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Abstract: Chicory leaves (Cichorium intybus) are widely consumed due to their health benefits. They
are mainly consumed raw or without adequate washing, which has led to an increase in food-
borne illness. This study investigated the taxonomic composition and diversity of chicory leaves
collected at different sampling times and sites. The potential pathogenic genera (Sphingomonas,
Pseudomonas, Pantoea, Staphylococcus, Escherichia, and Bacillus) were identified on the chicory leaves.
We also evaluated the effects of various storage conditions (enterohemorrhagic E. coli contamination,
washing treatment, and temperature) on the chicory leaves’ microbiota. These results provide an
understanding of the microbiota in chicory and could be used to prevent food-borne illnesses.

Keywords: chicory leaves; phyllosphere microbiota; food-borne illness

1. Introduction

Fresh produce is grown on the ground and is usually consumed after minimal pro-
cessing. Produce may become easily contaminated by food-borne pathogens at any stage
of the supply chain, thereby posing a high risk of food-borne illnesses [1–3]. According
to statistics on food-borne illnesses, fresh produce contaminated with bacteria, such as
pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella spp., has led to widespread
outbreaks [4,5].

Numerous microorganisms, such as food-borne pathogens with rapid metabolic abili-
ties, survive in natural communities, including raw foods. Food-borne illnesses usually
occur in foods contaminated during transport and storage processes and are also caused by
pathogens in the indigenous microbiota of fresh produce [6]. In such cases, determining the
cause of food-borne illnesses is complicated. In addition, most microbes interact with each
other and their habitats, and few microbes live in single-species communities. Understand-
ing the structure and diversity of microbial communities, including potential food-borne
pathogens, in raw foods is important for food safety [7]. Although the recent development
of next-generation sequencing (NGS) has enabled the identification of food-borne illnesses
caused by the indigenous microbiota of environmental samples [8], only a few studies have
examined the microbial communities and potential pathogens in fresh produce.

Chicory leaves (Cichorium intybus), a perennial alpine plant of the Asteraceae family,
are native to Eurasia and can be found in mid-latitudes worldwide [9,10]. Chicory leaves are
medically recognized as important plants that are rich in various nutrients, such as inulin,
sesquiterpene lactones, cumarins, phenolic acids, vitamins, saponins, and flavonoids [11].
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Additionally, chicory leaves have been reported to be effective against jaundice, liver
enlargement, gout, and rheumatism. Chicory leaf extracts have been used to treat diabetes,
hypolipidemia, and pyorrhea [12]. Meanwhile, the root of commonly dried chicory leaves
is used as a coffee substitute, and leaves are used for preparing salads [13]. Consequently,
the consumption of fresh or minimally processed chicory leaves has increased recently.
Moreover, many researchers have reported on food-borne illnesses caused by chicory
leaves; however, compared with chicory roots, little information is available on chicory
leaves [14,15].

In this study, we investigated the composition of the phyllosphere microbiota in
chicory collected at different times and sites in South Korea. To investigate the risk of
potential pathogens, the microbial composition of chicory leaves was compared among
different sampling times and sites. We also analyzed the changes in microbiota composition
in chicory leaves with respect to the storage conditions after enterohemorrhagic E. coli
(EHEC) contamination. The results of this study can enhance our understanding of food-
borne illnesses caused by the consumption of chicory leaves and help improve management
strategies for fresh produce.

2. Material and Methods
2.1. Sample Collection

The sampling time was selected based on seasons with a maximum production of
Chicory (Cichorium intybus) in South Korea. Chicory samples were collected during two
seasons (spring: March and April, and summer: Jun, July, and September) in 2017 and
2019 from Gongju (36◦26′48′ ′ N 127◦07′11′ ′ E) and Busan (35◦10′46′ ′ N 129◦04′32′ ′ E),
South Korea. The average temperature in spring was 7.35 ± 5.36 ◦C (5.39 ± 5.70 ◦C and
9.32 ± 4.15 ◦C in Gongju and Busan, respectively). Additionally, the average temperature
in Summer was 22.37 ± 5.20 ◦C (21.05 ± 5.89 ◦C and 23.69 ± 3.99 ◦C in Gongju and Busan,
respectively). Samples were randomly collected in clean plastic bags and immediately
transported to the laboratory under cold conditions using an icebox with ice packs. These
samples were immediately placed in a 4 ◦C refrigerator.

