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Abstract: The Magnaporthe oryzae Triticum (MoT) pathotype is the causal agent of wheat blast, which
has caused significant economic losses and threatens wheat production in South America, Asia, and
Africa. Three bacterial strains from rice and wheat seeds (B. subtilis BTS-3, B. velezensis BTS-4, and B.
velezensis BTLK6A) were used to explore the antifungal effects of volatile organic compounds (VOCs)
of Bacillus spp. as a potential biocontrol mechanism against MoT. All bacterial treatments significantly
inhibited both the mycelial growth and sporulation of MoT in vitro. We found that this inhibition
was caused by Bacillus VOCs in a dose-dependent manner. In addition, biocontrol assays using
detached wheat leaves infected with MoT showed reduced leaf lesions and sporulation compared
to the untreated control. VOCs from B. velezensis BTS-4 alone or a consortium (mixture of B. subtilis
BTS-3, B. velezensis BTS-4, and B. velezensis BTLK6A) of treatments consistently suppressed MoT
in vitro and in vivo. Compared to the untreated control, VOCs from BTS-4 and the Bacillus consortium
reduced MoT lesions in vivo by 85% and 81.25%, respectively. A total of thirty-nine VOCs (from nine
different VOC groups) from four Bacillus treatments were identified by gas chromatography–mass
spectrometry (GC–MS), of which 11 were produced in all Bacillus treatments. Alcohols, fatty acids,
ketones, aldehydes, and S-containing compounds were detected in all four bacterial treatments.
In vitro assays using pure VOCs revealed that hexanoic acid, 2-methylbutanoic acid, and phenylethyl
alcohol are potential VOCs emitted by Bacillus spp. that are suppressive for MoT. The minimum
inhibitory concentrations for MoT sporulation were 250 mM for phenylethyl alcohol and 500 mM for
2-methylbutanoic acid and hexanoic acid. Therefore, our results indicate that VOCs from Bacillus spp.
are effective compounds to suppress the growth and sporulation of MoT. Understanding the MoT
sporulation reduction mechanisms exerted by Bacillus VOCs may provide novel options to manage
the further spread of wheat blast by spores.

Keywords: Bacillus; biocontrol; volatile organic compound; GC–MS; sporulation

1. Introduction

Wheat is a major cereal crop worldwide [1], and, according to the United States
Department of Agriculture (USDA), 779.03 million tons of wheat were produced globally
in 2021 [2]. Wheat blast is a devastating fungal disease that is caused by the Magnaporthe
oryzae Triticum (MoT) pathotype [3–5]. It can cause significant reductions in wheat yield
and grain quality [6,7]. Wheat blast first emerged in Brazil in 1985 and then gradually
spread to Argentina, Bolivia, and Paraguay [5,6,8]. Outbreaks of wheat blast in Bangladesh
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and Zambia in recent years confirmed its expansive potential [9,10]. Recently, it has also
been recognized as a potential future threat to European wheat production [11].

Fungicides are commonly used to control blast and other ear-related wheat diseases [12].
However, the failure of fungicides to fully control MoT has led to repetitive applications,
increasing the selection pressure on the pathogen to develop resistance [13,14]. The emer-
gence of new fungicide-resistant strains of MoT severely threatens wheat production [7,15],
which is why the use of resistant cultivars is an important strategy to control wheat blast.
However, MoT can break cultivar resistance, and, so far, no cultivars are entirely resistant
to MoT [5,16].

Biological control is a potential alternative to manage plant pathogens [17–19]. Over
the past three decades, multidisciplinary research in biocontrol has investigated effective
strategies to control wheat pathogens [20]. The mechanisms exerted by biological control
agents (BCAs) include direct (hyperparasitism, antibiosis) and indirect (competition, induc-
tion of host plant resistance) modes of action [19,21–23]. Direct suppression of target fungi
by BCAs can be achieved by the production of antibiotics, volatile organic compounds
(VOCs), or other bioactive secondary metabolites [21] that have an antagonistic effect
on pathogens [19]. The inhibitory activity and biocontrol potential of some pure micro-
bial non-volatile secondary metabolites against the wheat blast fungus MoT have been
reported recently [24–27].

Bacterial VOCs are low-molecular-weight (<300 Da) [28,29], hydrophobic, low-toxicity,
and naturally occurring substances [30]. They are diffusible in the environment and have
been shown to be effective in biofumigation [31,32]. Recent discoveries of antifungal bacterial
volatiles have triggered research interest in exploring the potential use of VOCs in the control
of fungal pathogens. The efficiency of bacterial VOCs depends on the adaptability of bacteria
to diverse environmental conditions, nutritional properties, and bacterial colonization patterns
in specific hosts [21,33]. To date, relatively few bacterial biocontrol agents have been employed
in agriculture due to their low field efficacy, safety concerns, or issues related to international
market trading [34]. VOCs from Pseudomonas [30,35], Bacillus [36,37], Burkholderia [38,39], and
Serratia [40] have been reported for their active antifungal activity. VOCs from Trichoderma
fungi [41] are effective against wheat crown and root rot, and those from Bacillus spp.
against wheat fusarium crown and root rot [42] and fusarium head blight [43].

