO) with AS
Production and Metabolism of TMAO

Trimethylamine oxide (TMAO) is a metabolite produced by intestinal bacteria that
has been linked to the progression of atherosclerotic lesions and atherothrombosis [41–43].
TMAO is derived from trimethylamine (TMA), which is found in foods containing choline,
phosphatidylcholine, and L-carnitine, such as red meat, dairy products, eggs, some fruits,
vegetables, and cereals [44]. Gut microorganisms promote the release of TMA precursors
from these foods and facilitate the formation of TMA through various microbial enzymes
such as Choline TMA lyase, Carnitine monooxygenase, TMAO reductase, Betaine reduc-
tase enzyme, which are then converted to TMAO by flavin-containing monooxygenase-3
(FMO3) [26,45,46]. TMA and TMAO are primarily excreted in the urine via renal filtration [47].
Many types of bacteria can produce TMA, including common human commensal bacteria,
such as Aspergillus, Clostridium, Shigella, and Aeromonas, as well as non-commensal groups,
such as Burkholderia, Shigella, Vibrio, Campylobacter, Aeromonas and Salmonella [48,49]. The
concentration of TMAO in blood is influenced by the balance between dietary precursors,
TMA-producing bacteria, and TMA-metabolizing bacteria, as well as the activity and
number of FMO3 [50]. As more is learned about the various functions and mechanisms
of TMAO, its connection to atherosclerosis and thrombosis becomes increasingly clear.
Consequently, TMAO has emerged as a promising target for treating AS (Figure 3).
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TMAO and Lipid Metabolism

Hypertension is a major risk factor for the development of AS, which is influenced
by several factors including inflammation, the sympathetic nervous system, water and
sodium retention, and glycolipid metabolism [51]. The gut microbial metabolite TMAO has
been shown to contribute to the progression of hypertension and AS by inhibiting choles-
terol metabolism [52]. TMA, FMO3, and TMAO play important roles in regulating lipid
metabolism in the body [53]. Studies have shown that mice with knockout FMO3 fed with
a high-cholesterol diet exhibited a decline in intestinal lipid absorption and hepatic choles-
terol production, and an increase in cholesterol reverse transportation, thus facilitating the
restoration of cholesterol homeostasis [54]. Knocking out coiled-coil 1 in mice resulted in
elevated plasma TMAO levels, leading to lipid deposition in atherosclerotic plaques, and
increased plasma lipid levels, as well as impaired hepatic cholesterol transportation [55].
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Feeding male apoE−/− mice with 0.3% trimethylamine oxide for eight weeks resulted in a
significant increase in the total aortic plaque area and in the elevation of serum triglyceride,
total cholesterol, and LDL-c levels in mice [56]. TMAO also affects glucose metabolism
in vivo, which directly affects the progression of atherosclerosis [57]. A selective hepatic
insulin resistance rat model showed a significant upregulation of plasma TMAO levels
and hepatic FMO3 levels. FMO3 knockout mice had a lower rate of obesity and atheroscle-
rosis than wild-type mice after high-fat diet induction [49,57,58]. These findings suggest
that TMAO may be an emerging target for the treatment of atherosclerosis and related
metabolic disorders (Figure 3).

TMAO and the Inflammatory Response of the Arterial Wall

Cholesterol-rich macrophages that infiltrate the arterial wall contribute to the devel-
opment of AS through oxidative stress and inflammation [59]. Through investigating
miRNAs and their target sites related to lipid metabolism and cardiovascular expres-
sion in TMAO metabolism-related macrophage and stem cell models, it was discovered
that TMAO promotes inflammation and AS by upregulating miR-30c-5p and miR-21-5p
and downregulating the target gene of miRNAs, Period2 (PER2), which controls lipid
metabolism and the inflammatory response [60]. Additionally, several studies have shown
that TMAO activates scavenger receptors and CD36 on the surface of macrophages, pro-
moting recognition and phagocytosis of oxidized LDL via the CD36/MAPK/JNK pathway,
leading to foam cells formation and accelerating the progression of AS [61,62]. Elevated
plasma TMAO levels increase the expression of pro-inflammatory cytokines, such as IL-1β,
IL-18, and TNF-α, while decreasing the expression of anti-inflammatory cytokines, such
as IL-10 [63–65]. This process is regulated by TMAO activation of human umbilical vein
endothelial cells (HUVECs) oxidation and the ROS/TXNIP/NLRP3 inflammatory vesicle
pathway [66]. It was found that TMAO-treated hepatocytes (TMAO-Exos) significantly
reduced cell migration and angiogenesis in vitro and impaired endothelial cell function by
downregulating CXR4 expression, which affects the recovery of post-ischemic perfusion
and angiogenesis [67] (Figure 3).

