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Abstract: Botrytis cinerea is a necrotrophic model fungal plant pathogen that causes grey mould, a
devastating disease responsible for large losses in the agriculture sector. As important targets of
fungicides, membrane proteins are hot spots in the research and development of fungicide products.
We previously found that membrane protein Bcest may be closely related to the pathogenicity of
Botrytis cinerea. Herein, we further explored its function. We generated and characterised ∆Bcest
deletion mutants of B. cinerea and constructed complemented strains. The ∆Bcest deletion mutants
exhibited reduced conidia germination and germ tube elongation. The functional activity of ∆Bcest
deletion mutants was investigated by reduced necrotic colonisation of B. cinerea on grapevine fruits
and leaves. Targeted deletion of Bcest also blocked several phenotypic defects in aspects of mycelial
growth, conidiation and virulence. All phenotypic defects were restored by targeted-gene comple-
mentation. The role of Bcest in pathogenicity was also supported by reverse-transcriptase real-time
quantitative PCR results indicating that melanin synthesis gene Bcpks13 and virulence factor Bccdc14
were significantly downregulated in the early infection stage of the ∆Bcest strain. Taken together,
these results suggest that Bcest plays important roles in the regulation of various cellular processes in
B. cinerea.
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1. Introduction

Botrytis cinerea Pers.: Fr. (teleomorph: Botryotinia fuckeliana Whetzel) is a typical
necrotrophic ascomycete and worldwide plant pathogen that infects crop hosts during
both pre- and post-harvesting phases [1,2]. Moreover, B. cinerea infects over 1400 plant
species including many economically important crops, and leads to tremendous economic
losses [3]. Due to the lack of resistant varieties, chemical control remains the most effective
strategy for grey mould management [4]. Nevertheless, through genetic plasticity, B. cinerea
has developed resistance to many types of fungicides. Researchers use B. cinerea as a model
fungus in molecular studies; therefore, exploring the molecular mechanisms underlying
the development and virulence of B. cinerea will contribute to establishing more effective
disease control strategies.

Membrane proteins play key roles in the physiological processes of microorganisms,
including transportation, intercellular communication and drug targets. Membrane pro-
teins are recognised and inserted into the lipid bilayer by exquisite cellular machineries,
such as the GlpG rhomboid protease, which is thought to allow docking of a transmem-
brane substrate [5]. However, transporters are integral membrane proteins with central
roles in the efficient movement of molecules across biological membranes. The nucleobase
ascorbate transporter UapA from Aspergillus nidulans must dimerise for correct trafficking
to the membrane [6]. Many membrane proteins are primary drug targets, especially those
involved in converting extracellular signals into intracellular processes. Among them, G
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protein-coupled receptors (GPCRs) are crucial for cellular responses to a range of bioactive
molecules, and they play a key role in signalling, including increasing the basal activity
of the cannabinoid 2 receptor [7]. Interestingly, cell membrane proteins are important
targets of fungi in the prevention and control of fungal diseases by fungicides [8].For
example, natamycin inhibits the growth of yeast and fungi by inhibiting plasma membrane
transporters that regulate amino acid and glucose transport [9].

In our previous study, we identified and characterised membrane protein Bcest, which
was associated with the pathogenicity of B. cinerea [10]. Through homologous protein
searches, we found that homologs of Bcest included adhesins (Ata/Bmac), peptidoglycan
DL_endopeptidase, ATP-binding cassette (ABC) transporters, EkdA and lipasesproteins,
and others. Among them, adhesin Ata is an important virulence factor that can promote
the formation of bacterial biofilms [11]. Adhesin BmaC facilitates attachment between
bacteria and hosts [12]. Peptidoglycan DL_endopeptidase SadA causes cell aggregation
and promotes biofilm formation [13]. The absence of transporter PltI affects the inability
of strains to produce antibiotic Plt [14]. In the present study, we investigated the role of
membrane protein Bcest in fungal growth and pathogenesis to bridge this gap in knowledge
about B. cinerea.

