The Immune Response Generated against HPV Infection in Men and Its Implications in the Diagnosis of Cancer
Abstract
:1. Introduction
2. Characteristics of HPV Infection in Men
3. Stage of HPV Infection in Sexual Partners
4. Risk Factors and Lesions Associated with HPV Infection in Men
5. Natural History of HPV Infection in Men
5.1. Genital Warts
5.2. Anal Cancer
5.3. Penile Cancer
5.4. Head and Neck Squamous Cell Carcinoma
6. Natural HPV Immune Response in Men
7. Vaccines against HPV and the Immune Response Generated in Men
Gender | Age (Years) | GMT (mMU/mL) (7 Months) | Reference | |||
---|---|---|---|---|---|---|
HPV 6 | HPV 11 | HPV 16 | HPV 18 | |||
Men | 16–23 | 484 | 669 | 2615 | 473 | [136] |
Women | 16–23 | 549 | 636 | 3870 | 741 | [138] |
Men | 16–26 | 448 | 624 | 2404 | 402 | [137] |
Women | 16–26 | 536 | 754 | 2298 | 458 | |
Men | 27–45 | 365 | 490 | 2178 | 296 | [137] |
Women | 27–45 | 412 | 538 | 2212 | 384 | |
Men | 27–45 | 419 | 517 | 2229 | 300 | [139] |
8. Detection Methods
Molecular-Based HPV Detection Tests
Type of Sample | Methodology | Prevalence (%) | Reference | |||
---|---|---|---|---|---|---|
LR-HPV | HR-HPV | HPV16 | HPV18 | |||
Genital warts | PCR-reverse dot blot hybridization (GP5+/GP6+) | 91.0 | 41.9 | 12.9 | 7.2 | [144] |
Anogenital warts | qPCR (MY11/GP6, HPV2/B5 primers) | 66.7 | 33.3 | N.R. | N.R. | [72] |
Penile exfoliated cells | Reverse line blot (Biotinylated MY09/MY11 primers) | 29.0 | 71.0 | 9.0 | N.R. | [129] |
Exfoliate penile cells | PCR and dot blot hybridization (PGMY 09/11 primers) | 25.0 | 48.0 | 9.6 | 3.9 | [145] |
Flat penile lesions (FPL) | PCR (SPF10 primers) DEIA/LiPA25 system | 43.0 | 30.0 | 6.9 | 5.2 | [146] |
Invasive penile cancer | PCR (L1C1/L1C2 primers) and RFLP | N.R. | 12.0 | 12.0 | N.R. | [147] |
Penile cancer | In situ hybridization (ISH) with Ventana HPV III probes | 0.0 | 11.4 | N.R. | N.R. | [148] |
Distal urethra exfoliated cells | Reverse line blot (Biotinylated MY09/MY11 primers) | 40.0 | 60.0 | 0.0 | N.R. | [129] |
Distal urethra | Multiple HPV genotyping-Luminex system with modified general primers (MGP) derived from GP5+/GP6+ primers | 10.8 | 24.5 | 8.9 | 3.2 | [149] |
Anal canal (MSW) | PCR and reverse line blot hybridization (PGMY 09/11 primers) | 5.4 | 6.8 | 2.2 | 0.2 | [43] |
Anal Canal (MSM) | PCR and dot blot hybridization (MY09/MY11 primers) | 26.0 | 26.0 | 12 | 4.7 | [77] |
Anal canal (MSM) | PCR and reverse line blot hybridization (PGMY 09/11 primers) | 20.0 | 27.3 | 6.3 | 4.6 | [43] |
Anal canal HIV-neg (MSM) | Nested PCR (PGMY and GP5+/GP6+ primers) | 10.3 * | 50.7 | 23.0 | 8.1 | [150] |
Anal canal HIV-pos (MSM) | Nested PCR (PGMY and GP5+/GP6+ primers) | 19.7 * | 65.3 | 33.7 | 16.3 | [150] |
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Scheurer, M.E.; Tortorelo-Luna, G.; Adler-Storthz, K. Human papillomavirus infection: Biology, epidemiology, and prevention. Int. J. Gynecol. Cancer 2005, 15, 727–746. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, H.U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; zur Hausen, H.; de Villiers, E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 2010, 401, 70–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, A.A. Oncogenic human papillomaviruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160273. [Google Scholar] [CrossRef] [Green Version]
- Estevao, D.; Costa, N.R.; Gil da Costa, R.M.; Medeiros, R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 153–162. [Google Scholar] [CrossRef]