2.2. Metagenomic DNA Extraction from Chicory Leaves

Metagenomic DNA was extracted from chicory leaves as described in previous stud-
ies [1,2]. Briefly, 25 g of each sample were packed in a sterilized filter bag (FILTRA-BAG;
Labplas, Sainte-Julie, QC, Canada) containing 225 mL of Buffered Peptone Water (OXOID,
Basingstoke, UK), and homogenized using a BagMixer 400 W (Interscience, Saint-Nom-la-
Bretèche, France). After that, samples were centrifuged at 3134× g for 10 min at 4 ◦C, and
the supernatants were discarded. The pellet was resuspended in 5 mL of TES buffer (pH 8.0,
10 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid [EDTA], and 0.1 M NaCl) [16]. The
pellets were repeatedly centrifuged twice more to remove impurities (plant tissues) and
stored at −80 ◦C before metagenomic DNA extraction.

The pellets were used for metagenomic DNA extraction, and that was resuspended
in 500 µL cetyltrimethylammonium bromide (CTAB; DAEJUNG, Siheung, Republic of
Korea) buffer containing 1% polyvinylpyrrolidone (Sigma-Aldrich, St. Louis, MO, USA)
and 50 µL lysozyme solution (100 mg/mL). Subsequently, the pellet was incubated at 37 ◦C
for 1 h. After incubation, 200 µL of proteinase K mixture containing 20 µL of 20 mg/mL
proteinase K, 140 µL of 0.5 M EDTA, and 40 µL of 10% sodium dodecyl sulfate were added
to the pellets and incubated at 56 ◦C for 1 h. The pellets were centrifuged at 21,206× g
for 1 min, and supernatant from each tube was transferred to a new microcentrifuge tube.
After that, 100 µL of 5 M NaCl solution and 80 µL CTAB/NaCl solution were added into
the tube. After vortexing, the bacterial cells were then mixed with an equal volume of
phenol/chloroform/isoamyl alcohol (25:24:1 v/v/v), and the samples were mixed and
centrifuged at 21,206× g for 5 min. The supernatant was transferred to a new tube, and
an equal volume of chloroform was added and mixed. The above process was repeated
two more times. Thereafter, the sample was centrifuged at 21,206× g for 5 min. After
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transferring the supernatant to a new tube, 3 µL of RNase A (100 mg/mL) were added
and incubated at 37 ◦C for 1 h. Residual RNase A was removed by extraction with the
phenol-chloroform process. The DNA mixture included 10% volume of 3 M sodium acetate
(pH 5.0), and 2 volumes of ice-cold 100% ethanol were added to the DNA mixture. The sam-
ple was centrifuged at 21,055× g for 20 min at 4 ◦C [17], and the supernatant was discarded.
Each pellet was washed with 1 mL of 70% ice-cold ethanol. After air drying, DNA pellets
were resuspended with 50 µL of TE buffer (pH 8.0, 10 mM Tris-HCl and 0.1 mM EDTA)
and incubated at 55 ◦C for 1 h. The extracted metagenomic DNA was determined using
a microplate spectrophotometer (Multiskan GO microplate Spectrophotometer; Thermo
Scientific, Santa Clara, CA, USA) and 1.2% agarose gel electrophoresis. The metagenomics
DNA was stored at −20 ◦C.

2.3. Bacterial 16S rRNA Gene Amplification and MiSeq Sequencing

The bacterial 16S rRNA gene (V5-V6 region, 382 bp) was amplified using the specific
barcoded primers (Table S1). Barcoded primers were used for NGS with Illumina MiSeq
sequencing (Illumina, San Diego, CA, USA) [18,19]. The polymerase chain reaction (PCR)
products were purified using the MEGAquick-spin Plus total fragment DNA purification
kit (iNtRon, Seoul, Republic of Korea). Index PCR was performed using an Illumina
Nextera XT Index kit, and the library was purified using AMPure XP beads (Beckman
Coulter Inc., Brea, CA, USA) according to the manufacturer’s instructions. The size and
quality of the libraries were assessed using an Agilent Bioanalyzer DNA 1000 chip kit and
the KAPA qPCR kit (KAPA Biosystems, Wilmington, MA, USA). Equal amounts of libraries
from all samples were pooled, and 300 bp paired-end MiSeq sequencing was conducted
using the Illumina MiSeq platform by LabGenomics (Sungnam, Republic of Korea).