The potential antagonistic activity of B. subtilis BTS-3, B. velezensis BTS-4, and
B. velezensis BTLK6A against MoT was evaluated previously through in vitro and in vivo
screening. These studies decoded the bacterial genes responsible for antagonism and
induced systemic resistance (ISR) in host plants by whole-genome sequencing [44,45]. Ad-
ditionally, the gene responsible for acetoin, a volatile organic compound, was confirmed
in the tested Bacillus spp. However, it has been reported that Bacillus spp. can produce
diversified antifungal volatile organic compounds (VOCs) to suppress phytopathogenic
growth [36,37,42,43]. Thus, it is essential to identify all potential VOCs from our selected
Bacillus spp. and their mechanisms of action to suppress the growth of MoT. Therefore, to
further understand the mechanisms underlying the antagonistic action of these bacterial
VOCs, this study investigates the role of Bacillus VOCs in the suppression of MoT without
direct contact. More specifically, the objectives of the current study were to (i) investi-
gate the effects of Bacillus VOCs on the mycelial growth and sporulation of MoT in vitro;
(ii) demonstrate the suppressive effects of Bacillus volatiles against wheat leaf infection
with MoT; (iii) identify and characterize Bacillus VOCs through GC–MS; and (iv) confirm
the suppressive effects of selected pure VOCs against MoT.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

Three bacterial strains, B. subtilis BTS-3 (NCBI accession WOVJ00000000), B. velezen-
sis BTS-4 (NCBI accession WOVK00000000), and B. velezensis BTLK6A (NCBI accession
WOYD00000000), were used in this study [23]. BTS-3 and BTS-4 bacterial strains were
isolated from the ‘Rangabinni’ rice seeds and BTLK6A from the ‘Kanchan’ wheat seeds of
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Bangladesh [23,44,46,47]. All Bacillus strains were stored as pure cultures in 20% glycerol
at −20 ◦C. Bacterial strains were streaked into Petri dishes (90 mm) containing ca. 20 mL
Luria broth agar (LBA: 10 g tryptone, 5 g yeast extract, 10 g NaCl, 15 g agar, 1000 mL
H2O) and incubated for 24–48 h at 25 ◦C. Then, three single colonies were inoculated into a
50 mL Erlenmeyer flask containing 25 mL LB (10 g tryptone, 10 g NaCl, 5 g yeast extract,
1000 mL H2O) and incubated on a rotary shaker (100 rpm) for 24–48 h at 25 ◦C. After incu-
bation, the bacterial cultures were transferred to 2 mL Eppendorf tubes and centrifuged for
10 min (13,000 rpm). The supernatant was discarded and the bacterial sediment washed
(3 times) with sterilized distilled water (SDW). The bacterial densities were then adjusted
(1 × 109, 1 × 108, and 1 × 107 CFU/mL) for further use and stored in 20% glycerol at
−80 ◦C for long-term preservation.

2.2. Fungal Strain and Culture Conditions

MoT fungal pathogen BTGP 6(f) was isolated from blast-infected wheat ear [48]
and grown on V8 agar (V8A) following the protocol described by Surovy et al. [49]. The
conidial suspension was prepared from 7-d-old MoT cultures by adding 0.01% sterile Tween
20 solution (10 mL) per plate. The suspension was filtered through a two-layer cheesecloth,
and the conidial density was adjusted (1 × 105 conidia/mL) using a hemocytometer (Fuchs-
Rosenthal, 0.0625 mm2).

2.3. Volatile Assays
2.3.1. Bi-Partitioned Petri Dish Assay

Bi-partitioned Petri dishes (90 mm diameter) were used to assess the potential of Bacil-
lus VOCs against MoT. LBA medium (10 mL) was poured into one side, and
10 mL of V8A was poured into the other side of the Petri dishes. The bacterial suspension
(100 µL) was pipetted in LBA, spread with a glass spreader, and incubated for 24 h at
25 ◦C. Three different bacterial densities (1 × 109, 1 × 108, and 1 × 107 CFU/mL) were
used for this experiment. Twenty-four hours after bacterial incubation, a 2-mm 7-d-old
MoT mycelial plug was placed on the side containing V8A. The Petri dishes were tightly
closed with parafilm to avoid the evaporation of bacterial VOCs and incubated under the
same conditions described earlier (see Section 2.2) for 5 d. The mycelial radial growth
(mm) of MoT was recorded 5 d after incubation. Subsequently, 10 mL of sterilized 0.01%
Tween 20 was added per plate and MoT conidia were dislodged from mycelia using a
paint brush (da Vinci, Germany; size 3/0). The conidial suspension was filtered through a
two-layer cheesecloth, and conidia were counted (conidia/plate) with a hemocytometer
(Fuchs-Rosenthal, 0.0625 mm2). Six replications were maintained in each experiment, and
three repetitive experiments were performed.

2.3.2. Upside-Down Petri Dish Assay

Bacterial strains at different densities (1 × 109, 1 × 108, and 1 × 107 CFU/mL) were
grown in Petri dishes containing LBA for 24 h at 25 ◦C. Twenty-four hours after bacterial
incubation, 10 µL (1 × 105 conidia/mL) of MoT conidial suspension was drop-inoculated
in another Petri dish containing V8A. These two plates, one containing bacteria and one
MoT, were placed face-to-face on top of each other, tightly sealed with parafilm to avoid
the loss of VOCs, and incubated for 5 d at 25 ◦C. The mycelial radial growth of MoT (mm)
and the total number of MoT conidia/plate were recorded as described in Section 2.3.1.
Six replications were maintained in each experiment, and three repetitive experiments
were performed.