TMAO and Platelet Reactivity

Platelet activation and aggregation are important factors of atherosclerotic thrombosis
as enhanced platelet reactivity is closely linked to thrombogenesis, which in turn can result
in hypoxic damage and a poor prognosis for the affected tissue [68]. However, there is a
debate over whether the intestinal microbial metabolite TMAO actually enhances platelet
reactivity and promotes thrombosis. While it has been shown that prothrombotic and
pro-atherothrombotic effects are important mechanisms of TMAO’s detrimental impact,
there is evidence to suggest that the correlation between TMAO and platelet reactivity is
not particularly strong [69,70]. Furthermore, studies have demonstrated that choline and
TMAO activate the NOX/ROS/Nrf2/CES1 pathway, which decreases the formation of
clopidogrel active metabolite and impairs platelet response to clopidogrel [71]. Despite this,
elevated TMAO levels have been significantly associated with coronary CVD in patients
who received antiplatelet therapy for CVD [72].

1.3.3. Effect of Gut Microbial Metabolites SCFAs on AS
Production and Metabolism of SCFAs

Short-chain fatty acids (SCFAs) are produced in humans by the microbial glycolysis
of carbohydrates, such as dietary fiber and resistant starch that are not digested and
absorbed, which concludes formate, acetate, propionate, and butyrate [73]. In addition,
small amounts of branched-chain fatty acids are produced from the fermentative of protein-
derived branched-chain amino acids [74]. The acetate production pathway is widely
distributed in multiple floras, while the propionate and butyrate production pathways are
highly conserved and substrate-specific [75]. Numerous studies have demonstrated the
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anti-inflammatory, antihypertensive, and metabolic regulatory effects of SCFAs, which can
have a protective effect on the development of AS [76–79].

SCFAs and the Inflammatory Response of the Vessel Wall

SCFAs have been shown to inhibit the development of AS by reducing the migration
and activation of macrophages. This effect is achieved by inhibiting the production of
cytokines and chemokines [76]. For instance, when butyrate was added to the diet of
apoE−/− gene, NF-kappa B translocation was inhibited and the production of chemokine
ligand-2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1) and MMP2 gene on chromosome
16 in lesion area was reduced. As a result, the migration of macrophages was decreased,
deposition of collagen was increased and plaque stability was improved at the lesion site.
In addition, the uptake of oxLDL and production of CD36, TNF, IL-1β, and IL-6 were
also reduced, leading to a 50% decrease in the development of AS in the aorta [77,78].
Furthermore, propionic acid and butyric acid have been shown to antagonize the pro-
duction of LPS-induced cytokines IL-6 and IL-12p40 in humans [79]. This suggests
that SCFAs have the potential as therapeutic agents for the treatment of AS and other
inflammatory diseases (Figure 4).

Microorganisms 2023, 11, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 4. Effect of gut microbial metabolites SCFAs on AS. ↑: increase; ↓: decrease. 