2.4. Microbiota Profiling and Diversity Analysis

Raw sequencing data were obtained using the MOTHUR software (ver. 1.38.1) to trim
(adapter and primer sequences) and remove chimeric sequences (homopolymers > 8 and
average quality score < 25). The average length after trimming was between 250–300 bp.
Operational taxonomic units (OTUs) were determined using the CLC Microbial Genomics
Module on the CLC Genomics Workbench (ver. 9.5.3, CLC Bio, Aarhus, Denmark). The tax-
onomic arrangement of the non-chimeric reads was determined using the SILVA database
(ver. 123) with an 80% confidence threshold. They were clustered based on 99% se-
quence similarity for the high specificity and sensitivity of infected Escherichia on chicory
leaves. Prior to analyzing microbial diversity, sequence readings from the plant archaea,
chloroplasts (Streptophyta), and mitochondria (Raphanus) were removed from the OUTs
results. The 38,201 validated reads per sample were compared with α-diversity (Observed
OTUs, Chao1 index, and Shannon index), β-diversity (Weighted UniFrac and Unweighted
UniFrac), and composition of microbiota at several taxonomy levels (Phylum, Family, and
Genus). In case any sequence could not be assigned to a sublevel in the classification process,
every unknown taxonomy was defined as “Uncultured” (ex: Enterobacteriaceae_unc).

2.5. Total Bacterial and Potential Pathogenic Bacterial Quantification Using Quantitative
Real-Time PCR (qRT-PCR)

Total bacteria and potentially pathogenic species were quantified using qRT-PCR (CFX
Connect Optics Module; Bio-Rad, Hercules, CA, USA) to determine bacterial loads. The
PCR primers used are listed in Supplementary Table S1. PCR reaction mixtures were
assembled from 10 µL SSoAdvanced universal SYBR Green supermix (2×; Bio-Rad), 10 µM
each primer, and 1 µL metagenome DNA template or distilled water (negative control) in a
final volume of 20 µL. PCR cycling was performed at 98 ◦C for 3 min (preheating), 98 ◦C
for 15 s (denaturation), 56 ◦C for 30 s (annealing), 72 ◦C for 30 s (extension), and 72 ◦C
for 5 min (final extension) in the CFX connect real-time PCR Detection system (Bio-Rad).
Genomic DNA (gDNA) of pathogenic strains was extracted using the NucleoSpin Microbial
DNA kit (Macherey-Nagel, Düren, NRW, Germany). The standard curves were generated
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using 10-fold dilutions of this bacterial gDNA (102 to 106). The cycle threshold (Ct) values
were determined after adjustment of the baseline (1000) using the CFX Manager software
(BioRad, Hercules, CA, USA). The bacterial loads were quantified by comparing their Ct
value to the standard curve. The regression coefficient (r2) value of the standard curve was
greater than or equal to 0.99. All DNA samples were analyzed in triplicate.

2.6. Artificial Contamination of Enterohemorrhagic E. coli (EHEC)

To investigate the shift in chicory leaves microbiota due to infection of food-borne
pathogens during storage, the artificial contamination of EHEC (E. coli ATCC 35150) was
conducted at various storage conditions, including washed, unwashed, and at two temper-
atures (4 ◦C and 26 ◦C) in triplicate. EHEC was cultured at 36 ◦C in Luria-Bertani medium
and diluted by BPW. Chicory leaves were washed using the Ministry of Food and Drug
Safety method (washing for 30 sec after dipping for 5 min in tap water) [2].

Chicory leaf samples (n = 56) were infected using spotting methods [20]. BPW was
also spotted on the leaves as a non-contaminated group. The 100 µL of EHEC inoculum
(1.75 × 105 CFU) were evenly spotted at 10 locations on the surface of chicory leaves. Then,
all the chicory leaves were dried for 30 min prior to storage. The metagenomic DNA was
extracted as described in the DNA extraction section.

