Significant Microbial Changes Are Evident in the Reproductive Tract of Pregnant Rhesus Monkeys at Mid-Gestation but Their Gut Microbiome Does Not Shift until Late Gestation
Abstract
:Highlights
- Bacterial composition and community structure in the lower reproductive tract of female rhesus monkeys are significantly different by mid-pregnancy but significant shifts in their gut microbiome do not occur until later near term.
- By late pregnancy, four species of Lactobacillus and Bifidobacterium adolescentis were among the enriched commensals in the hindgut of female monkeys. The abundance of bacterial genes in the intestines, with potential effects on many metabolic pathways, differed in the last month of pregnancy.
- Several factors likely contributed to some of the differences in the microbial profiles of pregnant monkeys and women, including the consumption of a standardized diet throughout pregnancy and the comparatively low progesterone levels in rhesus monkeys, which were only 2–3% of the third trimester values in women.
Abstract
1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Specimen Collection, DNA Isolation and Sequencing
2.4. 16S rRNA Gene Amplicon Data Processing
2.5. Additional Sequencing in the Second Phase of Study 1
2.6. Study 2 Analysis of Late Gestation Females
2.7. Quantification of Progesterone
2.8. Statistical Analyses
3. Results
3.1. Study 1
3.2. Reproductive Tract
3.3. Analysis of Hindgut Bacteria at Mid-Pregnancy
3.4. Comparison of the Reproductive Tract and Hindgut Microbiomes at Mid-Gestation
3.5. Functional Predictions in the Reproductive Tract at Mid-Gestation
3.6. Study 1b
3.7. Study 2
3.8. 16S rRNA Gene Amplicon Findings in Late Pregnancy
3.9. Metagenomic Findings in Late Pregnancy
3.10. Progesterone Levels in Cycling and Late-Pregnant Females
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doderlein, A. Das Scheidensekret und Seine Bedeutung fur Puerperalfieber. (The Vaginal Secretion and its Importance for Puerperal Fever); Verlag von Eduard Besold: Leipzig, Germany, 1892; pp. 1–86. [Google Scholar]
- Ma, B.; Forney, L.J.; Ravel, J. Vaginal microbiome: Rethinking health and disease. Ann. Rev. Microbiol. 2012, 66, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Verstraelen, H.; Verhelst, R.; Claeys, G.; De Backer, E.; Temmerman, M.; Vaneechoutee, M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Green, K.A.; Zarek, S.M.; Catherino, W.H. Gynecologic health and disease in relation to the microbiome of the female reproductive tract. Fertil. Steril. 2015, 104, 1351–1357. [Google Scholar] [CrossRef]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russel, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive age women. Proc. Natl. Acad. Sci. USA 2011, 108, 4630–4687. [Google Scholar] [CrossRef]
- Walther-Antonio, M.R.S.; Jeraldo, P.; Berg Miller, M.E.; Yeoman, C.J.; Nelson, K.E.; Wilson, B.A.; White, B.A.; Chia, N.; Creedon, D.J. Pregnancy’s stronghold on the vaginal microbiome. PLoS ONE 2019, 9, e98514. [Google Scholar] [CrossRef] [PubMed]
- Prince, A.L.; Antony, K.M.; Ma, J.; Aagaard, K.M. The microbiome and development: A mother’s perspective. Semin. Reprod. Med. 2014, 32, 14–22. [Google Scholar] [CrossRef]
- Romero, R.; Hassan, S.S.; Gajer, P.; Tarca, A.L.; Dadrosh, D.W.; Nikita, L.; Galuppi, M.; Lamont, R.J.; Chaemsaithon, P.; Miranda, J.; et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of nonpregnant women. Microbiome 2014, 2, 10. [Google Scholar] [CrossRef]
- Hauth, J.C.; Goldenberg, R.L.; Andrews, W.W.; DuBard, M.B.; Copper, R.L. Reduced incidence of preterm delivery with metronidazole and erythromycin in women with bacterial vaginosis. N. Engl. J. Med. 1995, 333, 1732–1736. [Google Scholar] [CrossRef]
- Van de Wijgert, J.H.H.M.; Borgdoff, H.; Verghelst, R.; Crucitti, T.; Francis, S.; Verstraelen, H.; Jespers, V. The vaginal microbiota: What have we learned after a decade of molecular characterization? PLoS ONE 2014, 9, e105998. [Google Scholar] [CrossRef]
- Fettweis, J.M.; Serrano, M.G.; Brooks, J.P.; Edwards, D.J.; Girerd, P.H.; Parikh, H.I.; Huang, B.; Arodz, T.J.; Edupuganti, L.; Glascock, A.L.; et al. The vaginal microbiome and preterm birth. Nat. Med. 2019, 25, 1012–1021. [Google Scholar] [CrossRef]