2.4. Detached Leaf Assay

Wheat cultivar BR 18 was used for the detached leaf assay. The seeds were surface-
sterilized with sodium hypochlorite (3% NaOCl) for 1 min and subsequently washed
(3 times) with sterilized distilled water (SDW). Treated seeds were placed in Petri dishes
containing moistened filter paper. After germination, they were then sown in plastic



Microorganisms 2023, 11, 1291 4 of 18

pots (7 × 7 × 8 cm; 10 seeds per pot) containing a mixture of sand, compost, and peat
(1:2:1). Plants were grown in a greenhouse maintaining a 14/10 h light-dark cycle, 25 ◦C
(±2) temperature, and 65–70% relative humidity. At growth stage 13 (GS 13, three leaves
emerged), the second leaf was cut into small pieces (ca. 2 cm) and surface-sterilized with 3%
NaOCl. The extra water from the surface-sterilized leaves was removed with a sterile paper
towel. Leaf pieces were then placed on water agar (15 g agar, 1000 mL H2O) containing
benzimidazole (30 mg/L). Ten leaf pieces were placed in each Petri dish. The MoT conidial
suspension (1 × 105 conidia/mL) was drop-inoculated (10 µL) on each leaf piece; for the
control only, water (10 µL) was inoculated on each leaf instead of MoT conidial suspension.
The bacterial suspension (100 µL, 1 × 109 CFU/mL) was incubated in LBA for 24 h before
the preparation of leaf pieces. After incubation, freshly grown (at 25 ◦C) bacterial culture
plates were placed open and upside-down on the Petri dishes containing leaf pieces. Plates
were sealed tightly with parafilm to avoid the loss of VOCs. Five days after incubation, the
lesion growth and total number of conidia in each lesion were recorded. The lesion size
(cm2) was determined by using the ImageJ software (version 1.53 m). A single leaf section
was placed in a 2 mL Eppendorf tube containing 1 mL water, briefly vortexed, and MoT
conidia per lesion were counted using a hemocytometer (Fuchs-Rosenthal, 0.0625 mm2).
Thirty leaf pieces were used for each bacterial treatment, and three repetitive experiments
were performed.

2.5. Identification and Quantification of Bacillus Volatiles

Bacillus VOC collection was performed as described previously by Sarenqimuge et al. [50].
As an internal standard, 200 ng of tetralin (1,2,3,4 tetrahydronaphthalene, Sigma-Aldrich,
Munich, Germany) was added to each sample before GC–MS analysis. An aliquot of
30 µL sample was transferred to another GC vial with a glass insert and placed into the
tray of the GC–MS autosampler. A 2 µL sample was injected in pulsed splitless mode for
analysis. The oven temperature was retained at 40 ◦C for 3 min and gradually increased
(8 ◦C/min) to a final temperature of 220 ◦C for 10 min. Helium was used as a carrier
gas (flow rate was 1.5 mL/min). A homogenous series of n-Alkenes (C7–20) was used
to determine retention indices. The MassHunter instrument (Agilent Technologies: GC
7890B, MS 5977B, Santa Clara, CA, USA) was used for data processing; MSD ChemStation
software with the NIST17 and Willey11 mass spectral libraries was used to tentatively
identify bacterial VOCs by their mass spectra and retention indices. The identities of
the ten bioactive compounds tested in Section 2.6 were confirmed by GC–MS analysis of
commercially available standards. The VOC quantification was performed by comparing
the peak areas of individual compounds to the peak area of the internal standard (tetralin).
From each treatment, five replicates were analyzed, and LB without bacteria was used as
a control.

2.6. Bioassay with Pure Volatile Compounds

Pure VOCs (Table S1) were tested against MoT at four different concentrations (5 M,
1 M, 500 mM, and 250 mM), with DMSO as a diluent. Five sterilized paper discs were
glued (Tesa stick, tesa SE, Hugo-Kirchberg-Str.1, D-22848 Norderstedt) onto the Petri dish
lid, and 20 µL of each pure compound was pipetted on each paper disc (total 100 µL per
Petri dish). A 2 mm MoT mycelial block was placed in the center of a V8A plate and the
two plates were sealed tightly to avoid the loss of VOCs. Five days after incubation, the
mycelial radial growth of MoT and the total number of conidia per plate were recorded as
described in Section 2.3.1.

2.7. Statistical Analysis

All data were analyzed by using linear models (LMs) in the R software (version 4.0.5,
accessed 31 March 2021) integrated into R studio (version 1.2.5001, accessed 31 March 2021).
The functions ‘test dispersion’ and ‘StimulatedResiduals’ of the ‘DHARMa’ package were
used to test the dispersion and residuals of the models. These functions of the ‘DHARMa’
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package use a simulation-based method to create readily interpretable, scaled residuals for
fitted linear models. Analysis of variance (ANOVA) was calculated for normally distributed
data, followed by Tukey multiple comparisons (p < 0.05), by using the ‘emmeans’ package.
For non-normally distributed data sets, the Kruskal–Wallis test was performed by using the
‘kruskal.test’ function, followed by Dunn multiple comparison analyses by using the ‘FSA’
and ‘rcompanion’ packages (p < 0.05). The ‘ggplot2’ package was used to visualize bar
graphs, and the ‘ggVennDiagram’ function was used to plot the number of VOCs produced
in different Bacillus treatments in a Venn diagram. The ‘ComplexHeatmap’ function was
used to visualize the Bacillus VOC profiles, the effects of pure VOCs on MoT mycelial
growth, and MoT sporulation in a heatmap. MetaboAnalyst 5.0 [51] was used for volcano
plot analysis.