In order to determine the role of Bcest in B. cinerea, we constructed and characterised
∆Bcest deletion mutants. Deletion of the Bcest gene not only led to reduced pathogenicity
and lower conidiation, but also increased sensitivity to H2O2. These results indicate that
Bcest is involved in several processes in B. cinerea, including vegetative differentiation,
adaptation to oxidative stress and triadimefon, and virulence.

2. Materials and Methods
2.1. Fungal Strains and Culture Conditions

Strain B05.10 of B. cinerea Pers.: Fr. (B. fuckeliana (de Bary) Whetzel) was isolated from
Vitis vinifera and has been widely used as a standard reference strain [15]. B. cinerea was
grown on potato dextrose agar (PDA; 200 g potato, 20 g dextrose, 20 g agar, 1 L water),
potato dextrose broth (PDB; 200 g potato, 20 g dextrose, 1 L water), a complete medium
(CM; 1 g yeast extract, 0.5 g casein acid hydrolysate, 0.5 g hydrolysed casein, 10 g glucose,
4 mM Ca(NO3)2·4H2O, 1.5 mM KH2PO4, 1 mM MgSO4·7H2O, 2.5 mM NaCl, 20 g agar, 1 L
water) and a minimal medium (MM; 10 mM K2HPO4, 10 mM KH2PO4, 4 mM (NH4)2SO4,
2.5 mM NaCl, 2 mM MgSO4, 0.45 mM CaCl2, 9 µM FeSO4, 10 mM glucose, 20 g agar, 1 L
water, pH 6.9) [16,17].

Conidia were quantified after 10 days of incubation on the PDA medium, washed
from plates, diluted to 5 mL with ddH2O, and counted with a hemocytometer under a
light microscope (×40). Growth tests under different stress conditions were performed
on PDA plates supplemented with different agents including H2O2 (10 mM), KCl (1 M)
and sodium dodecyl sulphate (SDS; 0.02%) [18]. The percentage of mycelial radial growth
inhibition (RGI) was calculated using the formula RGI = ([C − N]/[C − 5]) × 100, where C
and N indicate the colony diameter of the control and treatments, respectively [18]. Each
experiment was repeated three times.

2.2. Gene Deletion and Complementation

To replace the Bcest gene in wild-type (WT) strain B05.10, 1000 bp upstream and
1000 bp downstream flanking sequences of Bcest were amplified by PCR from the ge-
nomic DNA of B05.10. The resulting amplicons were fused with the HPH hygromycin
resistance gene using double-joint PCR [19]. Protoplast preparation and transformation
were performed as previously described [20]. The resulting hygromycin-resistant trans-
formants were preliminarily screened by PCR with primers (Supplementary Table S1),
and further confirmed by Southern blotting analysis. The upstream fragment of Bcest was
used as a probe and labelled with digoxigenin (DIG) using High Prime DNA Labelling
and Detection Starter Kit I (Roche Diagnostics, Mannheim, Germany) in accordance with
the manufacturer’s protocol. Genomic DNA was digested with EcoRI endonuclease. For
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complementation assays, a Bcest green fluorescent protein (GFP) cassette was generated by
amplifying the entire open reading frame (ORF) of Bcest (without a stop codon) and cloning
it into the pNAN–OGG vector containing the GFP gene and the nourseothricin resistance
gene [21]. The resulting construct was confirmed by DNA sequencing and transformed
into the Bcest deletion mutant.

