Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolated Bacteria and DNA Extraction
2.2. Genome Sequencing and Assembly Process
2.3. Phylogenetic Tree Analysis to Identify Species
2.4. Average Nucleotide Identity (ANI) and DNA–DNA Hybridization (dDDH)
2.5. Annotation Gene to Genomic Features of Subtercola sp. PAMC28395
3. Results and Discussion
3.1. Complete Genome Information of Subtercola sp. PAMC28395
3.2. 16S rRNA Phylogenetic Analysis and Calculation of ANI and dDDH
3.3. CAZyme-Encoding Genes in Subtercola sp. PAMC28395
3.4. Comparison of CAZyme Patterns with Those from Closely Related Species
3.5. Glycogen/Trehalose and Pentose Phosphate Metabolic Pathway in Subtercola sp. PAMC28395
3.6. Analysis of Secondary Metabolite BGCs and Antibiotic Resistance Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molg, T.; Rott, H.; Kaser, G.; Fischer, A.; Cullen, N.J. Comment on “Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature” by Richard G. Taylor, Lucinda Mileham, Callist Tindimugaya, Abushen Majugu, Andrew Muwanga, and Bob Nakileza. Geophys. Res. Lett. 2006, 33, L20404. [Google Scholar] [CrossRef]
- Uetake, J.; Tanaka, S.; Hara, K.; Tanabe, Y.; Samyn, D.; Motoyama, H.; Imura, S.; Kohshima, S. Novel biogenic aggregation of moss gemmae on a disappearing African glacier. PLoS ONE 2015, 10, e0123375. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.G.; Mileham, L.; Tindimugaya, C.; Majugu, A.; Muwanga, A.; Nakileza, B. Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophys. Res. Lett. 2006, 33, L10402. [Google Scholar] [CrossRef]
- Garelick, S.; Russell, J.; Richards, A.; Smith, J.; Kelly, M.; Anderson, N.; Jackson, M.S.; Doughty, A.; Nakileza, B.; Ivory, S.; et al. The dynamics of warming during the last deglaciation in high-elevation regions of Eastern Equatorial Africa. Quat. Sci. Rev. 2022, 281, 107416. [Google Scholar] [CrossRef]
- Anesio, A.M.; Lutz, S.; Chrismas, N.A.M.; Benning, L.G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 2017, 3, 10. [Google Scholar] [CrossRef]
- Sakamoto, T.; Murata, N. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 2002, 5, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Piette, F.; Leprince, P.; Feller, G. Is there a cold shock response in the Antarctic psychrophile Pseudoalteromonas haloplanktis? Extremophiles 2012, 16, 681–683. [Google Scholar] [CrossRef]
- Han, S.R.; Jang, S.M.; Chi, Y.M.; Kim, B.; Jung, S.H.; Lee, Y.M.; Uetake, J.; Lee, H.L.; Park, H.; Oh, T.J. Complete genome sequence of Sphingobium sp. strain PAMC28499 reveals a potential for degrading pectin with comparative genomics approach. Genes Genomics 2020, 42, 1087–1096. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, R.; Wu, X.; Zhong, Q.; Li, Y.; Wang, H. Comparative genomic analysis of Stenotrophomonas maltophilia strain W18 reveals its adaptative genomic features for degrading polycyclic aromatic hydrocarbons. Microbiol. Spectr. 2021, 9, e0142021. [Google Scholar] [CrossRef]
- Mannisto, M.K.; Schumann, P.; Rainey, F.A.; Kämpfer, P.; Tsitko, I.; Tiirola, M. Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int. J. Syst. Evol. Microbiol. 2000, 50, 1731–1739. [Google Scholar] [CrossRef]
- Si, H.L.; Shi, F.X.; Zhang, L.L.; Yue, H.S.; Wang, H.Y.; Zhao, Z.T. Subtercola lobariae sp. nov., an actinobacterium of the family Microbacteriaceae isolated from the lichen Lobaria retigera. Int. J. Syst. Evol. Microbiol. 2017, 67, 1516–1521. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, A.S.; Wiese, J.; Aguilar, P.; Dorador, C.; Imhoff, J.F. Subtercola vilae sp. nov., a novel actinobacterium from an extremely high-altitude cold volcano lake in Chile. Antonie Leeuwenhoek 2018, 111, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, S.M.; Dhakephalkar, P. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 2014, 18, 229–242. [Google Scholar] [CrossRef]