2.7. Statistical Analysis

Statistical significance of total bacterial loads and all diversity indices was conducted
using the Student’s t-test. Results with p-values < 0.05 were considered significantly
different when analyzed using the SAS program (ver. 9.4; SAS Institute, USA) and Prism
(ver. 5.02). A linear discriminant analysis effect size (LEfSe) analysis was performed
using the Huttenhower Lab Galaxy server (https://huttenhower.sph.harvard.edu/galaxy,
accessed on 31 May 2023). An alpha level of 0.05 and an exceeded LDA log score of ± 2.0
were used as thresholds for significance in the bar plot of LEfSe analysis.

3. Results and Discussion
3.1. Comparison of Bacterial Loads and Diversity Indices on Chicory Leaves among Sampling
Times and Sites

A total of 3,056,043 reads (an average of 38,201 reads) were obtained from 80 chicory
leaf samples. The read number was randomly normalized to 18,840 reads (the minimum
read number of chicory leaf samples) per sample to compare the diversity indices (Table 1).

Table 1. Summary of total bacterial loads and α-diversity indices of chicory obtained at each sampling
time and site.

Sampling
Information

Normalized
Reads

Total
Read/Sample

Total Bacteria
(Average

log CFU/g)

α-Diversity Indices

Chao1 Observed
OTUs Shannon

Spring

18,840

41,494 6.78 A 610.09 A 379.48 B 4.51 B

Summer 34,907 6.11 B 600.3 A 431.37 A 5.17 A

Gongju 39,105 6.76 a 635.13 a 418.72 a 5.18 a

Busan 37,296 6.19 b 575.26 a 392.12 b 4.51 b

-The seasonal bacterial counts (CFU/g) within the same site (Gongju and Busan, respectively) or the regional
bacterial counts within the same season (spring and summer, respectively) were compared. -The same uppercase
and lowercase letters (A, B and a, b) for each column were not significantly different by the Students’ t-test at
p < 0.05. A, B; Between sampling times. a, b; Between sampling sites.

The total bacterial count significantly differed according to the sampling time (spring
and summer) and site (Gongju and Busan). The number of total bacteria in the spring
samples (6.78 log CFU/g) was higher than that in the summer samples (6.11 log CFU/g,
p < 0.0001). The bacterial loads detected from the Gongju samples (6.76 log CFU/g) were
also higher than those in the Busan samples (6.19 log CFU/g, p < 0.0001) in both sampling

https://huttenhower.sph.harvard.edu/galaxy
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times (spring and summer). The microbial diversity of chicory leaves was evaluated us-
ing alpha (observed OTUs, Chao1, and Shannon) diversity indices. Although the Chao1
indices of chicory leaves were not significantly different depending on the sampling time
(610.09 in spring and 600.30 in summer, p = 0.78) or site (635.13 in Gongju and 575.26 in
Busan, p = 0.08), the observed OTUs and Shannon index of the spring (379.48 and 4.51,
respectively) were significantly lower (p < 0.05 and p < 0.01, respectively) than those in
the summer (431.37 and 5.18). In addition, the observed OTUs and Shannon index of
the Gongju samples were significantly higher than those of the Busan samples in spring
(p < 0.01). Therefore, differences in bacterial load and diversity exist according to the
sampling time and site, and it is expected that dominant bacteria exist in spring chicory
samples. In previous reports, bacterial load and diversity were found to be influenced by
various environmental conditions such as temperature, humidity, soil conditions, culti-
vation method, and interactions among microbes, depending on the sampling time and
site [21,22]. Our results showed that the microbiota of chicory leaves differed depending
on the environmental cultivation conditions.