2.3. Transcriptome Analyses

The mycelia of WT B05.10 and Bcest gene deletion mutant ∆Bcest were harvested after
growth on the PDA medium at 22 ◦C under 12 h of light and 12 h of darkness for 3 days
(with three biological replicates). Total RNA was extracted using a fungal RNA kit (R6840-
01; Omega Bio-Tek, Norcross, GA, USA), using Nanodrop (Thermo Scientific, Waltham,
MA, USA) for quality testing and using Agilent 2100 Bioanalyzer (Agilgent, Santa Clara,
CA, USA) for obtaining the RNA integrity number (RIN) [22]. RNA samples with a RIN
of > 7.0, a 260/280 ratio of > 1.8, and a 260/230 ratio of > 1.9 were analysed by Allwegene
Technology Co., Ltd. (Beijing, China). Briefly, Trimmomatic (v0.33) software was used to
filter the sequencing data [23]. A reference genome index was built and filtered reads were
mapped to the reference genome using STAR (v2.5.2b). Mapping statistics are shown in
Supplementary Table S2. HTSeq (v0.5.4) was used to compare the read count values for each
gene with the original gene expression level, and the value of fragments per kilobase of exon
per million mapped reads (FPKM) was used to standardise the expression. DESeq (v1.10.1)
was used to analyse differentially expressed genes (DEGs) with an absolute log2 value
of > 1 and a p value of < 0.05 as the cutoff criteria. All DEGs are listed in Supplementary
Table S3. Gene ontology (GO) categories of upregulated and downregulated genes were
identified using the g:Profiler toolset [24].

2.4. Nucleic Acid Manipulation and qRT-PCR

Fungal genomic DNA was extracted as described previously [25]. Plasmid DNA was
isolated using RapidLyse Plasmid Mini Kit (DC211; Vazyme, Nanjing, China).

Real-time quantitative reverse-transcription PCR (qRT-PCR) was used to measure
the expression of disease-related genes in the Bcest disruption mutant ∆Bcest and the WT
B05.10 strain. The total RNA remaining from the transcriptome experiment was used. RNA
was reverse-transcribed using HiScript III 1st Strand cDNA Synthesis Kit (R312; Vazyme,
Nanjing, China). qRT-PCR was performed using Taq Pro Universal SYBR qPCR Master
Mix (Q712; Vazyme, Nanjing, China) and using specific primers and a thermal program to
determine the expression of Bcactin (reference gene), Bcin14g02370, Bcin10g01030 and other
genes. The expression level of each transcript was calculated using the ∆∆Ct method [26].
For the normalisation of the data, the transcription level of each gene in the hyphae of
B05.10 was given a value of 1.0, and the scale was used to calibrate the transcript levels of
genes in the hyphae of ∆Bcest. qRT-PCR was repeated three times. All genes and primers
used for qRT-PCR are listed in Supplementary Table S4.

2.5. Pathogenicity and Infection-Related Morphogenesis Assay

Infection tests were performed on grape fruits and leaves. Briefly, the tested plant
tissues were point-inoculated with 5 mm diameter mycelial plugs of 3-day-old cultures.
Before inoculation, the cuticles of hosts were wounded with a sterilised needle tip to
facilitate the penetration of the fungus into plant tissues. The inoculated samples were
placed under high relative humidity conditions (~95%) at 25 ◦C with 16 h of daylight. These
experiments were repeated three times and each included 10 samples. Infection-related
morphogenesis was observed on an onion epidermis using a published method [27].

2.6. Morphology and Ultrastructure of Fungal Hyphae

To investigate the role of Bcest on hypha morphology and ultrastructure in ∆Bcest
and WT B05.10 strains, scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) were performed. The mycelial morphology and ultrastructure were
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observed by SEM/TEM in accordance with a modified method [28]. The hyphae on
coverslips were immersed in 4 ◦C glutaraldehyde (4%) and incubated in darkness at
4 ◦C for 16 h. Mycelia were washed three times with phosphate-buffered saline (PBS),
dehydrated, and dried in a vacuum freeze-dryer. Samples were sprayed with gold powder
and examined with an SU8000 SEM instrument (Hitachi, Tokyo, Japan). One millilitre of
spore suspension (1 × 105 spores mL−1) was added to 100 mL of PDB and incubated at
25 ◦C with shaking a 150 rpm for 72 h. Mycelia were centrifuged, washed three times
with PBS, and postfixed with 1% osmium tetroxide for 2 h. Samples were washed three
more times with PBS, further dehydrated in a graded ethanol series (30%, 50%, 60%, 70%,
80%, 90%, 95% and 100%), then embedded in Spurr’s low-viscosity resin. Sections were
observed using an H-7500 TEM instrument (Hitachi, Tokyo, Japan).