- Neuman, H.; Koren, O. The pregnancy microbiome. In Intestinal Microbiome: Functional Aspects in Health and Disease, Proceedings of the 88th Nestlé Nutrition Institute Workshop, Playa del Carmen, Mexico, 23–25 September 2016; S.A. Karger: Basel, Switzerland, 2017; Volume 88, pp. 1–9. [Google Scholar] [CrossRef]
- Edwards, S.M.; Cunningham, S.A.; Dunlop, A.L.; Corwin, E.J. The maternal gut microbiome during pregnancy. Am. J. Matern. Child Nurs. 2017, 42, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Backhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Jost, T.; Lacroix, C.; Braegger, C.; Chassard, C. Stability of the maternal gut microbiota during late pregnancy and early lactation. Curr. Microbiol. 2014, 68, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Guo, R.; Li, S.; Liang, F.; Tian, C.; Zhao, X.; Long, Y.; Liu, F.; Jiang, M.; Zhang, Y.; et al. Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. NPY Biofilms Microbiomes 2020, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- DiGiulio, D.B.; Callahan, B.J.; McMurdie, P.J.; Costello, E.K.; Lyell, D.J.; Robaczewska, A.; Sun, C.L.; Goltsman, D.S.A.; Wong, R.J.; Shaw, G.; et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA 2015, 112, 11060–11065. [Google Scholar] [CrossRef]
- Collado, M.C.; Laitinen, K.; Isolauri, E.; Salminen, S. Distinct composition of gut microbiota during pregnancy in overweight and normal weight women. Am. J. Clin. Nutr. 2008, 88, 894–899. [Google Scholar] [CrossRef]
- Santacruz, A.; Collado, M.C.; Garcia-Valdes, L.; Segura, M.T.; Martin-Lagos, J.A.; Anjos, T.; Marti-Romero, M.; Lopez, R.M.; Florido, J.; Campoy, C.; et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010, 104, 83–92. [Google Scholar] [CrossRef]
- Smid, M.C.; Ricks, N.M.; Panzer, A.; Mccoy, A.N.; Azcarate Peril, A.M.; Keku, T.O.; Boggess, K.A. Maternal gut microbiome biodiversity in pregnancy. Am. J. Perinatol. 2018, 35, 24–30. [Google Scholar]
- Collado, M.C.; Isolauri, E.; Laitinen, K.; Salminen, S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 2010, 92, 1023–1030. [Google Scholar] [CrossRef]
- Ma, J.; Prince, A.L.; Bader, D.; Hu, M.; Ganu, R.; Baquero, K.; Blundell, P.; Harris, R.A.; Frias, A.E.; Grow, K.L.; et al. High fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 2014, 3, 3889. [Google Scholar] [CrossRef]
- Gohir, W.; Whelan, F.J.; Surette, M.G.; Moore, C.; Schertzer, J.D.; Sloboda, D.M. Pregnancy related changes in maternal gut microbiota are dependent upon the mother’s periconceptional diet. Gut Microbes 2015, 6, 310–320. [Google Scholar] [CrossRef]
- Stumpf, R.M.; Wilson, B.A.; Rivera, A.; Yildrim, S.; Yeoman, C.J.; Polk, J.D.; White, B.A.; Leigh, S.R. The primate vaginal microbiome: Comparative context and implications for human health and disease. Am. J. Phys. Anthropol. 2013, 57, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Uchihashi, U.; Bergin, I.L.; Bassis, C.M.; Hashway, S.A.; Chai, D.; Bell, J.D. Influence of age, reproductive cycling status, and menstruation on the vaginal microbiome in baboons (Papio anubis): Vaginal microbiome in wild-caught captive baboons. Am. J. Primatol. 2015, 77, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Amaral, W.W.; Lubach, G.R.; Kapoor, A.; Proctor, A.; Phillips, G.J.; Lyte, M.; Coe, C.L. Low Lactobacilli abundance and polymicrobial diversity in the lower reproductive tract of female rhesus monkeys do not compromise their reproductive success. Am. J. Primatol. 2017, 79, e22691. [Google Scholar] [CrossRef]
- Obiero, J.A.; Waititu, K.K.; Mulei, I.; Omar, F.I.; Jaoko, W.; Mwethera, P.G. Baboon vaginal microbial flora. J. Med. Primatol. 2016, 45, 147–155. [Google Scholar] [CrossRef]
- Spear, G.T.; Gilbert, D.; Sikaroodi, M.; Doyle, L.; Green, L.; Gillevet, P.M.; Landay, A.L.; Veazey, R.S. Identification of rhesus macaque genital microbiota by 16S pyrosequencing shows similarities to human bacterial vaginosis: Implications for use as an animal model for HIV vaginal infection. AIDS Res. Hum. Retrovir. 2010, 26, 192–200. [Google Scholar] [CrossRef]
- Miller, E.A.; Livermore, J.A.; Alberts, S.C.; Tung, J.; Archie, E.A. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Nuriel-Ohayon, M.; Neuman, H.; Ziv, O.; Lousoun, Y.; Avni, O.; Koren, O. Progesterone increases Bifidobacterium relative abundance during late pregnancy. Cell Rep. 2019, 27, 730–736. [Google Scholar] [CrossRef]
- Coe, C.L.; Lubach, G.R. Maternal determinants of gestation length in the rhesus monkey. Trends Dev. Biol. 2021, 14, 63–72. [Google Scholar] [CrossRef]