3.2. Microbiota Composition of Chicory Leaves by Principal Coordinate Analysis (PCoA)

We analyzed the microbiota using PCoA based on unweighted and weighted UniFrac
distance matrices (Figure 1). Unweighted and weighted PCoA plots of chicory leaves
indicated a clear clustering pattern according to sampling time (spring and summer).
However, chicory leaf microbiota did not differ between the Gongju and Busan samples.
These results indicate that temporal factors (temperature and humidity) influence the
microbiota on chicory leaves to a greater extent than site factors (soil conditions and
cultivation methods). Furthermore, previous studies on fresh produce microbiota have
reported many temporal factors that can affect these microbial clusters [1,23].
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Figure 1. UniFrac Principal Coordinate Analysis (PCoA) plot. PCoA plots depicting the (A) un-
weighted UniFrac (quantitative) and (B) weighted UniFrac (qualitative) were implemented to illus-
trate the β-diversity. Each figure indicates the microbiota of chicory leaf samples collected during
each season and at each site (SpG; Gongju sample collected in spring, SpB; Busan sample collected in
spring, SmG: Gongju sample collected in summer, and SmB; Busan sample collected in summer).

3.3. Comparison of Microbiota at the Phylum, Order, Family, and Genus Levels

The bacterial community composition of the chicory leaves was compared at the
phylum, family, and genus levels. Proteobacteria, Firmicutes, and Actinobacteria were
the dominant phyla (more than 2% on average) in chicory leaves (Figure 2). In spring,
Proteobacteria (94.20 ± 7.42%, p < 0.001) showed higher abundance, whereas Firmicutes
(3.25 ± 5.61%, p < 0.0001) showed lower abundance. The abundance of Actinobacteria was
not significantly different between the spring (2.57 ± 3.07%) and summer (2.74 ± 3.36%,
p = 0.11). These differences in microbiota composition may be attributed to cultural
and environmental factors. Proteobacteria, Firmicutes, and Actinobacteria were also the
dominant phyla in plant phyllospheres, such as berries, Chinese chives, spinach, cabbage,
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perilla, grape leaves, and lettuce, and their abundance differed depending on the sampling
time [2,23,24].
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Figure 2. Comparison of microbiota composition at the phylum, order, and family levels in (A) spring
and (B) summer. ‘Others’ indicate microbial phyla, order, and families with relative abundance below
2%, 1%, and 0.5% in the sample average, respectively.

At the order level, Enterobacteriales, Pseudomonadales, Rhizobiales, Sphingomon-
adales, Bacillales, Burkholderiales, and Oceanospirillales were dominant (over an average
of 3%). Pseudomonadales showed higher abundance in spring (50.08 ± 22.11%) than in
summer (7.89 ± 7.19%, p < 0.0001). The abundance of Enterobacteriales, Bacillales, and
Oceanospirillales was lower in spring (16.63 ± 12.51, 2.96 ± 5.59, and 0.52 ± 3.00%) than
in summer (42.88 ± 29.32, 8.02 ± 11.00, and 6.50 ± 13.82%, p < 0.01). In contrast, Rhizo-
biales, Sphingomonadales, and Burkholderiales did not differ significantly between the
sampling times. These taxa contain various potential pathogens and have been reported as
indigenous microbiota in various environments, including fresh produce [25,26].

At the family level, Enterobacteriaceae, Pseudomonadaceae, Methylobacteriaceae, Sphin-
gomonadaceae, and Rhizobiaceae (included in the phylum Proteobacteria) accounted for an
average of more than 0.5% of chicory leaves. Enterobacteriaceae were more dominant in
summer (42.88 ± 29.32%) than in spring (16.63 ± 12.51%). Pseudomonadaceae were more
dominant in spring (48.90 ± 22.72%) than in summer (6.81 ± 6.40%). Methylobacteriaceae
(5.92 ± 5.69% in spring and 9.58 ± 14.32% in summer), Sphingomonadaceae (6.69 ± 5.03%
in spring and 5.16 ± 7.81% in summer), and Rhizobiaceae (5.82 ± 6.76% in spring and
4.65 ± 6.73% in summer) did not significantly differ between spring and summer. In pre-
vious studies, Enterobacteriaceae and Pseudomonadaceae were dominant in soil, water, and
fresh produce (fruits and vegetables) [27,28]. These results are consistent with those of the
present study, showing the composition of the chicory leaf microbiota.