3. Results
3.1. Bioassay with Volatiles
3.1.1. Effects of Bacillus VOCs on MoT Growth

Three different bacterial densities (1 × 107, 1 × 108, and 1 × 109 CFU/mL) were
used in a bi-partitioned Petri dish assay to evaluate the effects of Bacillus VOCs on MoT
mycelial growth. Different bacterial VOCs significantly inhibited MoT mycelial growth
in a density-dependent manner (F = 161.44, p < 0.001) (Figure 1A). Compared to the
control (43 mm), the highest reduction (72.5%) in mycelial growth was recorded in BTS-4
(1 × 109 CFU/mL, 11.8 mm diameter), and the lowest (3%) in BTLK6A (1 × 107 CFU/mL
and 41.5 mm diameter). Inhibition of MoT mycelial growth was consistently higher at the
bacterial density of 1 × 109 CFU/mL for all four Bacillus treatments (Figure 1A,B).

In addition to the assessment of MoT mycelial growth, the sporulation rate was eval-
uated after 5 d of bacterial treatment. Treatments with Bacillus VOCs significantly sup-
pressed MoT sporulation (F = 23.092, p ≤ 0.001). All three densities (1 × 107, 1 × 108,
and 1 × 109 CFU/mL) of BTS-3, BTS-4, and the Bacillus consortium treatments produced
non-spore-forming white mycelia (100% reduction in conidia compared to control). In
the case of BTLK6A, no sporulation was observed at 1 × 109 CFU/mL. However, at
1 × 107 and 1 × 108 CFU/mL densities, black/grey-colored MoT sporulating colonies
were observed as in the untreated control. However, the number of conidia was compara-
tively less in 1 × 107 (2.37 × 105 conidia/plate, 73% reduction compared to control) and
1 × 108 CFU/mL (6.60 × 104 conidia/plate, 92% reduction compared to control) of BTLK6A
treatment compared to the control (9.10 × 105 conidia/plate) (Figure 1C).

3.1.2. Effects of Bacillus VOCs against Germination of MoT Conidia

An upside-down Petri dish assay was performed to evaluate the effect of Bacillus
VOCs on MoT conidia germination. All MoT conidia germinated, and mycelial growth
ensued after exposure to Bacillus VOCs. However, MoT mycelial growth was very slow
in the Bacillus consortium treatment (1 × 109 CFU/mL). Additionally, less intense, flat
mycelial growth was observed with all BTS-4 treatments (Figure 2A). Similar to the bi-
partitioned Petri dish assay, the bacterial VOCs also significantly inhibited MoT mycelial
growth (developed from MoT conidia) (F = 372.63, p ≤ 0.001).

Mycelial growth reduction was higher in the upside-down Petri dish assay than the
bi-partitioned Petri dish assay. The highest inhibition of mycelial growth was recorded with
the treatment of the Bacillus consortium (1 × 109 CFU/mL), with radial growth of 13.2 mm,
followed by BTS-4 (1 × 109 CFU/mL, 16.8 mm). The lowest reduction was documented for
BTLK6A (1 × 107 CFU/mL, 42.9 mm) (Figure 2B). The highest sporulation was recorded for
the control (9.73 × 105 conidia/plate). However, the complete suppression of sporulation of
MoT was recorded for all bacterial treatments except for BTLK6A (1.23 × 105 conidia/plate
at 1 × 107 CFU/mL, 87% reduction in sporulation compared to control) (Figure 2C).
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Figure 1. Effect of Bacillus spp. VOCs on MoT in bi-partitioned Petri dish assay in vitro. (A) Photo-
graphs showing the effects of Bacillus VOCs on mycelial growth of MoT; (B) effects of Bacillus VOCs 
on mycelial growth of MoT in vitro; (C) effects of Bacillus VOCs on reduction in MoT sporulation 
compared to control in vitro. Data were recorded after 5 d of MoT incubation at 25 °C. BTS-3: B. 
subtilis BTS-3; BTS-4: B. velezensis BTS-4; BTLK6A: B. velezensis BTLK6A; consortium: a mixture of 
BTS-3, BTS-4, and BTLK6A; control: without any bacterial treatment (Tukey test; n = 6; p ≤ 0.05). 
Black points in (B,C) represent data points for each replicate.  
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Figure 1. Effect of Bacillus spp. VOCs on MoT in bi-partitioned Petri dish assay in vitro. (A) Pho-
tographs showing the effects of Bacillus VOCs on mycelial growth of MoT; (B) effects of Bacillus VOCs
on mycelial growth of MoT in vitro; (C) effects of Bacillus VOCs on reduction in MoT sporulation
compared to control in vitro. Data were recorded after 5 d of MoT incubation at 25 ◦C. BTS-3: B.
subtilis BTS-3; BTS-4: B. velezensis BTS-4; BTLK6A: B. velezensis BTLK6A; consortium: a mixture of
BTS-3, BTS-4, and BTLK6A; control: without any bacterial treatment (Tukey test; n = 6; p ≤ 0.05).
Black points in (B,C) represent data points for each replicate.
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Figure 2. Effects of Bacillus spp. VOCs on MoT conidial germination in upside-down Petri dish
assay in vitro. (A) Photographs showing the effects of Bacillus VOCs on MoT conidial germination
and mycelial growth; (B) effects of bacterial VOCs on mycelial growth of MoT in vitro; (C) effects
of bacterial VOCs on reduction in new MoT sporulation compared to control in vitro. Data were
recorded after 5 d of MoT incubation at 25 ◦C. BTS-3: B. subtilis BTS-3; BTS-4: B. velezensis BTS-4;
BTLK6A: B. velezensis BTLK6A; consortium: a mixture of BTS-3, BTS-4, and BTLK6A; control: without
any bacterial treatment (Tukey test; n = 6; p ≤ 0.05). Black points in (B,C) represent data points for
each replicate.
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3.2. Effects of Bacillus VOCs in Detached Leaf Assay