- Beck, R.; Lubach, G.R.; Coe, C.L. Feasibility of successfully breeding rhesus macaques (Macaca mulatta) year-round. Am. J. Primatol. 2019, 82, e23085. [Google Scholar]
- Amaral, W.W.; Lubach, G.R.; Proctor, A.; Lyte, M.; Philips, G.J.; Coe, C.L. Social influences on Prevotella and the gut microbiome of young monkeys. Psychosom. Med. 2017, 79, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Rendina, D.N.; Lubach, G.R.; Lyte, M.; Phillips, G.J.; Gosain, A.; Pierre, J.F.; Vlasova, R.M.; Styner, M.A.; Coe, C.L. Proteobacteria abundance during nursing predicts physical growth and brain volume in young rhesus monkeys. FASEB J. 2021, 35, e21682. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 2015, 1, e00009–e00015. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Clemente, J.C.; Kuczynski, J.; Rideout, J.R.; Stombaugh, J.; Wendel, D.; Wilke, A.; Huse, S.; Hufnagle, J.; Meyer, F.; et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. Gigascience 2012, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open-source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Anderson, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Weiss, S.; Xu, Z.X.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vazquez-Baeza, Y.; Birmingham, A.; et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef]
- Ripley, B.D. The R project in statistical computing. MSOR Connect. 2001, 1, 23–25. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Soberón, J.; Llorente, J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 1993, 7, 480–488. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.; Huttenhower, C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Aljazairy, E.A.; Al-Musharaf, S.; Abudawood, M.; Almaarik, B.; Hussain, S.D.; Alnaami, A.M.; Sabico, S.; Al-Daghri, N.M.; Clerici, M.; Aljuraban, G.S. Influence of adiposity on the gut microbiota composition of Arab women: A case-control study. Biology 2022, 11, 1586. [Google Scholar] [CrossRef] [PubMed]
- Bornbusch, S.L.; Harris, R.L.; Drea, C.M. Antibiotics and fecal transfaunation differentially affect microbiota recovery, associations, and antibiotic resistance in lemur guts. Anim. Microbiome 2021, 3, 65. [Google Scholar] [CrossRef]
- Yan, Q.; Wi, Y.M.; Thoendel, M.J.; Raval, Y.S.; Greenwood-Quaintance, K.E.; Abdel, M.P.; Jeraldo, P.R.; Chia, N.; Patel, R. Evaluation of the CosmosID bioinformatics platform for prosthetic joint-associated sonicate fluid shotgun metagenomic data analysis. J. Clin. Microbiol. 2019, 57, e01182-18. [Google Scholar] [CrossRef]
- Newman, T.M.; Shively, C.A.; Register, T.C.; Appt, S.E.; Yadav, H.; Colwell, R.R.; Fanelli, B.; Dadlani, M.; Graubics, K.; Nguyen, U.T.; et al. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a nonhuman primate model. Microbiome 2021, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Salzberg, S.L. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 2020, 8, 124. [Google Scholar] [CrossRef]
- Franzosa, E.A.; McIver, L.J.; Rahnavard, G.; Thompson, L.R.; Schirmer, M.; Weingart, G.; Lipson, K.S.; Knight, R.; Caporaso, J.G.; Segata, N.; et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 2018, 15, 962–968. [Google Scholar] [CrossRef]
- Suzek, B.E.; Huang, H.; McGarvey, P.; Mazumder, R.; Wu, C.H. UniRef: Comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007, 23, 1282–1288. [Google Scholar] [CrossRef]
- Kraynak, M.; Flowers, M.T.; Shapiro, R.A.; Kapoor, A.; Levine, J.E.; Abbott, D.H. Extraovarian gonadotropin negative feedback revealed by aromatase inhibition in female marmoset monkeys. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E507–E514. [Google Scholar] [CrossRef]
- Hayashi, K.; Gonzales, T.K.; Kapoor, A.; Ziegler, T.E.; Meethal, S.V.; Atwood, C.S. Development of classification models for the prediction of Alzheimer’s Disease utilizing circulating sex hormone ratios. J. Alzheimer’s Dis. 2020, 76, 1029–1046. [Google Scholar] [CrossRef]
- Anderson, M.J.; Crist, T.O.; Chase, J.M.; Vellend, M.; Inouye, B.D.; Freestone, A.L.; Sanders, N.J.; Cornel, H.V.; Comita, L.S.; Davies, K.F.; et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 2011, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Galaxy. Available online: http://huttenhower.sph.harvard.edu/galaxy/ (accessed on 28 June 2022).