- Howie, H.L.; Katzenellenbogen, R.A.; Galloway, D.A. Papillomavirus E6 proteins. Virology 2009, 384, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Boulet, G.; Horvath, C.; Vanden Broeck, D.; Sahebali, S.; Bogers, J. Human papillomavirus: E6 and E7 oncogenes. Int. J. Biochem. Cell Biol. 2007, 39, 2006–2011. [Google Scholar] [CrossRef]
- Mesri, E.A.; Feitelson, M.A.; Munger, K. Human viral oncogenesis: A cancer hallmarks analysis. Cell Host Microbe 2014, 15, 266–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez-Xicotencatl, L.; Pedroza-Saavedra, A.; Chihu-Amparan, L.; Salazar-Pina, A.; Maldonado-Gama, M.; Esquivel-Guadarrama, F. Cellular Functions of HPV16 E5 Oncoprotein during Oncogenic Transformation. Mol. Cancer Res. 2021, 19, 167–179. [Google Scholar] [CrossRef]
- Pedroza-Saavedra, A.; Plett-Torres, T.; Chihu-Amparán, L.; Maldonado-Gama, M.; González-Jaimes, A.; Esquivel-Guadarrama, F.; Gutiérrez-Xicotencatl, L. Molecular Bases of Human Papillomavirus Pathogenesis in the Development of Cervical Cancer. In Human Papillomavirus and Related Diseases—From Bench to Bedside—Research Aspects; Davy, V.-B., Ed.; InTechOpen: Rijeka, Croatia, 2012; pp. 249–290. [Google Scholar]
- Rosales, R.; Rosales, C. Immune therapy for human papillomaviruses-related cancers. World J. Clin. Oncol. 2014, 5, 1002–1019. [Google Scholar] [CrossRef] [PubMed]
- Stanley, M. HPV vaccination in boys and men. Hum. Vaccin. Immunother. 2014, 10, 2109–2111. [Google Scholar] [CrossRef]
- Vardas, E.; Giuliano, A.R.; Goldstone, S.; Palefsky, J.M.; Moreira, E.D., Jr.; Penny, M.E.; Aranda, C.; Jessen, H.; Moi, H.; Ferris, D.G.; et al. External genital human papillomavirus prevalence and associated factors among heterosexual men on 5 continents. J. Infect. Dis. 2011, 203, 58–65. [Google Scholar] [CrossRef]
- Munoz, N.; Bosch, F.X.; de Sanjose, S.; Herrero, R.; Castellsague, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J.; International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 2003, 348, 518–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogliano, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; WHO International Agency for Research on Cancer. Carcinogenicity of human papillomaviruses. Lancet Oncol. 2005, 6, 204. [Google Scholar] [CrossRef]
- Chelimo, C.; Wouldes, T.A.; Cameron, L.D.; Elwood, J.M. Risk factors for and prevention of human papillomaviruses (HPV), genital warts and cervical cancer. J. Infect. 2013, 66, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, A.R.; Tortolero-Luna, G.; Ferrer, E.; Burchell, A.N.; de Sanjose, S.; Kjaer, S.K.; Munoz, N.; Schiffman, M.; Bosch, F.X. Epidemiology of human papillomavirus infection in men, cancers other than cervical and benign conditions. Vaccine 2008, 26 (Suppl. S10), K17–K28. [Google Scholar] [CrossRef] [Green Version]
- Dunne, E.F.; Nielson, C.M.; Stone, K.M.; Markowitz, L.E.; Giuliano, A.R. Prevalence of HPV infection among men: A systematic review of the literature. J. Infect. Dis. 2006, 194, 1044–1057. [Google Scholar] [CrossRef]
- de Lima Rocha, M.G.; Faria, F.L.; Goncalves, L.; Souza Mdo, C.; Fernandes, P.A.; Fernandes, A.P. Prevalence of DNA-HPV in male sexual partners of HPV-infected women and concordance of viral types in infected couples. PLoS ONE 2012, 7, e40988. [Google Scholar] [CrossRef] [Green Version]