SCFAs and Blood Pressure Regulation 
It is well established that hypertension is one of the major risk factors for the de-

velopment of AS, and SCFAs have been found to play a protective role against its pro-
gression by the regulation of hypertension [77]. Studies have shown that higher concen-
trations of SCFAs in human feces are associated with higher blood pressure and that 
hypertensive individuals have a lower number of SCFA-producing microorganisms in 
their gut microbiota compared to healthy controls [80]. SCFAs regulate blood pressure by 
targeting different receptors, including G protein-coupled receptors, olfactory receptor 
78, and short-chain fatty acid receptors such as FFAR-2 and FFAR-3. For instance, SCFAs 
acting on FFAR-2 in the renal artery cause arterial diastole and lower blood pressure, 
whereas SCFAs operating on Olfr78 promote the release of renin and increase blood 
pressure [81–84]. Additionally, SCFAs modulate cardiac contractility and sympathetic 
tone, with mice injected with acetic acid showing a simultaneous decrease in arterial 
pressure and heart rate, as well as a load-independent decrease in myocardial contractil-
ity. These effects were antagonized by beta-1-adrenergic receptor antagonists such as 
atenolol and tyramine [85] (Figure 4). 

SCFAs and Adipose Tissue 
SCFAs have also been found to directly or indirectly participate in adipogenesis, 

catabolism, and inflammatory response, leading to inhibition of the progression of AS 
[86]. For example, propionic acid promotes leptin secretion from the greater omental 
adipose tissue and subcutaneous adipose tissue by activating GPR41 and GPR43, result-
ing in significantly increased leptin levels. Moreover, SCFAs have been found to reduce 
human blood triglyceride concentrations by regulating adipogenesis and impairing li-
polysis [87–89]. Finally, SCFAs have been shown to inhibit the inflammatory response in 
adipocytes and adipose tissue, which further prevents the development of cardiovascular 
diseases, including AS [90] (Figure 4). 

1.3.4. Association of Intestinal Microbial Interference with Bile Acid Metabolism and AS 
Hydrophobic cholesterol is hydroxylated by cholesterol 7 alpha-hydroxylase 

(CYP7A1), which is catalyzed in hepatocytes and transforms into hydrophilic primary 
bile acids [91]. After primary bile acids are excreted through the bile duct, most of which 
are reabsorbed at the end of the ileum via bile acid transport proteins, some primary bile 

Figure 4. Effect of gut microbial metabolites SCFAs on AS. ↑: increase; ↓: decrease.

SCFAs and Blood Pressure Regulation

It is well established that hypertension is one of the major risk factors for the develop-
ment of AS, and SCFAs have been found to play a protective role against its progression
by the regulation of hypertension [77]. Studies have shown that higher concentrations of
SCFAs in human feces are associated with higher blood pressure and that hypertensive in-
dividuals have a lower number of SCFA-producing microorganisms in their gut microbiota
compared to healthy controls [80]. SCFAs regulate blood pressure by targeting different
receptors, including G protein-coupled receptors, olfactory receptor 78, and short-chain
fatty acid receptors such as FFAR-2 and FFAR-3. For instance, SCFAs acting on FFAR-2 in
the renal artery cause arterial diastole and lower blood pressure, whereas SCFAs operating
on Olfr78 promote the release of renin and increase blood pressure [81–84]. Additionally,
SCFAs modulate cardiac contractility and sympathetic tone, with mice injected with acetic
acid showing a simultaneous decrease in arterial pressure and heart rate, as well as a
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load-independent decrease in myocardial contractility. These effects were antagonized by
beta-1-adrenergic receptor antagonists such as atenolol and tyramine [85] (Figure 4).

SCFAs and Adipose Tissue

SCFAs have also been found to directly or indirectly participate in adipogenesis,
catabolism, and inflammatory response, leading to inhibition of the progression of AS [86].
For example, propionic acid promotes leptin secretion from the greater omental adipose
tissue and subcutaneous adipose tissue by activating GPR41 and GPR43, resulting in sig-
nificantly increased leptin levels. Moreover, SCFAs have been found to reduce human
blood triglyceride concentrations by regulating adipogenesis and impairing lipolysis [87–89].
Finally, SCFAs have been shown to inhibit the inflammatory response in adipocytes
and adipose tissue, which further prevents the development of cardiovascular diseases,
including AS [90] (Figure 4).