- Cao, K.-A.L.; Boitard, S.; Besse, P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. 2011, 12, 253. [Google Scholar] [CrossRef]
- Aagaard, K.; Riehle, K.; Ma, J.; Segata, N.; Mistretta, T.-A.; Coarfa, C.; Raza, S.; Rosenbaum, S.; Van den Veyver, I.; Milosavljevic, A.; et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS ONE 2012, 7, e36444. [Google Scholar] [CrossRef]
- Aliaga Goltsman, D.S.; Sun, C.L.; Proctor, D.M.; DiGiulio, D.B.; Robaczewska, A.; Thomas, B.C.; Shaw, G.M.; Stevenson, D.K.; Holmes, S.P.; Banfield, J.F.; et al. Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome. Genome Res. 2023, 28, 1467–1480. [Google Scholar] [CrossRef]
- Giannella, L.; Grelooni, C.; Quintilil, D.; Fiorelli, A.; Montironi, R.; Alia, S.; Carpini, G.D.; Di Gisuseppe, J.; Vignini, A.; Ciavattini, A. Microbiome changes in pregnancy disorders. Antioxidants 2023, 12, 463. [Google Scholar] [CrossRef]
- Goltsman, D.S.A.; Sun, C.L.; Proctor, D.M.; DiGiulio, D.B.; Robaczewska, A.; Thomas, B.C.; Shaw, G.M.; Stevenson, D.K.; Holmes, S.P.; Banfield, J.F.; et al. Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome. bioRxiv 2018. [Google Scholar] [CrossRef] [PubMed]
- Rivera, A.J.; Frank, J.A.; Stumpf, R.; Salyers, A.A.; Wilson, B.A.; Olsen, G.J.; Leigh, S. Differences between the normal vaginal bacterial community of baboons and that of humans. Am. J. Primatol. 2011, 73, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos Borges, L.G.; Pastucschek, J.; Heiman, Y.; Dawczynsk, K.; PEONS study group; Pieper, D.H.; Zollkau, J. Vaginal and neonatal microbiota in pregnant women with preterm premature rupture of membranes and consecutive early onset neonatal sepsis. BMC Med. 2023, 21, 92. [Google Scholar] [CrossRef]
- Koliwer-Brandl, H.; Nil, N.; Birri, J.; Sachs, M.; Zimmbermanm, R.; Zbinden, R.; Balyste, D. Evaluation of two rapid commercial assay for detection of Streptococcus agalactiae from vaginal samples. Acta Obstet. Gynecol. Scand. 2023, 102, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Bayar, E.; Bennett, P.R.; Chan, D.; Sykes, L.; MacIntyre, D.A. The pregnancy microbiome and preterm birth. Semin. Immunopathol. 2020, 42, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Laguardia-Nascimento, M.; Branco, K.M.G.R.; Gasparini, M.R.; Giannattsio-Ferraz, S.; Leite, L.R.; Araujo, F.M.G.; de Mato Salim, A.C.; Nicoi, J.R.; de Oliveira, G.C.; Barbosa-Stancioli, D.F. Vaginal microbiome characterization of Nellore cattle using metagenomic analysis. PLoS ONE 2015, 10, e0143293. [Google Scholar] [CrossRef]
- El Aila, M.A.; Tency, I.; Claeys, G.; Verstraelen, H.; Saerens, B.; dos Santos Santiago, L.; de Backer, E.; Cools, P.; Temmerman, M.; Verhelst, R.; et al. Identification and genotyping of bacteria from paired vaginal and rectal samples from pregnant women indicates similarity between vagina and rectal microflora. BMC Infect. Dis. 2009, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Varian, B.L.; Poutahidis, T.; DiBenedictis, B.T.; Levkovich, T.; Ibrahim, Y.; Didyk, E.; Shikhman, L.; Cheung, H.K.; Hardas, A.; Ricciardi, C.E.; et al. Microbial lysate upregulates host oxytocin. Brain Behav. Immun. 2017, 61, 36–49. [Google Scholar] [CrossRef]
- Amin, E.A.; Shabana, A.A.; Omar, T.A.; Ibrahim, M.F.; Anter, M.E. Correlation of maternal Helicobacter pylori infection during pregnancy and pregnancy-induced hypertension. Menoufia Med. J. 2022, 35, 1955–1963. [Google Scholar]
- Nagpal, R.; Shively, C.A.; Appt, S.A.; Register, T.C.; Michalson, K.T.; Vitolins, M.Z.; Yadav, H. Gut microbiome composition in nonhuman primates consuming a Western or Mediterranean diet. Front. Nutr. 2018, 5, 28. [Google Scholar] [CrossRef]