- Jiang, L.; Peng, Y.; Seo, J.; Jeon, D.; Jo, M.G.; Lee, J.H.; Jeong, J.C.; Kim, C.Y.; Park, H.C.; Lee, J. Subtercola endophyticus sp. nov., a cold-adapted bacterium isolated from Abies koreana. Sci. Rep. 2022, 12, 12114. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Hanada, Y.; Singh, S.M.; Tsuda, S. Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiol. Lett. 2014, 351, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.C.; Brouchkov, A.; Griva, G.; Schinner, F.; Margesin, R. Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology 2013, 2, 85–106. [Google Scholar] [CrossRef]
- Peeters, K.; Ertz, D.; Willems, A. Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa. Syst. Appl. Microbiol. 2011, 34, 360–367. [Google Scholar] [CrossRef]
- Chin, C.-S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008, 9, 75. [Google Scholar] [CrossRef]
- Stothard, P.; Wishart, D.S. Circular genome visualization and exploration using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef]
- Grant, R.; Arantes, A.S.; Stothard, P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 2012, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, Y.O.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Zheng, J.; Hu, B.; Zhang, X.; Ge, Q.; Yan, Y.; Akresi, J.; Piyush, V.; Huang, L.; Yin, Y. dbCAN-seq update: CAZyme gene clusters and substrates in microbiomes. Nucleic Acids Res. 2023, 51, D557–D563. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Zheng, J.; Dovoedo, P.; Yin, Y. eCAMI: Simultaneous classification and motif identification for enzyme annotation. Bioinformatics 2020, 36, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; Van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Mungan, M.D.; Alanjary, M.; Blin, K.; Weber, T.; Medema, M.H.; Ziemert, N. ARTS 2.0: Feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 2020, 48, W546–W552. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Kristensen, D.M.; Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Microbial genome analysis: The COG approach. Brief. Bioinform. 2019, 20, 1063–1070. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 6th ed.; Macmillan: Stuttgart, Germany, 2013; pp. 731–791. [Google Scholar]
- Sanders, L.M. Carbohydrate: Digestion, absorption and metabolism. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 643–650. [Google Scholar]
- Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kim, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef]
- Auch, A.F.; von Jan, M.; Klenk, H.P.; Göker, M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomics Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef]
- Shen, L.; Zang, X.; Sun, K.; Chen, H.; Che, X.; Sun, Y.; Wang, G.; Zhang, S.; Chen, G. Complete genome sequencing of Bacillus sp. TK-2, analysis of its cold evolution adaptability. Sci. Rep. 2021, 11, 4836. [Google Scholar] [CrossRef]
- Wilson, W.A.; Roach, P.J.; Montero, M.; Baroja-Fernández, E.; Muñoz, F.J.; Eydallin, G.; Viale, A.M.; Pozueta-Romero, J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 2010, 34, 952–985. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Wise, M.J.; Liu, Q.; Yang, T.; Zhu, Z.; Li, C.; Tan, X.; Tang, D.; Wang, W. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J. Microbiol. Biotechnol. 2020, 36, 14. [Google Scholar] [CrossRef] [PubMed]
- Han, S.R.; Kim, B.; Chi, Y.M.; Kang, S.; Park, H.; Jung, S.H.; Lee, J.H.; Oh, T.J. Complete genome sequencing of Shigella sp. PAMC28760: Identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation. Microb. Pathog. 2019, 137, 103759. [Google Scholar] [CrossRef] [PubMed]