1.3.4. Association of Intestinal Microbial Interference with Bile Acid Metabolism and AS

Hydrophobic cholesterol is hydroxylated by cholesterol 7 alpha-hydroxylase (CYP7A1),
which is catalyzed in hepatocytes and transforms into hydrophilic primary bile acids [91].
After primary bile acids are excreted through the bile duct, most of which are reabsorbed at
the end of the ileum via bile acid transport proteins, some primary bile acids enter the colon
and are changed into hydrophobic secondary bile acids through the removal of nuclear
hydroxyl groups, oxidation, or epimerization [92], which are reabsorbed by the colon into
the circulation and complete the enterohepatic circulation of bile acids. Only about 5%
of secondary bile acids are excreted in feces [93]. Bile acids influence the composition
of the intestinal flora, and the intestinal flora determines the distribution of intestinal
bile acids [84] (Figure 5).
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Secondary bile acids have been shown to act as potent signaling molecules that exert
different effects by activating the corresponding receptors such as farnesoid X receptor (FXR)
and Takeda G protein-coupled receptor 5 (TGR5; GPBAR1). Other receptors that are acti-
vated directly or indirectly include sphingosine-1-phosphate receptor 2 (S1PR2), pregnane
X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and



Microorganisms 2023, 11, 1223 9 of 16

retinoic acid-related receptor γt (R O Rγt) [94]. The activation of these receptors has been
linked directly with the development of inflammatory bowel disease, which has been
associated with an increased risk of atherosclerosis, cerebrovascular accidents, and atrial
fibrillation [95]. Studies have also shown that TGR5 agonist INT-777 has immunosup-
pressive effects that include reducing macrophage production of pro-inflammatory cy-
tokines, and delaying atherosclerotic plaque formation in LD−/− mice [96]. Researches
have shown that polyphenol-rich substances reduce plasma TMAO by regulating intesti-
nal flora, thereby affecting the development of AS [97]. The earlier confirmed extract
was resveratrol (RSV), which has been shown to increase levels of Lactobacillus spp. and
Bifidobacterium spp. in the intestine through intestinal flora remodeling. It also enhanced
bile salt hydrolase activity, decreased ileal bile acid content, inhibited enterohepatic foresaid
X receptor-fibroblast growth factor 15 (FGF15) axis, increased cholesterol 7a-hydroxylase
(CYP7A1) expression, and promoted hepatic bile acid synthesis. All of these diminished
the atherosclerosis-promoting effects of TMAO [98]. A recent study has reported that
geraniin may also inhibit the progression of atherosclerosis by reducing plasma TMAO
concentrations in mice [61] (Figures 5 and 6).
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1.3.5. Altered Intestinal Microecology Induced by Increased Intestinal Permeability and AS

The intestinal barrier system, which includes physical, biochemical, and immune
components, interacts with intestinal microorganisms and increases intestinal permeability
leading to the translocation of intestinal bacterial DNA, as well as promotes the absorption
of intestinal flora metabolites and endotoxins into the circulation, thereby accelerating the
progression of AS.