2.7. Abiotic Stress and Pathogenic Factor Assay

Mycelia-responsive trials were carried out to determine the responses of B05.10, ∆Bcest,
and the complemented strain ∆Bcest-C to abiotic stresses, including osmotic pressure, H2O2,
SDS, protease, polygalacturonase and cellulase, and their ability to produce an infectious
agent. Specifically, mycelial agar plugs were removed from the margin area of a 2-day-old
PDA culture of an isolate and inoculated in Petri dishes containing PDA with KCl (1 M),
H2O2 (10 mM) and 20 mg/L of SDS (w/v). Cultures were incubated at 20 ◦C for 2 days.
Secretions of proteases, polygalacturonases and cellulases were assessed using nutrient agar
(NA; 50 g skimmed milk powder, 5 g NaCl, 10 g sucrose, 3 g beef extract, 3 g yeast extract,
20 g agar, 1 L water, pH 7.0), polygalacuronic acid agar (PGAA; 10 g polygalacuronic acid,
20 g sucrose, 2 g (NH4)2SO4, 20 g agar, 1 L water) and carboxymethyl cellulose sodium agar
(CMC-Na; 10 g carboxymethyl cellulose sodium salt, 10 g yeast extract, 1 g tryptone, 4 g
(NH4)2SO4, 2 g K2HPO4, 0.5 g MgSO4·7H2O, 20 g agar, 1 L water) mediums, respectively.
Cultures were incubated at 22 ◦C for 3 days. Experiments included one mycelial agar
plug per dish and three dishes (replicates) for each treatment. The diameter of each colony
was measured, and the mycelial growth inhibition rate (MGIR) was calculated using the
following formula [29]:

MGIR = (ADCK − Ds)/ADCK × 100%.

where ADCK is the average colony diameter of an investigated isolate in the control treat-
ment, and Ds is the diameter of that isolate in the presence of a stress generation chemical
(KCl, H2O2 or SDS). Each assay was repeated three times.

2.8. Statistical Analyses

All assays were conducted in triplicate, unless otherwise indicated. Conidia number,
colony diameter and lesion diameter analyses were performed using IBM SPSS statistics
20.0 software (IBM Corp., Armonk, NY, USA). The significance of the effects of different
treatments on various indices was evaluated with an analysis of variance (ANOVA) with
multiple least-significant-difference comparisons at the p ≤ 0.05 level. After analysis,
average angular values were individually back-transformed to numerical values.

3. Results
3.1. Identification of Bcest in B. cinerea

The Bcest gene (Bcin15g00520) of B. cinerea was identified via transcriptome data
analysis. Bioinformatic analysis showed that this 874 bp gene with three exons and two
introns encodes an 81-amino acid protein. Homologs of Bcest were identified via BLASTp
and phylogenetic trees of Bcest proteins were constructed vis MEGA 10.0.5 (Figure 1).
Evolutionary history was inferred using the neighbour-joining method with 1000 bootstrap
replications [30]. It can be seen from Figure 1 that the Bcest protein A0A384K4A6 is highly
homologous to putative EkdA protein M7TXI3 from the B. cinerea BcDW1 strain.
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3.2. Deletion and Complementation of Bcest in B. cinerea

To investigate the functions of the Bcest protein in B. cinerea, we generated single-gene
deletion mutants of ∆Bcest using homologous recombination (Figure 2A). The left and right
arms (1000 bp) of the Bcest gene and the hygromycin gene (2145 bp) of plasmid pUCHYG
were amplified. The recombinant Bcest gene containing the above fragments was obtained
via fusion PCR.
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We obtained independent transformants via screening a selection medium supple-
mented with hygromycin B and PCR verification. After single0spore isolation, transfor-
mants were verified as homozygous via PCR and further confirmed to be single-copy
insertions via Southern blotting analysis (Figure 2B,C). To confirm that the phenotypic
changes of the mutants were due to gene deletion, ∆Bcest mutants were complemented
with the full-length Bcest gene to generate complemented strains of ∆Bcest-C.