Heatmap analysis was used to compare the microbiota of chicory leaves at the genus
level (over an average of 0.5%, Figure 3). Differences in the abundance of some pathogenic
genera are shown in the three groups. Methylobacterium (5.92 ± 5.69% in spring and
9.57 ± 14.32% in summer), Sphingomonas (6.69 ± 5.03% in spring and 4.90 ± 7.37% in
summer), and Rhizobium (5.77 ± 6.76% in spring and 4.53 ± 6.60% in summer) were
dominant genera in both sampling times. These genera are widely distributed in the
environment, such as soil and water, and have a wide range of growth temperatures [29].
Pseudomonas and Serratia in spring (48.90 ± 22.72% and 2.96 ± 3.91%) were significantly
higher than in the summer samples (6.81± 6.40% and 0.57± 0.95%, A group). Some species
of Pseudomonas and Serratia have been reported to survive at low temperatures through
physiological changes that neutralize the problems caused by low temperatures [30–32].
Moreover, these species are related to food-borne pathogens and spoilage bacteria, such
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as P. aeruginosa, P. fluorescens, and S. marcescens. Pantoea, Enterobacter, Escherichia, Bacillus,
and Klebsiella in spring (5.78 ± 7.85%, 1.02 ± 1.29%, 0.01 ± 0.001%, 0.09 ± 0.11%, and
0.00 ± 0.00%) were significantly lower than that in the summer samples (14.33 ± 14.21%,
10.54 ± 10.40%, 7.27 ± 11.80%, 4.13 ± 7.16%, and 4.13 ± 6.05%, B group). The genera
Pantoea, Enterobacter, Escherichia, and Klebsiella in the Enterobacteriaceae family are found in
various environments, such as soil, water, animals, plants, insects, and humans [33]. The
genus Bacillus is widely distributed in soil and water [34]. These dominant genera appeared
to be the endogenous microbiota in chicory leaves derived from the soil and water. These
are the indigenous microbiota of chicory leaves containing various potential food-borne
pathogens, such as P. agglomerans, E. sakazakii, E. coli, K. pneumoniae, and B. cereus, which
are closely related to food-borne illnesses. These potentially pathogenic genera cause food-
borne illnesses because of their dominance in the production and distribution processes.
Therefore, care should be taken to prevent food-borne illnesses caused by chicory leaf
microbiota during the production and distribution processes, regardless of the sampling
conditions.
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3.4. Quantification of Potential Pathogenic Species on Chicory Leaves

The potential pathogens in the chicory leaf microbiota at the genus level were quan-
tified by qRT-PCR using specific primers (Table 2). Enterohemorrhagic E. coli (EHEC),
Enteropathogenic E. coli (EPEC), and B. cereus were only detected in the spring samples
(6.59 × 102 CFU/g, 3.28 × 102 CFU/g, and 5.12 × 103 CFU/g; 5.00%, 7.50%, and 2.50%,
respectively). Enterotoxigenic E. coli (ETEC) was not detected in spring or summer. EHEC
is a highly pathogenic subgroup of Shiga toxin-producing E. coli (STEC) that causes bloody
diarrhea, abdominal cramps, and hemolytic uremic syndrome (HUS) [35]. EHEC serotype
O157:H7 is a human pathogen associated with HUS [36]. EPEC remains an important
cause of fatal infant diarrhea in developing countries; however, the mechanism that causes
diarrhea is unknown [37]. The major virulence factors of B. cereus are hemolysin, en-
terotoxin, and emetic toxin, which confer resistance to antibiotics, heat, and irradiation
treatment by spore formation [38]. K. pneumoniae (7.36 × 102 CFU/g, 8.75%), S. marcescens
(2.57 × 103 CFU/g, 1.25%), and A. lwoffii (1.09 × 102 CFU/g, 2.50%) were detected only in
summer. K. pneumoniae had the highest detection rate of 8.75% (7.36 × 102 CFU/g) among
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all potential pathogens. The soil bacterium S. marcescens is a nosocomial pathogen found
in many environmental niches that can infect plants and animals [39]. K. pneumoniae is
an opportunistic pathogen that accounts for 10% of nosocomial bacterial infections and
causes kidney failure, lung infections, and encephalitis [40,41]. A. lwoffii can be isolated
from sewage, soil, water, and a wide variety of food resistant to the antibiotics such as
carbapenem and tetracycline (β-lactams class) [42,43]. The bacterial loads and detection
rates in the chicory leaves were higher in spring than in summer. These results differ from
those of previous studies, in which food-borne pathogens were detected more frequently
in vegetables during summer [1,23]. These results show that the characteristics of chicory
leaves, rather than the cultivation conditions, affect pathogen growth. The detection rate of
potential pathogens is low at the production stage, but caution is required, as contamination
during the distribution process may increase the risk of food-borne illness.