The intestinal epithelial cells (IECs) are interconnected, and the symbiotic bacteria in
the intestinal lumen secrete antimicrobial substances to inhibit the growth of pathogenic
bacteria [99]. The intestinal microenvironment is composed of the glycocalyx, mucus, and
water layers, all of which together form the intestinal physical barrier [99,100]. There are
three types of intercellular junctions between intestinal epithelial cells: zonula occludens (ZO),
zonula adhesion, and bridging granules, which together constitute the apical linkage
complex [101]. The tight junction protein (TJ) is involved in regulating epithelial barrier
function and intercellular transport, and its regulatory effect leads to the formation of
two different paracellular epithelial permeability pathways in intestinal epithelial cells,
which are known as the “leakage” pathway and the “pore” pathway, and they are critical
factors in controlling intestinal permeability [100,102]. The mucus layer in the intestinal
lumen consists of a firmly adherent inner layer and a loosely adherent outer layer; the
inner layer contains fewer bacteria and more antimicrobial substances, such as defensins
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and lysozyme; and the outer layer includes more bacteria and bacterial products, both
of which together serve to prevent antigens, toxins, microbial metabolites, and bacteria
directly contacting the intestinal epithelial cells. Two layers are essential parts of the
physical defense of the intestinal mucosa [103]. The primary participating cells include
cup cells and Pan cells [103]. Other cells, which include endocrine cells that secrete GLP-2
and participate in the regeneration and repair of epithelial cells and induce tight protein
synthesis, cluster cells that produce IL-25 and IL-13, and M cells that participate in the
mucosal immune response, all play essential roles as components of the intestinal mucosal
barrier [100]. Intestinal barrier disruption and increased mucosal permeability promote the
transport of LPS through the intestinal barrier, which facilitates the involvement of LPS
participation in the development of inflammatory responses and AS in vivo. Moreover, LPS
affects the tight junction permeability between intestinal epithelial cells through a TLR4-
dependent mechanism, which increases the absorption of LPS, bacteria, and metabolites of
the intestinal flora (e.g., TMAO, SCFAs, etc.) [34]. It has been shown that one of the ways
that daily dietary structure affects the progression of AS is by altering intestinal mucosal
permeability, for example, excessive sugar intake and hyperglycemia disruption in the
intestinal barrier, which increases intestinal permeability and leads to deregulation of the
intestinal microenvironment, thereby leading to an increased incidence of cardiovascular
disease [104]. However, the mechanisms of their interaction with intestinal microecology
need to be further investigated.

2. Intestinal Microecological Disorders Regulation and Atherosclerosis Prevention

Assessment of the composition of gut microbial is an essential foundation for under-
standing the relationship between gut microecology and AS and is also a prerequisite for
developing relevant control strategies. Since most intestinal flora belong to prokaryotes,
their 16S rRNA genes, which encode rRNA that is highly conserved and specific, are widely
used for researching the composition and distribution of microbial communities through
16S rRNA gene sequencing [105]. In addition, combining 16S rRNA gene sequencing with
enzyme-linked immunosorbent assay and lipid metabolism assessment further evaluates
the association between the inflammatory responses caused by intestinal microecological
disorders, abnormal lipid metabolism, and AS [106]. Based on the results of these tests,
the balance of the intestinal can be adjusted to inhibit the development of AS [105,106].
Currently, several strategies have been applied, including intestinal flora transplantation,
probiotics, prebiotics, symbiotics, and short-term antibiotic applications, all of which can
also help to adjust the microecology of intestinal disorders.

3. Discussion

Intestinal flora transplantation is performed by extracting and pretreating micro-
bial communities from healthy feces stool and then transplanting them into the recipi-
ent’s colon in order to create a new dynamic balance of intestinal microecology in the
recipient’s intestinal microecology [107]. It has been demonstrated that fecal microbiota
transplantation (FMT) is effective in the treatment of intestinal bacterial infections, depres-
sion, and metabolic diseases such as type 2 diabetes and obesity [108–110]. In the practical
application of this method, there are still some factors that lead to unstable efficacy, such
as the safety and stability of the microbial composition of the donor’s gut, the degree of
preparation in the recipient’s gut, the method and standardization of the transplantation
operation, etc [107,111]. Therefore, the use of animal models for relevant efficacy assess-
ment is essential for the application of this method. Moreover, prebiotics, probiotics, and
postbiotics, such as short-chain fatty acids, can modulate gut microbiota composition and
reduce LPS levels, thereby exerting a protective effect against AS [112]. Probiotics are origi-
nally referred to as the beneficial flora in yogurt; they affect health by stimulating intestinal
flora, interfering with the host immune response, reducing cholesterol absorption, etc [113].
Prebiotics are defined as a particular fermentation component that promotes the growth
of probiotics in the human intestinal tract and the function of the body’s immune system;
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thus, prebiotics are often used as a health food, and lactulose is widely used as a common
clinical preparation [114]. Synbiotics are a combination of probiotics and prebiotics, which
have characteristics of both and have a more significant and lasting effect on the adjustment
of intestinal microecology [115].