- Han, S.R.; Kim, B.; Jang, J.H.; Park, H.; Oh, T.J. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genomics 2021, 22, 403. [Google Scholar] [CrossRef]
- Paudel, L.; Ghimire, N.; Han, S.R.; Park, H.; Jung, S.H.; Oh, T.J. Complete genome of Nakamurella sp. PAMC28650: Genomic insights into its environmental adaptation and biotechnological potential. Funct. Integr. Genomics 2023, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Tison, M.; Tailford, L.E.; Fuell, C.; Bruel, L.; Sulzenbacher, G.; Henrissat, B.; Berrin, J.G.; Fons, M.; Giardina, T.; Juge, N. Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: Insights into the metabolism of a plant oligosaccharide by a human gut symbiont. Appl. Environ. Microbiol. 2012, 78, 7720–7732. [Google Scholar] [CrossRef] [PubMed]
- Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10, 323–335. [Google Scholar] [CrossRef]
- Roberts, G.; Tarelli, E.; Homer, K.A.; Philpott-Howard, J.; Beighton, D. Production of an endo-β-N-acetylglucosaminidase activity mediates growth of Enterococcus faecalis on a high-mannose-type glycoprotein. J. Bacteriol. Res. 2000, 182, 882–890. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Yu, H.; Sheng, X.; Wang, J.; Fisher, A.J.; Chen, X. Enterococcus faecalis α1–2-mannosidase (EfMan-I): An efficient catalyst for glycoprotein N-glycan modification. FEBS Lett. 2020, 594, 439–451. [Google Scholar] [CrossRef]
- Ball, S.; Colleoni, C.; Cenci, U.; Raj, J.N.; Tirtiaux, C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J. Exp. Bot. 2011, 62, 1775–1801. [Google Scholar] [CrossRef]
- Ge, T.; Yang, J.; Zhou, S.; Wang, Y.; Li, Y.; Tong, X. The role of the pentose phosphate pathway in diabetes and cancer. Front. Endocrinol. 2020, 11, 365. [Google Scholar] [CrossRef]
- Rytter, H.; Jamet, A.; Ziveri, J.; Ramond, E.; Coureuil, M.; Lagouge-Roussey, P.; Euphrasie, D.; Tros, F.; Goudin, N.; Chhuon, C.; et al. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog. 2021, 17, e1009326. [Google Scholar] [CrossRef] [PubMed]
- Garschagen, L.S.; Franke, T.; Deppenmeier, U. An alternative pentose phosphate pathway in human gut bacteria for the degradation of C5 sugars in dietary fibers. FEBS J. 2021, 288, 1839–1858. [Google Scholar] [CrossRef]
- Zhu, S.; Yu, J.; Chen, X.; Zhang, Q.; Cai, X.; Ding, Y.; Zhou, X.; Wang, S. Dual cryoprotective strategies for ice-binding and stabilizing of frozen seafood: A review. Trends Food Sci. Technol. 2021, 111, 223–232. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, H.J.; Lin, H.M.; Deng, S.G.; Wu, H. Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage. Food Chem. 2019, 278, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Simpson, P.J.L.; Codd, R. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Biochem. Biophys. Res. Commun. 2011, 414, 783–788. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Q.; Zang, X.; Yuan, S.; Bat-Erdene, U.; Nguyen, C.; Gan, J.; Zhou, J.; Jacobsen, S.E.; Tang, Y.; et al. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 2018, 559, 415–418. [Google Scholar] [CrossRef]
Feature | Value |
---|---|
A. Genome Statistics | |
Contig | 1 |
Total length (bp) | 3,214,492 |
N50 | 3,214,492 |
L50 | 1 |
GC content (%) | 64.5 |
B. Genome features | |
Assembly level | Complete genome |
Genes | 2930 |
Protein | 2849 |
Pseudogenes | 24 |
rRNA genes | 6 |
tRNA genes | 48 |
GH Family | Enzyme Activity | Gene Location | EC Number |
---|---|---|---|
GH1 | Beta-glucosidase | 275769_277226 | EC 3.2.1.21 |
Beta-glucosidase/beta-D-fucosidase | 1505668_1507110 | EC 3.2.1.21/ EC 3.2.1.38 | |
Beta-glucosidase | 3028462_3026861 | EC 3.2.1.21 | |