3.3. Bcest Is Involved in Hyphal Growth and Conidiation

The mycelial growth rate and the conidium of ∆Bcest were significantly different from
the those of the WT parent B05.10. The ∆Bcest strain had a slower growth rate than the
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∆Bcest-C complemented strains and the B05.10 WT strain did on PDA, CM and MM, but
especially on PDA (Figure 3A,B). Conidia are the primary inoculum for the disease cycle
of B. cinerea [31]. After incubating it on PDA for 10 days, the abundance of conidia for
∆Bcest was significantly less than that for B05.10 and ∆Bcest-C (Figure 3C). Interestingly, the
conidia of ∆Bcest showed morphological and size abnormalities, and some spores produced
by ∆Bcest had folds and cracks on the surface (Figure 3D). In addition, when incubated on
the PDA medium at 22 ◦C for 10 h, all spores of B05.10 germinated, whereas the average
germination rate of ∆Bcest was only 78.03%.

Microorganisms 2023, 11, x FOR PEER REVIEW 6 of 13 
 

 

3.3. Bcest Is Involved in Hyphal Growth and Conidiation 
The mycelial growth rate and the conidium of ΔBcest were significantly different 

from the those of the WT parent B05.10. The ΔBcest strain had a slower growth rate than 
the ΔBcest-C complemented strains and the B05.10 WT strain did on PDA, CM and MM, 
but especially on PDA (Figure 3A,B). Conidia are the primary inoculum for the disease 
cycle of B. cinerea [31]. After incubating it on PDA for 10 days, the abundance of conidia 
for ΔBcest was significantly less than that for B05.10 and ΔBcest-C (Figure 3C). Interest-
ingly, the conidia of ΔBcest showed morphological and size abnormalities , and some 
spores produced by ΔBcest had folds and cracks on the surface (Figure 3D). In addition, 
when incubated on the PDA medium at 22 °C for 10 h, all spores of B05.10 germinated, 
whereas the average germination rate of ΔBcest was only 78.03%. 

 
Figure 3. Effects of Bcest deletion on mycelial growth, sporulation and conidial germination. Bars 
represent standard errors from three replicates. Values on bars followed by different letters indicate 
significant differences at p = 0.05. (A) Mycelial growth of ∆Bcest, B05.10 and ∆Bcest-C strains on PDA 
plates after 3 days of cultivation. (B) Quantification of colony diameter of the indicated strains 
grown on PDA plates for 3 days. (C) Quantification of conidia produced by the indicated strains. 
(D) Conidia morphology of different strains. (E) SEM and TEM observations of hyphae of B. cinerea 
and ∆Bcest strains grown on PDA plates (diameter: 4 cm). Note: The red arrows in TEM highlight 

Figure 3. Effects of Bcest deletion on mycelial growth, sporulation and conidial germination. Bars
represent standard errors from three replicates. Values on bars followed by different letters indicate
significant differences at p = 0.05. (A) Mycelial growth of ∆Bcest, B05.10 and ∆Bcest-C strains on
PDA plates after 3 days of cultivation. (B) Quantification of colony diameter of the indicated strains
grown on PDA plates for 3 days. (C) Quantification of conidia produced by the indicated strains.
(D) Conidia morphology of different strains. (E) SEM and TEM observations of hyphae of B. cinerea
and ∆Bcest strains grown on PDA plates (diameter: 4 cm). Note: The red arrows in TEM highlight
abnormal hyphal growth and uneven branching, and in TEM highlight cell membrane invaginations,
mitochondrial swelling, and mitochondrial membrane disappearance.
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SEM results showed that control strain B05.10 hyphae grew upright, with uniform
thickness, a smooth surface, and no distortion or deformities, and apical hyphae branches
were relatively uniform; by contrast, those of ∆Bcest showed distortion and deformities,
with surface folds and depressions, differences in thickness, and uneven apical branches.
TEM results showed that compared with control strain B05.10, the amount of endoplasmic
reticulum and the number of mitochondria were increased in ∆Bcest, the mitochondrial
membrane had disappeared at one end, and mitochondria were larger, looser and more
folded. Furthermore, cell membranes were relatively intact, but tended to sink inwards.
The above features are indicated by red arrows in Figure 3E.