The use of inhibitors that reduce TMAO production has been shown to attenuate the
promotion of lipid metabolism and inflammation formation by TMAO in the intestinal
flora [116,117]. RSV and broad-spectrum antibiotics such as ciprofloxacin can remodel the
flora, inhibiting TMAO production by reducing TMA [98]. RSV also attenuates TMAO-
induced AS by reducing bile acid (BA) de novo synthesis in the liver [49,98]. The choline
analog 3, 3-dimethyl-1-butanol has also been used to reduce TMAO production in the body,
which not only weakens the promotion of TMAO in the development of AS but also plays
an essential role in the treatment of hypertension and heart failure [118,119]. In addition,
adjusting the daily diet structure by reducing the intake of choline-rich foods, such as red
meat and seafood, and increasing the intake of plant-based foods, is important in reducing
the production and absorption of TMAO in the intestine [120].

Gut microecological disorders affect the development of AS through multiple path-
ways, and elucidating the corresponding pathways helps to develop a wide range of
potential therapeutic targets, which provide new therapeutic modalities and support for
clinical mitigation of the development of AS.

4. Conclusions and Future Directions

Changes in intestinal microecology mainly refer to alterations in the composition of
intestinal microorganisms and the production or absorption capacity of related metabolites,
which affect the development of AS by exerting corresponding effects on human immu-
nity, metabolism, and food breakdown. This review details the protective or promotive
effects of microbial constituents LPS, microbial metabolites TMAO and SCFAs, microbial
interference with bile acid metabolism, and organismal intestinal barrier disruption on
AS. This information provides a new idea and direction for the development of clinical
prevention and treatment strategies for AS. Numerous studies have demonstrated the
relevance of intestinal microecology to the development of AS through multiple pathways.
However, research is mostly limited to animal studies, and their feasibility and generaliz-
ability in the population still need further exploration. In addition, the current therapeutic
measures, such as intestinal flora transplantation, TMAO inhibitors, probiotics, and pre-
biotics, still have disadvantages including high cost and unstable efficacy, which need
further improvement.

Author Contributions: X.Z. (Xinyu Zhuo), R.L. and W.G. drafted the manuscript. X.Z. (Xinyu Zhuo), J.B.;
X.L.; J.G.; and H.L. (Hao Luo) helped to prepare the manuscript. H.L. (Hui Luo), X.Z. (Xingwei Zhang),
W.G.; and Q.J. were involved in revising it critically. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by research grants from the National Natural Science Foundation
of China (No. 81900745), the National Innovation and Entrepreneurship Training Program for college
students (202210346019), and the Zhejiang Provincial Traditional Chinese Medicine Science and
Technology Plan (2023ZF121).

Data Availability Statement: All supporting data are available within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AS: Atherosclerosis; BA: bile acid; CAR: constitutive androstane receptor; CCL2: chemokine
ligand-2; CHD: coronary heart disease; CYP7A1: cholesterol 7 a-hydroxylase; FMT: fecal micro-
biota transplantation; FXR: foresaid X receptor; FGF15: fibroblast growth factor 15; FMO3: flavin-
containing monooxygenase-3; HDL: high-density lipoprotein; HUVECs: human umbilical vein en-
dothelial cells; IBDs: intestinal diseases; IECs: intestinal epithelial cells; IHD: ischemic heart disease;



Microorganisms 2023, 11, 1223 12 of 16

LBP: lipopolysaccharide-binding protein; LDL: low-density lipoprotein; LPS: lipopolysaccharide;
PXR: pregnane X receptor; ROS: reactive oxygen species; RNS: reactive nitrogen species; RSV: resveratrol;
S1PR2: sphingosine-1-phosphate receptor 2; SCFAs: short-chain fatty acids; TGR5: Takeda G protein-
coupled receptor 5; TJ: tight junction; TLR4: Toll-like receptor 4; TMAO: trimethylamine; VDR:
vitamin D receptor; ZO: zonula occludens.