To investigate the capacity of Bacillus VOCs to reduce leaf infection with MoT, a
detached leaf assay was performed using four different Bacillus VOC treatments (Figure 3A).
In our experiment, we found that Bacillus VOCs significantly reduced the development
of blast disease symptoms in detached leaves and suppressed MoT sporulation under
laboratory conditions, but with varying effects. Bacillus VOCs significantly reduced the
lesion size (F = 37.14, p ≤ 0.001) and MoT conidia production (F = 28.49, p ≤ 0.001)
(Figure 4A). The largest lesion (0.48 cm2) was recorded in the untreated control, followed by
BTLK6A, where BTLK6A VOCs reduced the lesion size by 43.75% (0.27 cm2) compared to
the control. The smallest lesion was observed in BTS-4, with a >85% reduction in lesion size
(0.07 cm2) compared to the control, followed by the Bacillus consortium (81.25% reduction,
0.09 cm2) and BTS-3 (72.9% reduction, 0.13 cm2). Therefore, there were no significant
differences between the BTS-3, BTS-4, and Bacillus consortium treatments (Figure 3B).

MoT sporulation in VOC-treated leaf lesions was lower compared to the control. A
single lesion on a control leaf segment yielded 5.6 × 104 conidia/lesion, significantly
different from all other bacterial treatments. The BTS-4-treated leaf segments had the
lowest number of conidia (1.9 × 103 conidia/lesion), followed by the Bacillus consortium
(3.5 × 103 conidia/lesion). However, the numbers of conidia produced in BTS-4 and
consortium-treated leaf lesions were not significantly different. There was no MoT sporula-
tion in the water-treated control as there was no MoT infection present (Figure 3C).

3.3. Identification and Quantification of Bacillus Volatile Organic Compounds (VOCs)

The VOCs produced from the four different Bacillus treatments (BTS-3, BTS-4, BTLK6A,
and consortium (a mixture of all three Bacillus strains)) were identified and quantified using
GC–MS. Thirty-nine VOCs were identified in total, of which 11 were produced by all four
bacterial treatments (Figure 4A, Table S2).

The greatest diversity of VOCs were released by BTS-4 (34), followed by the Bacillus
consortium (22), and lastly by BTLK6A (12). Among the 39 VOCs, 12 unique VOCs were
produced by BTS-4, two by the Bacillus consortium, and only one by BTS-3. A total of
nine different classes of volatiles were identified: alkanes 7.70%, alcohols 23.07%, ketones
20.51%, fatty acids 12.82%, aldehydes 15.38%, aromatic 2.56%, N-containing 10.25%, S-
containing 5.12%, and alkene compounds 2.56% (Figure 4B). Alcohol, fatty acid, ketone,
S-containing, and aldehyde compounds were identified in all four Bacillus treatments.
The highest number of diversified VOC classes was detected in BTS-4 (9), followed by
BTS-3 (8), the consortium (7), and BTLK6A (6). The number of alcoholic VOCs was higher
for BTS-4, followed by the Bacillus consortium. Fatty acid VOCs were also higher in BTS-4,
followed by the BTS-3 and Bacillus consortium treatments (Figure 4B). The concentrations
of bacterial VOCs produced by different treatments differed significantly. The heatmap
analysis represents the VOC clustering and the relationships between different bacterial
treatments (Figure 4C).

In vitro and in vivo experimental data indicated that VOCs from the BTS-4 and Bacillus
consortium treatments had considerable potential to control MoT. Therefore, we inves-
tigated the relationships between the VOCs produced from the BTS-4 and consortium
treatments to determine the effectiveness of BTS-4 and Bacillus consortium volatiles against
MoT. Figure 5 displays the fold change (p ≤ 0.05) in VOC production from BTS-4 compared
to the Bacillus consortium. In BTS-4, 21 VOCs were upregulated, 4 were down-regulated,
and 9 were not significantly different from the Bacillus consortium treatment (Figure 5).



Microorganisms 2023, 11, 1291 9 of 18

Microorganisms 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

Mycelial growth reduction was higher in the upside-down Petri dish assay than the 
bi-partitioned Petri dish assay. The highest inhibition of mycelial growth was recorded 
with the treatment of the Bacillus consortium (1 × 109 CFU/mL), with radial growth of 13.2 
mm, followed by BTS-4 (1 × 109 CFU/mL, 16.8 mm). The lowest reduction was documented 
for BTLK6A (1 × 107 CFU/mL, 42.9 mm) (Figure 2B). The highest sporulation was recorded 
for the control (9.73 × 105 conidia/plate). However, the complete suppression of sporula-
tion of MoT was recorded for all bacterial treatments except for BTLK6A (1.23 × 105 co-
nidia/plate at 1 × 107 CFU/mL, 87% reduction in sporulation compared to control) (Figure 
2C). 