- Amato, K.R.; Yeoman, C.J.; Cerda, G.; Schmitt, C.A.; Cramer, J.D.; Berg Miller, M.E.; Gomez, A.; Turner, T.R.; Wilson, B.A.; Stumpf, R.M.; et al. Variable responses of human and nonhuman primate gut microbiomes to a western diet. Microbiome 2015, 3, 53. [Google Scholar] [CrossRef]
- Yildirim, S.; Yeoman, C.J.; Sipos, M.; Torralba, M.; Wilson, B.A.; Goldberg, T.L.; Stumpf, R.M.; Leigh, S.R.; White, B.A.; Nelson, K.E. Characterization of the fecal microbiome from nonhuman primates reveals species-specific microbial communities. PLoS ONE 2010, 5, e13963. [Google Scholar] [CrossRef]
- Stumpf, R.M.; Gomez, A.; Amato, K.R.; Yeoman, C.J.; Polk, J.D.; Wilson, B.A.; Nelson, K.E.; White, B.A.; Leigh, S.R. Microbiomes, metagenomics and primate conservation: New strategies, tools and applications. Biol. Conserv. 2016, 199, 56–66. [Google Scholar] [CrossRef]
- Amato, K.R.; Leigh, S.R.; Kent, A.; Mackie, R.I.; Yeoman, C.J.; Stumpf, R.M.; Wilson, B.A.; Nelson, K.E.; White, B.A.; Garber, P.A. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 2015, 69, 434–443. [Google Scholar] [CrossRef] [PubMed]
- McCord, A.I.; Chapman, C.I.; Weny, G.; Tumukunde, A.; Hyeroba, D.; Klotz, K.; Koblings, A.S.; Mbora, D.N.M.; Cregger, M.; White, B.A.; et al. Fecal microbiomes of nonhuman primates in western Uganda reveal species-specific communities largely resistant to habitat perturbation. Am. J. Primatol. 2014, 76, 347–353. [Google Scholar] [CrossRef]
- Clayton, J.B.; Vangay, P.; Huang, H.; Ward, T.; Hillmann, B.M.; Al-Ghalith, G.A.; Travis, D.A.; Long, H.T.; Tuan, B.V.; Minh, V.V.; et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. USA 2016, 113, 10376–10381. [Google Scholar] [CrossRef]
- Li, X.; Rensing, C.; Taylor, W.L.; Costelle, C.; Brejnrod, A.D.; Ferry, R.J., Jr.; Higgins, P.B.; Folli, F.; Kottapalli, K.R.; Hubbard, G.B.; et al. Papio spp. colon microbiome and its link to obesity in pregnancy. J. Med. Primatol. 2018, 47, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Smits, S.A.; Leach, J.; Sonneburg, E.D.; Gonzalez, C.G.; Lichtman, J.S.; Reid, G.; Knight, R.; Manjurao, A.; Changalucha, J.; Elias, J.E.; et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gathers of Tanzania. Science 2017, 357, 802–806. [Google Scholar] [CrossRef]
- Price, K.C.; Coe, C.L. Maternal constraint on fetal growth patterns in the rhesus monkey: The intergenerational link between mothers and daughters. Hum. Reprod. 2000, 15, 452–457. [Google Scholar] [CrossRef]
- Shirtcliff, E.A.; Lubach, G.R.; Mooney, R.; Beck, R.T.; Fanning, L.K.; Coe, C.L. Transgenerational propensities for infant birth weight reflect fetal growth history of the mother in rhesus monkeys. Trends Dev. Biol. 2019, 12, 55–65. [Google Scholar]
- Soldin, O.P.; Guo, T.; Weiderpass, E.; Tractenberg, R.E.; Hilakivi-Clarke, L.; Soldin, S.J. Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Reprod. Endocrinol. 2005, 84, 701–710. [Google Scholar] [CrossRef]
- Thau, R.; Lanman, J.T.; Brinson, A. Observations on progesterone production and clearance in normal pregnant and fetectomized rhesus monkeys (Macaca mulatta). J. Reprod. Fertil. 1979, 56, 37–43. [Google Scholar] [CrossRef]
- Hodgen, G.D.; Stouffer, R.L.; Barber, D.L.; Nixon, W.E. Serum estradiol and progesterone during pregnancy and the status of the corpus luteum at delivery in cynomolgus monkeys (Macaca fascicularis). Steroids 1977, 30, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Gohir, W.; Kennedy, K.M.; Wallace, J.G.; Saoi, M.; Bellissimo, C.J.; Britz-McKibbin, P.; Petrik, J.J.; Surette, M.G.; Sloboda, D.M. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia as well as altered fetal gut barrier proteins and immune markers. J. Physiol. 2019, 597, 3029–3051. [Google Scholar] [CrossRef]