References
1. Jia, Q.; Li, H.; Zhou, H.; Zhang, X.; Zhang, A.; Xie, Y.; Li, Y.; Lv, S.; Zhang, J. Role and Effective Therapeutic Target of Gut

Microbiota in Heart Failure. Cardiovasc. Ther. 2019, 2019, 5164298. [CrossRef]
2. Fish, E.M.; Burns, B. Physiology, Small Bowel. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
3. Patricia, J.J.; Dhamoon, A.S. Physiology, Digestion. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
4. Malone, J.C.; Shah, A.B. Embryology, Midgut. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
5. Chikina, A.S.; Vignjevic, M.D.; Lennon-Dumenil, A.M. Roles of the macrophages in colon homeostasis. Comptes Rendus Biol.

2021, 344, 337–356. [CrossRef] [PubMed]
6. Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell

2006, 124, 837–848. [CrossRef]
7. Zhou, B.; Yuan, Y.; Zhang, S.; Guo, C.; Li, X.; Li, G.; Xiong, W.; Zeng, Z. Intestinal Flora and Disease Mutually Shape the Regional

Immune System in the Intestinal Tract. Front. Immunol. 2020, 11, 575. [CrossRef] [PubMed]
8. Cresci, G.A.; Bawden, E. Gut Microbiome: What We Do and Don’t Know. Nutr. Clin. Pract. 2015, 30, 734–746. [CrossRef]

[PubMed]
9. Wu, J.; Zhao, Y.; Wang, X.; Kong, L.; Johnston, L.J.; Lu, L.; Ma, X. Dietary nutrients shape gut microbes and intestinal mucosa via

epigenetic modifications. Crit. Rev. Food Sci. Nutr. 2022, 62, 783–797. [CrossRef]
10. de Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032.

[CrossRef]
11. Buja, L.M.; Nikolai, N. Anitschkow and the lipid hypothesis of atherosclerosis. Cardiovasc. Pathol. 2014, 23, 183–184. [CrossRef]
12. Libby, P.; Hansson, G.K. From Focal Lipid Storage to Systemic Inflammation JACC Review Topic of the Week. J. Am. Coll. Cardiol.

2019, 74, 1594–1607. [CrossRef]
13. Domanski, M.J.; Tian, X.; Wu, C.O.; Reis, J.P.; Dey, A.K.; Gu, Y.; Zhao, L.; Bae, S.; Liu, K.; Hasan, A.A.; et al. Time Course of LDL

Cholesterol Exposure and Cardiovascular Disease Event Risk. J. Am. Coll. Cardiol. 2020, 76, 1507–1516. [CrossRef]
14. Qiao, Y.N.; Zou, Y.L.; Guo, S.D. Low-density lipoprotein particles in atherosclerosis. Front. Physiol. 2022, 13, 931931. [CrossRef]

[PubMed]
15. Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.;

Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic
insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330.
[CrossRef]

16. Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C.
Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [CrossRef] [PubMed]

17. Pasta, A.; Cremonini, A.L.; Pisciotta, L.; Buscaglia, A.; Porto, I.; Barra, F.; Ferrero, S.; Brunelli, C.; Rosa, G.M. PCSK9 inhibitors for
treating hypercholesterolemia. Expert Opin. Pharmacother. 2020, 21, 353–363. [CrossRef]

18. Fan, J.; Watanabe, T. Atherosclerosis: Known and unknown. Pathol. Int. 2022, 72, 151–160. [CrossRef] [PubMed]
19. Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis

Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [CrossRef]
20. Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021, 117, 2525–2536. [CrossRef]
21. Han, S.; Pan, Y.; Yang, X.; Da, M.; Wei, Q.; Gao, Y.; Qi, Q.; Ru, L. Intestinal microorganisms involved in colorectal cancer

complicated with dyslipidosis. Cancer Biol. Ther. 2019, 20, 81–89. [CrossRef]
22. Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The gut microbiome in

atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845. [CrossRef]
23. Choroszy, M.; Litwinowicz, K.; Bednarz, R.; Roleder, T.; Lerman, A.; Toya, T.; Kamiński, K.; Sawicka-Śmiarowska, E.; Niemira, M.;
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