3.2. Effects of Bacillus VOCs in Detached Leaf Assay 
To investigate the capacity of Bacillus VOCs to reduce leaf infection with MoT, a de-

tached leaf assay was performed using four different Bacillus VOC treatments (Figure 3A). 
In our experiment, we found that Bacillus VOCs significantly reduced the development of 
blast disease symptoms in detached leaves and suppressed MoT sporulation under labor-
atory conditions, but with varying effects. Bacillus VOCs significantly reduced the lesion 
size (F = 37.14, p ≤ 0.001) and MoT conidia production (F = 28.49, p ≤ 0.001) (Figure 4A). 
The largest lesion (0.48 cm2) was recorded in the untreated control, followed by BTLK6A, 
where BTLK6A VOCs reduced the lesion size by 43.75% (0.27 cm2) compared to the con-
trol. The smallest lesion was observed in BTS-4, with a >85% reduction in lesion size (0.07 
cm2) compared to the control, followed by the Bacillus consortium (81.25% reduction, 0.09 
cm2) and BTS-3 (72.9% reduction, 0.13 cm2). Therefore, there were no significant differ-
ences between the BTS-3, BTS-4, and Bacillus consortium treatments (Figure 3B).  

MoT sporulation in VOC-treated leaf lesions was lower compared to the control. A 
single lesion on a control leaf segment yielded 5.6 × 104 conidia/lesion, significantly differ-
ent from all other bacterial treatments. The BTS-4-treated leaf segments had the lowest 
number of conidia (1.9 × 103 conidia/lesion), followed by the Bacillus consortium (3.5 × 103 
conidia/lesion). However, the numbers of conidia produced in BTS-4 and consortium-
treated leaf lesions were not significantly different. There was no MoT sporulation in the 
water-treated control as there was no MoT infection present (Figure 3C). 

 
Microorganisms 2023, 11, x FOR PEER REVIEW 9 of 18 
 

 

 

 
Figure 3. Effects of Bacillus VOCs on lesion development and MoT sporulation in a detached wheat 
leaf assay (cv. BR-18). (A) VOCs from Bacillus spp. significantly reduced leaf blast lesion size in vivo. 
(B) Bacillus VOCs significantly reduced leaf lesion area (cm2) caused by MoT in vivo (Kruskal–Wallis 
test; n = 30; p ≤ 0.05); (C) reduction in MoT sporulation by VOCs from different Bacillus spp. in vivo 
(Tukey test; n = 30; p ≤ 0.05). Data were recorded after 5 d of MoT incubation at 25 °C. BTS-3: B. 
subtilis BTS-3; BTS-4: B. velezensis BTS-4; BTLK6A: B. velezensis BTLK6A; consortium: a mixture of 
BTS-3, BTS-4, and BTLK6A; untreated control: only MoT inoculated. Black points in (B,C) represent 
data points for each replicate. 

3.3. Identification and Quantification of Bacillus Volatile Organic Compounds (VOCs) 
The VOCs produced from the four different Bacillus treatments (BTS-3, BTS-4, 

BTLK6A, and consortium (a mixture of all three Bacillus strains)) were identified and 
quantified using GC–MS. Thirty-nine VOCs were identified in total, of which 11 were pro-
duced by all four bacterial treatments (Figure 4A, Table S2).  

 

Figure 3. Effects of Bacillus VOCs on lesion development and MoT sporulation in a detached wheat
leaf assay (cv. BR-18). (A) VOCs from Bacillus spp. significantly reduced leaf blast lesion size in vivo.
(B) Bacillus VOCs significantly reduced leaf lesion area (cm2) caused by MoT in vivo (Kruskal–Wallis
test; n = 30; p ≤ 0.05); (C) reduction in MoT sporulation by VOCs from different Bacillus spp. in vivo
(Tukey test; n = 30; p ≤ 0.05). Data were recorded after 5 d of MoT incubation at 25 ◦C. BTS-3: B.
subtilis BTS-3; BTS-4: B. velezensis BTS-4; BTLK6A: B. velezensis BTLK6A; consortium: a mixture of
BTS-3, BTS-4, and BTLK6A; untreated control: only MoT inoculated. Black points in (B,C) represent
data points for each replicate.
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Figure 4. Identification and quantification of VOCs from different Bacillus treatments by GC–MS
analysis. (A) Venn diagram representing the number of VOCs produced from different Bacillus spp.;
(B) number of different VOC classes produced from different Bacillus treatments; (C) heatmap based
on Euclidean distance showing the VOCs produced from each Bacillus treatment. Each line in the
color heatmap indicates a single compound; red to green color code indicates low to high relative
concentrations (based on row Z-scores) of the compounds; blue color indicates compounds detected
only in a single treatment; grey color indicates undetected volatile. BTS-3: B. subtilis BTS-3; BTS-4: B.
velezensis BTS-4; BTLK6A: B. velezensis BTLK6A; const.: consortium (a mixture of B. subtilis BTS-3, B.
velezensis BTS-4, and B. velezensis BTLK6A) (n = 5; p ≤ 0.05). The VOCs were quantified from 40 mL
LB inoculated with 100 µL (1 × 109 CFU/mL) bacteria and incubated for 4 d at 25 ◦C.
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Figure 5. Fold change (FC) in VOCs produced by B. velezensis BTS-4 in relation to the Bacillus
consortium (a mixture of B. subtilis BTS-3, B. velezensis BTS-4, and B. velezensis BTLK6A) treatment
through volcano plot analysis. The log2 fold change threshold was 2.0. The false discovery rate (FDR)
was maintained with p threshold at 0.05. The VOCs were quantified from 40 mL LB inoculated with
100 µL (1 × 109 CFU/mL) bacteria and incubated for 4 d at 25 ◦C. Non-SIG: non-significant.