Table 2. Quantification of the potential pathogens in chicory samples through qRT-PCR.

Sampling Times Bacterial Loads of Pathogenic Bacteria (CFU/g)
EHEC EPEC ETEC K. pneumoniae B. cereus S. marcescens S. aureus A. lwoffii

Spring 6.59 × 102

(5.00% *)
3.28 × 102

(7.50%)
N.D. ** N.D. 5.12 × 103

(2.50%)
N.D. N.D. N.D.

Summer N.D. N.D. N.D. 7.36 × 102

(8.75%)
N.D. 2.57 × 103

(1.25%)
N.D. 1.09 × 102

(2.50%)

* The average detection rate in 40 samples. ** Non-detected.

3.5. A Shift in Chicory Leaf Microbiota following Artificial Infection at Various Storage Conditions

In this study, our results showed that the Escherichia spp., including EHEC, belongs to
the indigenous microbiota on chicory leaves. This suggests that indigenous EHEC can cause
a risk related to food safety during the storage or transporting of chicory leaves. Therefore,
the effects of EHEC artificial inoculation on microbiota under various storage conditions
(washing, EHEC contamination, storage temperature, and storage time) were analyzed.
A total of 5,252,515 reads (average of 109,427 reads) were obtained from 48 chicory leaf
samples. Changes in the indigenous microbiota according to storage conditions were
observed via 16S rRNA gene profiling, and bacterial loads were determined (Figure 4).

Although higher temperatures significantly influenced the change in the microbiota
structure of chicory leaves, obvious effects on the microbiota due to washing and EHEC
contamination were observed (Figure 4A). The abundance of several genera, such as Bacillus,
Enterobacter, Escherichia, Erwinia, Methylobacterium, Pseudomonas, Rhizobium, Sphingomonas,
and Stenotrophomonas, was significantly influenced by these factors. Among them, the
abundance of Escherichia was 5.75 ± 2.22% at 0 h, but it increased to 74.25 ± 6.29% (highest
abundance among all samples) when the contaminated chicory leaves were stored at 26 ◦C
after washing treatment. The microbiota composition of fresh produce can be changed
in response to various postharvest management practices. In a previous study, distinct
changes in the microbiota structure of fresh produce were attributed to sanitation practices
in unwashed and washed samples [44]. In our results, the pathogenic Escherichia genus
within the chicory leaves microbiota showed a significant increase when samples were
washed and stored at 26 ◦C. This seems to have occurred as particular microorganisms, after
washing, destroyed the microbiota structure, grew rapidly at 26 ◦C, and became dominant.

To accurately estimate absolute taxon abundance from the NGS data, total bacteria and
EHEC were quantified using qRT-PCR. The total bacterial loads of chicory leaves stored
at 26 ◦C were higher than those stored at 4 ◦C, regardless of the EHEC contamination
or washing treatment (Figure 4B,C). However, the total number of bacteria, depending
on the washing treatment, was significantly higher in the unwashed group. In addition,
significant differences were observed only at 24 h in both the washed and non-washed
groups. Considering this together with the previous results shown in Figure 4A, these
results indicate that the washing treatment obviously decreased the total bacteria and
disrupted the indigenous microbiota structure.
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experimental contamination with EHEC and storage under different temperatures and washing
conditions. The genera with an average relative abundance of less than 1% of each sample were
indicated as ‘Others’ (grey-colored bar). The number of total bacteria and EHEC were quantified in
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A higher amount of EHEC in the 26 ◦C group was determined compared to that in
the 4 ◦C group during 24 h storage (Figure 4D). The number of EHEC in the chicory leaves
stored at 26 ◦C increased until 12 h, while that number decreased in the unwashed group
stored at 4 ◦C. In general, most bacteria on fresh produce have been reported to increase
significantly when stored in higher temperatures than in refrigeration conditions, which
seems to be a reasonable result [45]. Interestingly, statistically higher amounts of EHEC in
washed chicory leaves were determined than in unwashed samples after storing for 12 h
and 24 h at 4 ◦C. This result indicates that storing washed chicory leaves at 4 ◦C strongly
disrupts the microbiota structure, allowing potential food-borne pathogens, such as EHEC,
to grow longer at lower temperatures.