- Di Gesu, C.M.; Matz, L.M.; Bolding, I.J.; Fultz, R.; Hoffman, K.L.; Gammazza, A.M.; Petrosino, J.F.; Buffington, S.A. Maternal gut microbiota mediate intergenerational effects of high-fat diet on descendant social behavior. Cell Rep. 2022, 41, 111461. [Google Scholar] [CrossRef]
- Basak, S.; Das, R.K.; Banerjee, A.; Paul, S.; Pathak, S.; Duttaroy, A.K. Maternal obesity and gut microbiota are associated with fetal brain development. Nutrients 2022, 14, 4515. [Google Scholar] [CrossRef] [PubMed]
- Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Cost-Mattioli, M. Microbial reconstitution reverses maternal diet induced social and synaptic deficits in offspring. Cell 2016, 1265, 1762–1775. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.S.F.; Pierdon, M.K.; Misic, A.M.; Sullivan, M.C.; O’Brien, K.; Chen, Y.; Murry, S.J.; Ramharack, L.A.; Baldassano, R.N.; Parsons, T.D.; et al. Remodeling of the gut microbiome is shaped by parity. Microbiome 2021, 9, 146. [Google Scholar] [CrossRef]
- Zacarías, M.F.; Collado, M.C.; Gómez-Gallego, C.; Flinck, H.; Aittoniemi, J.; Isolauri, E.; Salminen, S. Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLoS ONE 2018, 13, e0200305. [Google Scholar] [CrossRef]
- Rubini, E.; Schenkelaars, N.; Rousian, M.; Sinclair, K.D.; Wekema, L.; Faas, M.M.; Steegers-Theunissen, R.P.M.; Schoenmakers, S. Maternal obesity during pregnancy leads to derangements in one-carbon metabolism and the gut microbiota: Implications for fetal development and offspring wellbeing. Am. J. Obstet. Gynecol. 2022, 227, 392–400. [Google Scholar] [CrossRef]
- Sinha, T.; Brushett, S.; Prins, J.; Zhernakova, A. The maternal gut microbiome during pregnancy and its role in maternal and infant health. Curr. Opin. Microbiol. 2023, 74, 102309. [Google Scholar] [CrossRef]
- Nearing, J.T.; Douglas, G.M.; Hayes, M.G.; MacDonald, J.; Desai, D.K.; Allward, N.; Jones, C.M.A.; Wright, R.J.; Dhanani, A.S.; Comeau, A.M.; et al. Microbiome differential abundance methods produce different results 38 datasets. Nat. Commun. 2022, 13, 342. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Walker, A.W.; Berry, S.H.; Duncan, S.H.; Farquarson, F.M.; Louis, P.; Thomson, J.M. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS ONE 2014, 9, e88982. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 2015, 469, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Werner, J.J.; Koren, O.; Hugenholtz, P.; DeSantis, T.Z.; Walters, W.A.; Caporaso, J.G.; Angenent, L.T.; Knight, R.; Ley, R.E. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 2012, 6, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Hugon, A.M.; Golos, T.G. Nonhuman primate models for understanding the impact of the microbiome on pregnancy and the female reproductive tract. Biol. Reprod. 2023, ioad042. [Google Scholar] [CrossRef]
- Hu, K.-T.; Zheng, J.-X.; Yu, Z.-J.; Chen, Z.; Chen, H.; Pan, W.-G.; Yan, W.-Z.; Wang, H.-Y.; Deng, Q.-W.; Zeng, Z.-M. Directed shift of vaginal microbiota induced by vaginal application of sucrose gel in rhesus macaques. Int. J. Infect. Dis. 2015, 33, 32–36. [Google Scholar] [CrossRef]
- Yu, R.R.; Cheng, A.T.; Lagenaur, L.A.; Huang, W.; Weiss, D.E.; Treece, J.; Sanders-Beer, B.E.; Hamer, D.H.; Lee, P.P.; Xu, Q.; et al. Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development. J. Med. Primatol. 2009, 38, 125–136. [Google Scholar] [CrossRef]