3.4. Effect of Pure VOCs on Mycelial Growth and Sporulation of MoT

From 39 identified VOCs, ten bioactive VOCs (2-methyl propionic acid, 3-methyl-
1-butanol, 3-methyl butanoic acid, 2,3-butanediol, and 2-methyl butanoic acid, phenyl
ethyl alcohol, hexanoic acid, 2-methyl-1-butanol, 2,5-dimethyl pyrazine, and acetoin) were
tested in vitro against MoT based on the previous literature [50]. DMSO and water were
used as positive controls. Of the selected compounds, four VOCs (2-methyl butanoic
acid, 2-methyl propanoic acid, 2,5- dimethyl pyrazine, and 3-methyl butanoic acid) were
produced by all four bacterial treatments; three (2,3-butanediol, 3-methyl-1-butanol, and
phenyl ethyl alcohol) were produced by BTS-4 and the Bacillus consortium; two VOCs
(2-methyl-1-butanol and acetoin) only in BTS-4; and one (hexanoic acid) in the BTS-3 and
BTS-4 treatments.

The efficacy of single pure volatile compounds against MoT mycelial growth was
assessed in an in vitro bioassay. Pure VOCs were used at four different concentrations
(5 M, 1 M, 500 mM, and 250 mM). At 5 M, all compounds except acetoin and 2,3-butanediol
inhibited the mycelial growth of MoT (Figure 6A). Among the pure compounds, hexanoic
acid suppressed MoT growth up to a 500 mM concentration (Figure S1 and Table S3).

In parallel with the reduction in MoT mycelial growth, the selected pure VOCs sig-
nificantly reduced sporulation from MoT mycelia in vitro (Figure S2 and Table S3). No
sporulation was observed in any of the four treatments with phenylethyl alcohol (PEA).
Similarly, no sporulation was recorded for hexanoic acid or 2-methylbutanoic acid up
to a 500 mM concentration (Figure 6B). Figure 6A,B contain heatmaps showing the rela-
tive effects of potential VOCs on the reduction in the mycelial growth and sporulation of
MoT. The lowest VOC concentration inhibitory to MoT sporulation was recorded for PEA
(250 mM), followed by 2-methylbutanoic acid and hexanoic acid at 500 mM (Figure 6B).
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4. Discussion

In this study, we used four bacterial treatments (BTS-3, BTS-4, BTLK6A, and a con-
sortium of Bacillus spp.) to assess the effects of Bacillus spp. VOCs to control an emerging
fungal pathogen, the M. oryzae Triticum (MoT) pathotype. All Bacillus treatments produced
diverse VOCs and exhibited strong antagonism against MoT, by suppressing mycelial
growth and sporulation in vitro. It is well documented that Bacillus VOCs exert anti-
fungal activity against various phytopathogens [52,53]. Additionally, some studies have
reported that the volatiles from B. megaterium [54], endophytic Chryseobacterium [37], and
Pseudomonas sp. [55] suppress the mycelial growth of the rice blast pathogen (M. oryzae
Oryzae pathotype). However, so far, no information has been made available about the
suppression of MoT mediated by Bacillus volatiles. To the best of our knowledge, this
is the first report on Bacillus VOCs significantly inhibiting the mycelial growth of this
important pathogen.

It has been previously reported that bacterial consortia are more effective at controlling
certain fungal pathogens than single bacterial strains [56,57]. In this study, B. velezensis
BTS-4 and the Bacillus consortium performed better than the other Bacillus treatments in
suppressing MoT mycelial growth and conidial germination in vitro. Additionally, the
densitiy of Bacillus spp. had a significant positive correlation with MoT inhibition. At
1 × 109 CFU/mL, the MoT inhibition rate was higher than at 1 × 107 and 1 × 108 CFU/mL.
The higher densitiy of Bacillus spp. led to more Bacillus colony growth, higher VOC
production, and a significant reduction in the growth and sporulation of MoT. B. velezensis
can inhibit the growth of Colletotrichum gloeosporioides at a density of 1 × 107 CFU/mL [52]
and S. sclerotiorum at a density of 1 × 108 CFU/mL [58]. Furthermore, B. subtilis has
been documented to control Alternaria solani at a density of 1 × 108 CFU/mL [59], and B.
amyloliquefaciens VOCs can suppress Fusarium oxysporum f. sp. cubense in vitro also at a
density of 1 × 108 CFU/mL [60].

These findings suggest that the VOCs from Bacillus spp. may lead to the functional
degradation of MoT mycelia and thus suppress sporulation from MoT mycelia. Deformed
hyphae with vacuolation, excessive branching, the degeneration of hyphal cells, or com-
binations of excessive branching with vacuolation were recorded (Figure S3). Likewise,
the VOCs from B. velezensis and B. atrophaeus also cause vacuolation and cavities in the
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mycelial cytoplasm of B. cinerea [58], and VOCs of B. subtilis may cause expanded, uneven,
flaccid hyphae and the suppression of A. solani sporulation [59].