Taken together, the effect of the washing treatment and storage at 4 ◦C on microbiota
structure was evident. Therefore, using LEfSe analysis, we identified a shift in the indige-
nous microbiota due to storage conditions without artificial contamination (Figure 5). In
general, a higher absolute LDA value indicated that the species were more enriched in
the group [46]. We found that Pantoea (c), Serratia (d), Pseudomonas (e; affiliated to the
Pseudomonadaceae family within the Pseudomonadales order), and Stenotrophomonas (h;
affiliated to the Xanthomonadaceae family within the Xanthomonadales order) at the genus
level were significantly enriched in the unwashed group stored at 4 ◦C (LDA score ≥ 4.0;
p < 0.05). However, Rhizobiales at the order level (a) and Escherichia at the genus level (b)
were significantly enriched in the washed group stored at 4 ◦C with LDA scores of 5.00
and 4.59 (p < 0.05). This suggests that the washing treatment may disrupt the indigenous
microbiota on chicory leaves, allowing the contaminated EHEC to colonize better and
survive at low temperatures.
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Figure 5. Cladogram and linear discriminant analysis (LDA) coupled with effect size measurement
(LEfSe) analysis identified the most differentially abundant taxa that distinguish between wash and
unwashing treatments. By LEfSe analysis based on the LDA score, differences are represented by the
color of the most abundant genera in the non-contaminated chicory stored at 4 ◦C for 12 h (red; non-
wash and green; wash group). The genera with both averages of relative abundance over 1% and LDA
scores above 2 are shown (LDA score ≥ 2, p < 0.05). a: Rhizobiales, b: Escherichia, c: Pantoea, d: Serratia,
e: Pseudomonas, f: Pseudomonadaceae, g: Pseudomonadales, h: Stenotrophomonas, i: Xanthomonadaceae,
and j: Xanthomonadales.

Consumption of fresh produce is increasing because of its health benefits [47]; however,
this can increase the frequency of food-borne illnesses related to fresh produce [48]. In this
study, we analyzed the composition of chicory leaf microbiota cultivated in South Korea at
different sampling regions and times to detect potential pathogens. This study also showed
that the shift in microbiota structure, including potential pathogens, can be affected by
different storage conditions, such as temperature and washing treatment. Our results can
contribute to preventing the contamination of food-borne pathogens from any specific type
of treatment, packaging, or storage of fresh produce.

4. Conclusions

The microbiota of chicory leaves is related to temporal factors, such as harvesting time,
temperature, and humidity conditions. Proteobacteria, Firmicutes, and Actinobacteria were
the dominant phyla in chicory leaves during spring and summer. Enterobacteriales, Pseu-
domonadales, Rhizobiales, Sphingomonadales, Bacillales, Burkholderiales, and Oceanospir-
illales were dominant at both time points. The dominant families were Enterobacteriaceae,
Pseudomonadaceae, Methylobacteriaceae, Sphingomonadaceae, and Rhizobiaceae. Pseu-
domonas and Serratia were the dominant genera in the spring samples, whereas Pantoea,
Enterobacter, Escherichia, Bacillus, and Klebsiella were dominant in the summer samples. The
detection rate and number of pathogenic species belonging to the indigenous microbiota of
chicory leaves in summer samples were higher than those in the spring samples. We also
analyzed the influence of washing treatment and EHEC contamination on the chicory leaf
microbiota. Although microbiota composition differed between diverse storage conditions,
chicory leaves stored at 4 ◦C after washing treatment or those stored at 26 ◦C showed
higher risk due to EHEC contamination. Therefore, the microbial composition of chicory
leaves determined in this study can be used as basic data for food safety management to
prevent food-borne illness outbreaks caused by the consumption of fresh produce.
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