These results also indicate that Bcest is important for vegetative growth and the
conidiation of B. cinerea.

3.4. Bcest Participates in Regulating the Pathogenicity of B. cinerea

To determine and visually observe whether or not Bcest is involved in regulating the
infection capacity of B. cinerea, an onion epidermis was inoculated with the ∆Bcest mutant
spore suspension. At 12 h, unlike WT spores, ∆Bcest spores failed to form an infection
structure after germination, and the WT strain successfully infected the onion epidermis by
generating attachment cells after spore germination (Figure 4A).
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Figure 4. Effects of ∆Bcest deletion on mycelial infection and pathogenicity. Bars represent standard
errors from three replicates. Values on bars followed by different letters indicate significant differences
at p = 0.05. (A) Onion epidermis penetration by B05.10 and ∆Bcest. Pictures were taken after 12 h of
inoculation of onion epidermis with conidia from B05.10 and ∆Bcest. (B) Disease symptoms caused
by each strain on wounded grape leaves and fruits. Images were captured at 96 h after inoculation.
(C) Pathogenicity on grape leaves after 96 h of incubation. (D) Pathogenicity on grape fruits after 96 h
of incubation on PDA plates (diameter 4 cm). Note: we used ∆Bcest-1, ∆Bcest-2 and ∆Bcest-3 strains
for the pathogenicity test of the ∆Bcest strain. The red circle represents the diameter of the lesion.

To determine whether or not Bcest is involved in regulating pathogenicity in B. cinerea,
grapevine leaves and fruits were inoculated with ∆Bcest mutants. Compared with the
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WT strain, ∆Bcest mutants exhibited reduced virulence in different hosts (Figure 4B). At
96 h, grape leaves inoculated with ∆Bcest mutants showed no or small lesions, while
WT-inoculated leaves showed larger lesions and the average lesion size reached 0.53 cm
and 2.13 cm, respectively (Figure 4C). Similarly, lesion size was considerably decreased on
∆Bcest mutant-inoculated grape fruits compared with WT-inoculated fruits (Figure 4D).
The complemented strain ∆Bcest-C exhibited almost the same level of virulence as the WT
strain did. These results suggest that Bcest plays a crucial role in virulence of B. cinerea.

3.5. Effects of ∆Bcest Deletion on Sensitivity to Abiotic Stresses and Pathogenicity Factors

The results of the mycelial responsive assays showed that compared with ∆Bcest-
C and B05.10, ∆Bcest mutants exhibited suppressed mycelial growth in the presence of
KCl and H2O2, and the transparent zone in the protease and cellulase test medium was
significantly reduced. However, the growth diameter under the SDS treatment and the
polygalacturonase production capacity of ∆Bcest were significantly higher than those of
B05.10 and ∆Bcest-C, respectively (Figure 5A). The values were not significantly different
(p = 0.05) from the inhibition rates for B05.10 and ∆Bcest-C in response to these chemicals,
and the enzyme-producing capacity was not significantly different either (Figure 5B,C).
These results suggest that disruption of Bcest may have marginal effects on mycelial growth
in response to abiotic stresses, and that pathogenicity factor production capacity may also
be affected.
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Figure 5. Detection of sensitivity to abiotic stress and the ability to secrete virulence factors in the
∆Bcest, B05.10, and ∆Bcest-C strains. (A) All strains were grown on PDA plates amended with NaCl,
KCl, or SDS at the indicated concentrations at 20 ◦C for 2 days, and with skimmed milk powder,
polygalacuronic acid or carboxymethyl cellulose at 20 ◦C for 3 days. (B) Sensitivity of ∆Bcest, B05.10
and ∆Bcest-C to KCl, H2O2 and SDS. (C) Ability of ∆Bcest, B05.10 and ∆Bcest-C to produce proteases,
polygalacturonase and cellulases. Bars represent standard errors from three replicates. Values on bars
followed by different letters indicate significant differences at p = 0.05.