Furthermore, Bacillus VOCs significantly reduced the leaf blast lesion size and further
MoT sporulation from the lesions in an in vivo detached leaf assay. Conidia are the main
dispersal units of MoT epidemiology. Reduced or no conidia formation will result in
reduced wheat infection by MoT. Therefore, understanding the MoT sporulation reduction
mechanisms of Bacillus VOCs is the first step in controlling MoT epidemics. Earlier reports
reveal that the volatiles of Bacillus spp. May reduce the lesion size and sporulation of A.
solani in potato leaves [59], as well as the sporulation of Sclerotinia sclerotiorum on tomato,
tobacco, and soybean leaves in vivo [61]. However, our results confirm that exposure to
Bacillus VOCs does not entirely prevent MoT infection or sporulation but rather slows
down the development of blast symptoms compared to the untreated control. Bacillus
VOCs also significantly reduced blast lesion development in the detached spike assay (data
not shown).

GC–MS was used to determine the active VOCs from different Bacillus treatments. Thirty-
nine VOCs were identified in total, of which 11 VOCs were produced in all four Bacillus
treatments. The emitted bacterial VOCs were alcohols, alkenes, alkynes, ketones, aldehydes,
fatty acids, aromatic, N-containing, and S-containing compounds. The VOCs identified in
our analysis have demonstrated broader antifungal activity against phytopathogens. The
mixture of alcoholic volatiles 2-methyl-1-butanol and 3-methyl-1-butanol was very effective
in suppressing the growth of Phyllosticta citricarpa [62] and Aspergillus flavus [63], and 2-ethyl-
1-hexanol strongly inhibited the growth of Colletotricum acutatum [64] and B. cinerea [65].

The compound 6-methyl-2-heptanone disrupts mycelial integrity, collapses conidial
vesicles, and downregulates the conidial germination gene of pathogenic fungus [66]. The
S-containing volatile compound benzothiazole inhibits cystospore germination and the
mycelial growth of Phythophthora parasitica var. nicotianae [67]. Hexanal, an aldehyde
group volatile, induces systemic resistance in mango plants by inducing defense-related
enzymes (phenylalanine ammonia lyase (PAL), peroxidase (PO), polyphenol oxidase (PPO),
superoxide dismutase (SOD), and catalase (CAT)), thus significantly reducing Lasiodiplodia
theobromae infection [68].

In our study, ten VOCs were selected to test their potential in inhibiting MoT based
on their reported bioactivity in the literature. All selected VOCs except acetoin and 2,3-
butanediol significantly reduced MoT mycelial growth and sporulation. Acetoin and
2,3-butanediol play a role in inducing systemic resistance in plants [69,70] and do not
seem to be directly involved in the suppression of MoT mycelial growth and sporula-
tion. Meanwhile, 2,5-dimethyl pyrazine stopped MoT sporulation at a 1 M concentration
and has also been cited to control Sclerotinia sp., Pythium sp., Rhizoctonia sp. [71], and
Anthracnose sp. [72]. The activity of 2-methyl propanoic acid against MoT was not promis-
ing; although it effectively controls rubber white root rot disease, it negatively affects
seedling growth [73].

Hexanoic acid, phenylethyl alcohol, and 2-methyl butanoic acid potentially inhibited
the mycelial growth and sporulation of MoT. Phenylethyl alcohol slows phytopathogenic
growth by inhibiting the synthesis of RNA, DNA, and protein and upregulates genes
related to the phagosome, peroxisome, proteasome, and autophagy [74]. Considering this
information, it can be deduced that the phenylethyl alcohol first causes MoT mycelial
alternations and later induces autophagy, triggering programmed cell death. Fatty acids
have also been reported to exert inhibitory activity against some fungal pathogens, but
saturated fatty acids have robust antifungal activity compared to other fatty acids [75].
This study found that hexanoic acid (a saturated fatty acid) inhibited mycelial growth
and sporulation up to 500 mM. It has been documented that the minimum inhibitory
concentrations (MICs) of hexanoic acid against Micosporum gypseum range from 0.02 to
75 µg/mL [76]. At a concentration of 10 mM, Candida albicans growth is inhibited by hex-
anoic acid through changes in intracellular hydrostatic pressure and subsequent disruption
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of the cell plasma membrane [77]. Additionally, hexanoic acid enhances plant jasmonic
acid (JA) signaling and induces callose deposition during fungal infection [78].

Organic fertilizers promoted the growth of B. amyloliquefaciens, induced the release
of 2-nonanone and nonanal, and suppressed R. solanacearum [79]. The encapsulation of
Bacillus VOCs might be an effective way to use bacterial VOCs under field conditions; thus,
it facilitates the slow and steady release of volatiles. Effective control of MoT using bacterial
VOCs requires more detailed studies considering field environmental conditions and com-
patability with other control strategies. Therefore, our study suggests that Bacillus VOCs
are potential biologicals to suppress MoT, with fundamental and practical implications for
wheat production through reducing the severity of wheat blast. As Bacillus spp. are rich
in the production of both volatile and non-volatile antimicrobial compounds [47], further
studies are warranted to identify non-volatile antimicrobial secondary metabolites from the
investigated Bacillus spp. that might work together to effectively control wheat blast. Field
evaluation of wheat blast suppression by these Bacillus and their metabolites is required
before recommending them for practical application in the biorational management of
wheat blast.

5. Conclusions

Bacillus produces diverse antifungal volatile organic compounds (VOCs) that are able
to suppress the growth and sporulation of MoT conidia in vitro and in vivo. Wheat blast
is mainly caused by infections initiated by MoT conidia, and the suppression of MoT
sporulation may have practical relevance and fundamental implications in reducing wheat
blast severity.
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