- Zietek, M.; Celewicz, Z.; Szczuko, M. Short-chain fatty acids, maternal microbiota and metabolism in pregnancy. Nutrients 2021, 13, 1244. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Zhang, Y.; Wei, H.; Guan, Q.; Dong, C.; Tun, H.M.; Xia, Y. Ecological change of the gut microbiota during pregnancy and progression to dyslipidemia. npj Biofilms Microbiome 2023, 9, 14. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Ren, S.; Gao, Y.; Zhou, Y.; Xuan, R. Expression and clinical significance of short chain fatty acids in pregnancy complications. Front. Cell Infect. Microbiol. 2023, 12, 1071029. [Google Scholar] [CrossRef]
- Priyadararshi, J.; Navarro, G.; Reiman, D.J.; Sharma, A.; Xu, K.; Lednovich, K.; Manzella, C.R.; Han, W.; Garcia, J.S.; Allard, S.; et al. Gestational insulin resistance is mediated by the gut microbiome-indoleamine 2,3 dioxygenase axis. Gastroenterology 2022, 152, 1675–1689. [Google Scholar] [CrossRef]
- Turvey, A.L.; Horvath, G.A.; Cavalcanti, A.R.O. Aminoacyl-tRNA synthestases in human health and disease. Front. Physiol. 2022, 13, 1029218. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, K.A.; Gangloff, S.; Rothstein, R. The RecQ DNA helicases in DNA repair. Ann. Rev. Genet. 2010, 44, 393–417. [Google Scholar] [CrossRef] [PubMed]
- Bogaert, D.; van Beveren, G.J.; de Koff, E.M.; Parga, P.L.; Lopez, C.E.B.; Koppensteiner, L.; Clerc, M.; Hasrat, R.; Arp, K.; Chu, M.L.; et al. Mother to infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 2023, 31, 447–460. [Google Scholar] [CrossRef]
- Bawaneh, A.; Shively, C.A.; Tooze, J.A.; Cook, K.L. Impact of gut permeability on the breast microbiome using a nonhuman primate model. Gut Microbiome 2022, 3, e10. [Google Scholar] [CrossRef]
- Bisanz, J.E.; Enos, M.K.; PrayGod, G.; Seny, S.H. Microbiota at multiple body sites during pregnancy in a rural Tanzanian population and effects of moringa-supplemented probiotic yogurt. Appl. Environ. Microbiol. 2015, 81, 4965–4975. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Bello, M.G.; De Jesus-Laboy, K.M.; Shen, N.; Co, L.M.; Amir, A.; Gozalez, A.; Clemente, C. Partial restoration of the microbiota of caesarian born infants via vaginal microbial transfer. Nat. Med. 2016, 22, 250–253. [Google Scholar] [CrossRef]
- Haahr, T.; Galvind, J.; Axelsson, P.; Fischer, M.B.; Bjrustrom, J.; Andresdottir, G.; Teilmann-Jorgensen, D.; Bonde, U.; Sorenso, N.O.; Moller, M.; et al. Vaginal seeding or vaginal microbial transfer from the mother to the caesarean-born neonate: A commentary regarding clinical management. BJOG 2017, 125, 533–536. [Google Scholar] [CrossRef]
Vaginal | Rectal | ||||||||
---|---|---|---|---|---|---|---|---|---|
Family | Genus | Cycling | Pregnant | Nursing | Family | Genus | Cycling | Pregnant | Nursing |
Prevotellaceae | Prevotella | 13.9% | 16.3% | 6.1% | Prevotellaceae | Prevotella | 12.5% | 18.6% | 20.6% |
Aerococcaceae | Facklamia | 0.8% | 6.7% | 14.5% | Streptococcaceae | Streptococcus | 17.2% | 13.8% | 8.1% |
Lactobacillaceae | Lactobacillus | 11.7% | 8.9% | 4.7% | Lactobacillaceae | Lactobacillus | 12.9% | 14.1% | 10.6% |
Streptococcaceae | Streptococcus | 2.2% | 11.6% | 5.5% | Helicobacteraceae | Flexispira | 3.2% | 4.3% | 6.2% |
Tissierellaceae | Peptoniphilus | 9.8% | 2.5% | 5.4% | Ruminococcaceae | Ruminococcus | 0.9% | 2.9% | 1.1% |
Corynebacteriaceae | Corynebacterium | 0.2% | 1.8% | 8.8% | Paraprevotellaceae | CF231 | 2.2% | 1.1% | 2.5% |
Tissierellaceae | 1-68 (clone) | 7.0% | 3.0% | 8.1% | Veillonellaceae | Dialister | 1.8% | 1.6% | 1.8% |
Tissierellaceae | Anaerococcus | 3.8% | 5.3% | 8.1% | Ruminococcaceae | Faecalibacterium | 0.9% | 1.7% | 1.8% |