GH3 | Beta-N-acetylglucosaminidase | 3132007_3131027 | EC 3.2.1.52 |
GH5 | Endoglucanase/endo-1,4-beta-glucanase | 1292002_1293591 | EC 3.2.1.4 |
Endoglucanase/endo-1,4-beta-glucanase | 283139_284821 | EC 3.2.1.4 | |
GH6 | Beta-1,4-glucanase (cellulase) | 1232268_1233245 | EC 3.2.1.4 |
GH13 | Malto-oligosyltrehalose trehalohydrolase | 1915218_1913389 | EC 3.2.1.141 |
Limit dextrin alpha-1,6-maltotetraose-hydrolase | 1877463_1875409 | EC 3.2.1.196 | |
Limit dextrin alpha-1,6-maltotetraose-hydrolase | 1919805_1917604 | EC 3.2.1.196 | |
Limit dextrin alpha-1,6-maltotetraose-hydrolase | 2317861_2319915 | EC 3.2.1.196 | |
Trehalose synthase/alpha-amylase | 2380696_2382417 | EC 5.4.99.16/ EC 3.2.1.1 | |
Malto-oligosyltrehalose synthase | 1917563_1915224 | EC 5.4.99.15 | |
Glucanase glgE | 1872324_1870189 | EC 3.2.1.- | |
Alpha-glucosidase | 530778_532550 | EC 3.2.1.20 | |
Oligo-1,6-glucosidase | 767858_769579 | EC 3.2.1.10 | |
Amylosucrase | 2341070_2339187 | EC 2.4.1.4 | |
1,4-Alpha-glucan (glycogen) branching enzyme | 1870189_1867967 | EC 2.4.1.18 | |
GH14 | Beta-amylase | 2902484_2904043 | EC3.2.1.2 |
GH15 | Glucoamylase | 3134358_3136247 | EC 3.2.1.3 |
Glucoamylase | 2314490_2312595 | EC 3.2.1.3 | |
GH23 | Peptidoglycan lyase | 540715_539951 | EC 4.2.2.n1 |
Peptidoglycan lyase | 2448999_2448115 | EC 4.2.2.n1 | |
GH25 | LysM peptidoglycan-binding domain-containing protein | 1327564_1326686 | - |
GH31 | Alpha-xylosidase | 1503329_1505671 | EC 3.2.1.177 |
GH36 | Alpha-galactosidase | 1771245_1769200 | EC 3.2.1.22 |
GH42 | Beta-galactosidase | 1776765_1774606 | EC 3.2.1.23 |
GH63 | Glucosidase | 2557228_2560086 | EC 3.2.1.20 |
GH65 | Maltose phosphorylase/trehalose phosphorylase | 1652990_1655497 | EC 2.4.1.8/EC 2.4.1.64 |
GH76 | Alpha-1,6-mannanase | 3035588_3036697 | EC 3.2.1.101 |
GH92 | Alpha-1,2-mannosidase | 2024160_2021845 | EC3.2.1.130 |
Cluster | Type | From | To | Most Similar Known Cluster (% Gene Similarity) | MIBiG-ID * |
---|---|---|---|---|---|
Cluster 1 | Oligosaccharide | 923,143 | 955,149 | Branched-chain fatty acids (100%) | BGC0001535 |
Cluster 2 | Terpene | 1,048,063 | 1,069,037 | Carotenoid (25%) | BGC0000637 |
Cluster 3 | T3PKS | 1,878,107 | 1,919,117 | Alkylresorcinol (100%) | BGC0000282 |
Cluster 4 | Beta-lactone | 2,244,583 | 2,270,325 | Microansamycin (7%) | BGC0001666 |
Cluster 5 | NAPAA | 2,736,338 | 2,770,420 | - | - |
Organisms | Total Genes | Total BGCs | Known Resistance | Core Genes | Gene Duplication | BGC Proximity | Phylogeny /HGT |
---|---|---|---|---|---|---|---|
Subtercola sp. PAMC28395 | 2874 | 5 | 19 | 440 | 12 | 35 | 165 |
Subtercola sp. AK-R2A1-2 | 3952 | 5 | 20 | 449 | 14 | 25 | 165 |
Subtercola sp. Z020 | 3453 | 5 | 21 | 434 | 12 | 16 | 140 |
Subtercola frigoramans DSM13057 | 3362 | 5 | 20 | 444 | 13 | 32 | 162 |
Subtercola vilae DB165 | 4013 | 4 | 20 | 444 | 19 | 18 | 182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, R.; Han, S.-R.; Park, H.; Oh, T.-J. Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. Microorganisms 2023, 11, 1480. https://doi.org/10.3390/microorganisms11061480
Yamada R, Han S-R, Park H, Oh T-J. Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. Microorganisms. 2023; 11(6):1480. https://doi.org/10.3390/microorganisms11061480
Chicago/Turabian StyleYamada, Ryoichi, So-Ra Han, Hyun Park, and Tae-Jin Oh. 2023. "Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications" Microorganisms 11, no. 6: 1480. https://doi.org/10.3390/microorganisms11061480
APA StyleYamada, R., Han, S. -R., Park, H., & Oh, T. -J. (2023). Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. Microorganisms, 11(6), 1480. https://doi.org/10.3390/microorganisms11061480