Microorganisms 2023, 11, 1225 9 of 13

3.6. Bcest Deletion Affects Transcription and Pathogenicity-Related Genes

We performed a RNA-seq analysis to identify genes that might exhibit changes in
regulation affected by Bcest in B. cinerea. Three biological replicates with mRNA isolated
from WT B05.10 and ∆Bcest strains were performed, and 162 downregulated and 189 up-
regulated (fold change > 2, p < 0.05) genes were identified in ∆Bcest and compared with
those of B05.10 (Figure 6A).
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regulated genes (p < 0.05, >2-fold change) in ∆Bcest strains compared with those in WT B05.10.
(B) qRT-PCR of ∆Bcest transcriptome DEGs.

Functional annotation of DEGs via GO analysis was performed to identify genes
belonging to molecular function, cellular component and biological process categories
(Figure S1). Among them, catalytic activity/oxidoreductase activity, organelle enve-
lope/mitochondrial outer membrane, the oxidation–reduction process and the mono-
carboxylic acid metabolic process were the main molecular function, cellular composition,
and biological process subcategories, respectively. These results showed that growth and
pathogenicity defects caused by the absence of Bcest in the B05.10 strain may be closely
related to these six terms.

In addition, enriched DEGs can be functionally classified into metabolism, cellular
processes and genetic information processing categories. Among the 45 metabolic pathways
belonging to these three categories, the top 10 metabolic pathways of enriched DEGs were
metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics,
carbon metabolism, biosynthesis of amino acids, oxidative phosphorylation, glutathione
metabolism, tricarboxylic acid (TCA)/citrate cycle, the pentose phosphate pathway, and
ubiquitin–mediated proteolysis (Figure S2). These metabolic pathways may be closely
related to the growth and pathogenicity defects of ∆Bcest.

To verify the reliability of DEGs identified from transcriptome sequencing, qRT-PCR
was performed on the remaining ∆Bcest RNA samples used for transcriptome analysis.
qRT-PCR validation was performed by randomly selecting nine growth- and pathogenicity-
associated genes. These genes encode proteins that participate in the synthesis and
metabolism of substances (Bcin14g02370, Bcin07g05140, Bcin03g08050, and Bcin11g02040),
the catalytic reactions of enzymes (Bcin03g00480, Bcin01g07330, and Bcin10g01030) and
virulence and stress factors (Bcin14g04260 and Bcin01g02560). The qRT-PCR results were
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consistent with the RNA-seq results (Figure 6B), indicating the reliability of the RNA-seq
data in this study.

4. Discussion

To explore the functions of membrane protein Bcest, we first disrupted the Bcest gene
and characterised the resulting mutant, which showed severe defects in hyphal growth
and pathogenicity. These results are consistent with those of experiments on BcHBF1 and
BcATG6 genes of B. cinerea [32,33]. We thus hypothesised that the Bcest protein might be
involved in regulating hyphal growth and pathogenicity-related genes in this fungal species.
Bcest is a vital virulence determinant, since deletion of the Bcest gene also compromised the
penetration ability of B. cinerea, indicating that the reduced virulence of the ∆Bcest mutant
was likely due, as least in part, to defects in the penetration of host cells. The ∆Bcest mutant
exhibited increased sensitivity to H2O2 and osmotic stress, which may be due to the absence
of membrane protein Bcest, which destroys mitochondrial membrane integrity, reducing
tolerance to osmotic pressure and reactive oxygen species (ROS) [34]. However, under
SDS-mediated stress, the growth rate of the ∆Bcest mutant strain was higher than that of
WT strain B05.10. However, other studies have shown that SDS can inhibit the growth of
B. cinerea [33]; hence, the specific mode of action will be explored in our future research. In
addition, the ability of the ∆Bcest mutant strain to produce cellulases and proteases was
significantly reduced, which is another important factor of pathogenicity [35,36]. Based on
the above results, the Bcest protein appears to be an important virulence factor of B. cinerea.
However, the regulatory mechanisms involving Bcest remain poorly understood, and
further research such as a comparative analysis of transcription profiles could provide
valuable information.