Porphyromonadaceae | Porphyromonas | 7.7% | 0.3% | 2.4% | Spirochaetaceae | Treponema | 1.3% | 1.7% | 1.2% |
Actinomycetaceae | Actinobaculum | 7.1% | 0.2% | 0.2% | Erysipelotrichaceae | Catenibacterium | 0.8% | 0.2% | 1.2% |
sPLS-DA | ||
---|---|---|
Follicular | ||
Two-component system, chemotaxis family, response regulator CheY | 0.66 | |
Precorrin-4/cobalt-precorrin-4 C11 methyltransferase | 0.61 | |
Flagellar biosynthetic protein FliP | 0.31 | |
Iminoacetate synthase | 0.20 | |
Flagellar hook-associated protein 1 FlgK | 0.10 | |
Flagellar basal-body rod modification protein FlgD | 0.07 | |
Flagellar basal-body rod protein FlgG | 0.07 | |
Phospho-N-acetylmuramoyl-pentapeptide-transferase | 0.04 | |
N-carbamoylputrescine amidase | <0.01 | |
D-tyrosyl-tRNA(Tyr) deacylase | <0.01 | |
+2 other genes | ||
Luteal | ||
1,2-diacylglycerol-3-alpha-glucose alpha-1,2-glucosyltransferase | −0.16 | |
L-cystine transport system permease protein | −0.15 | |
Dihydroorotate dehydrogenase electron transfer subunit | −0.14 | |
Serine/alanine adding enzyme | −0.14 | |
Acetoin utilization protein AcuB | −0.13 | |
7-cyano-7-deazaguanine synthase | −0.13 | |
Histidinol-phosphatase, PHP family | −0.13 | |
Hypothetical protein | −0.13 | |
Two-component system, NarL family, response regulator LiaR | −0.13 | |
Sulfate permease, SulP family | −0.13 | |
+128 other genes | ||
Pregnant | ||
ATP-dependent DNA helicase RecQ | 0.17 | |
Cysteinyl-tRNA synthetase | 0.15 | |
Hypothetical protein | 0.13 | |
Manganese-dependent inorganic pyrophosphatase | 0.13 | |
Pyrroline-5-carboxylate reductase | 0.13 | |
Phosphopantothenoylcysteine decarboxylase/phosphopantothenate cysteine ligase | 0.12 | |
GTP-binding_protein | 0.10 | |
aspartate-ammonia ligase | 0.10 | |
Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase | 0.10 | |
Cell division protein FtsW | 0.10 | |
+150 other genes |
Follicular (n = 6) | Luteal (n = 6) | Pregnant (n = 10) | Sig | |
---|---|---|---|---|
Blood Progesterone (ng/mL) | 0.27 (0.01) | 2.34 (1.04) | 3.15 (0.64) | 0.017 |
Fecal Progesterone * (ng/g) | 0.75 (0.01) | 0.16 (.05) | 6.77 (2.27) | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, W.Z.; Lubach, G.R.; Rendina, D.N.; Phillips, G.J.; Lyte, M.; Coe, C.L. Significant Microbial Changes Are Evident in the Reproductive Tract of Pregnant Rhesus Monkeys at Mid-Gestation but Their Gut Microbiome Does Not Shift until Late Gestation. Microorganisms 2023, 11, 1481. https://doi.org/10.3390/microorganisms11061481
Amaral WZ, Lubach GR, Rendina DN, Phillips GJ, Lyte M, Coe CL. Significant Microbial Changes Are Evident in the Reproductive Tract of Pregnant Rhesus Monkeys at Mid-Gestation but Their Gut Microbiome Does Not Shift until Late Gestation. Microorganisms. 2023; 11(6):1481. https://doi.org/10.3390/microorganisms11061481
Chicago/Turabian StyleAmaral, Wellington Z., Gabriele R. Lubach, Danielle N. Rendina, Gregory J. Phillips, Mark Lyte, and Christopher L. Coe. 2023. "Significant Microbial Changes Are Evident in the Reproductive Tract of Pregnant Rhesus Monkeys at Mid-Gestation but Their Gut Microbiome Does Not Shift until Late Gestation" Microorganisms 11, no. 6: 1481. https://doi.org/10.3390/microorganisms11061481
APA StyleAmaral, W. Z., Lubach, G. R., Rendina, D. N., Phillips, G. J., Lyte, M., & Coe, C. L. (2023). Significant Microbial Changes Are Evident in the Reproductive Tract of Pregnant Rhesus Monkeys at Mid-Gestation but Their Gut Microbiome Does Not Shift until Late Gestation. Microorganisms, 11(6), 1481. https://doi.org/10.3390/microorganisms11061481