We used transcriptome sequencing technology to compare and analyse transcriptional
regulation differences and DEGs of ∆Bcest mutant strains in culture for 72 h, and 351 DEGs
were screened. GO functional analysis showed that in biological process and molecular
function categories, DEGs resulting from the loss of the Bcest gene were mostly involved in
metabolic and cellular processes, and catalytic activity and binding, respectively. Among
the cellular component terms, the most enriched ones were linked to cellular structure and
membrane, which is consistent with the fact that the deletion of the Bcest gene affected the
mitochondrial membrane in the TEM experiment. Our RNA-seq analysis results suggest
that global changes in genes involved in metabolic pathways, the biosynthesis of secondary
metabolites, the pentose phosphate pathway and the TCA cycle are likely to underlie this
defect.

The reliability of the transcriptome data was verified by via qRT-PCR of nine growth-
and pathogenicity-related genes. Sclerotia are an important virulence factor in B. cinerea,
and this study found that the melanin synthesis gene Bcpks13 (Bcin03g08050) was signifi-
cantly downregulated in the ∆Bcest mutant strain, which may explain why this strain failed
to form sclerotia [37]. Deletion of CDC14 in several plant pathogen species severely impairs
virulence, demonstrating that CDC14 function is important for host infection [38]. Fusarium
graminearum, Magnaporthe oryzae and Aspergillus flavus lacking CDC14 gene expression
can lead to conidia formation defects and reduced pathogenicity [39–41]. Polygalactur-
onase and β-1,4-endoxylanase BcXyn11A are important virulence factors of B. cinerea, and
they mainly promote the virulence of B. cinerea through necrotic activity rather than en-
zymatic activity [42]. We found that BcXyn11a (Bcin03g00480), Bccdc14 (Bcin01g02560)
and endopolygalacturonase-encoding gene Bcpg5 (Bcin01g07330) were significantly down-
regulated, which suggests that the decrease in the number of conidia and weakening of
the pathogenicity of ∆Bcest mutant strains were the result of a combination of polygenes.
Bcgas2 (Bcin14g04260) is required for B. cinerea to cope with stress [43,44], and a decrease
in the stress capacity of the ∆Bcest mutants was closely related to the downregulation of
this gene. In addition, both the mitochondrial membrane and the mitochondrial electron
transport chain can induce a burst of ROS, which in turn affects the growth and devel-
opment of the strain. In this study, the expression of the cytochrome C synthesis gene
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Bccyc1 (Bcin14g02370), which is involved in the mitochondrial electron transport chain,
was significantly upregulated in ∆Bcest mutant strains [45]. Interestingly, we found that
the membrane protein Bcest had little effect on cell membranes, but TEM showed that
the mitochondrial membrane of the ∆Bcest strain was damaged, enlarged, wrinkled and
relaxed. Thus, we hypothesised that loss of Bcest may destroy the integrity of the mi-
tochondrial membrane, affect the transmission of the mitochondrial electron chain, and
influence metabolic pathways in the strain. Therefore, we concluded that an absence of
Bcest can reduce the growth rate and pathogenicity of B. cinerea, while increasing sensitivity
to environmental stress.

5. Conclusions

In conclusion, membrane protein Bcest can inhibit the growth of B. cinerea, reduce
the spore germination rate and pathogenicity, disrupt the integrity of the mitochondrial
structure, and increase sensitivity to oxidative and osmotic stress.
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Genes and primers used for qRT-PCR.
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