- Nielson, C.M.; Flores, R.; Harris, R.B.; Abrahamsen, M.; Papenfuss, M.R.; Dunne, E.F.; Markowitz, L.E.; Giuliano, A.R. Human papillomavirus prevalence and type distribution in male anogenital sites and semen. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2007, 16, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Souho, T.; Benlemlih, M.; Bennani, B. Human papillomavirus infection and fertility alteration: A systematic review. PLoS ONE 2015, 10, e0126936. [Google Scholar] [CrossRef] [PubMed]
- Boeri, L.; Capogrosso, P.; Ventimiglia, E.; Pederzoli, F.; Cazzaniga, W.; Chierigo, F.; Pozzi, E.; Clementi, M.; Vigano, P.; Montanari, E.; et al. High-risk human papillomavirus in semen is associated with poor sperm progressive motility and a high sperm DNA fragmentation index in infertile men. Hum. Reprod. 2019, 34, 209–217. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, C.W.; Ma, Y.M.; Zhou, L.Y.; Wang, S.Y. Correlation between HPV sperm infection and male infertility. Asian J. Androl. 2013, 15, 529–532. [Google Scholar] [CrossRef] [Green Version]
- Muscianisi, F.; De Toni, L.; Giorato, G.; Carosso, A.; Foresta, C.; Garolla, A. Is HPV the Novel Target in Male Idiopathic Infertility? A Systematic Review of the Literature. Front. Endocrinol. 2021, 12, 643539. [Google Scholar] [CrossRef] [PubMed]
- Capra, G.; Schillaci, R.; Bosco, L.; Roccheri, M.C.; Perino, A.; Ragusa, M.A. HPV infection in semen: Results from a new molecular approach. Epidemiol. Infect. 2019, 147, e177. [Google Scholar] [CrossRef] [Green Version]
- Garolla, A.; De Toni, L.; Bottacin, A.; Valente, U.; De Rocco Ponce, M.; Di Nisio, A.; Foresta, C. Human Papillomavirus Prophylactic Vaccination improves reproductive outcome in infertile patients with HPV semen infection: A retrospective study. Sci. Rep. 2018, 8, 912. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, B.Y.; Wilkens, L.R.; Zhu, X.; Thompson, P.; McDuffie, K.; Shvetsov, Y.B.; Kamemoto, L.E.; Killeen, J.; Ning, L.; Goodman, M.T. Transmission of human papillomavirus in heterosexual couples. Emerg. Infect. Dis. 2008, 14, 888–894. [Google Scholar] [CrossRef]
- Giuliano, A.R.; Lazcano-Ponce, E.; Villa, L.L.; Flores, R.; Salmeron, J.; Lee, J.H.; Papenfuss, M.R.; Abrahamsen, M.; Jolles, E.; Nielson, C.M.; et al. The human papillomavirus infection in men study: Human papillomavirus prevalence and type distribution among men residing in Brazil, Mexico, and the United States. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2008, 17, 2036–2043. [Google Scholar] [CrossRef] [Green Version]
- Bogaards, J.A.; Xiridou, M.; Coupe, V.M.; Meijer, C.J.; Wallinga, J.; Berkhof, J. Model-based estimation of viral transmissibility and infection-induced resistance from the age-dependent prevalence of infection for 14 high-risk types of human papillomavirus. Am. J. Epidemiol. 2010, 171, 817–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyitray, A.G.; Lin, H.Y.; Fulp, W.J.; Chang, M.; Menezes, L.; Lu, B.; Abrahamsen, M.; Papenfuss, M.; Gage, C.; Galindo, C.M.; et al. The role of monogamy and duration of heterosexual relationships in human papillomavirus transmission. J. Infect. Dis. 2014, 209, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widdice, L.; Ma, Y.; Jonte, J.; Farhat, S.; Breland, D.; Shiboski, S.; Moscicki, A.B. Concordance and transmission of human papillomavirus within heterosexual couples observed over short intervals. J. Infect. Dis. 2013, 207, 1286–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widdice, L.E.; Breland, D.J.; Jonte, J.; Farhat, S.; Ma, Y.; Leonard, A.C.; Moscicki, A.B. Human papillomavirus concordance in heterosexual couples. J. Adolesc. Health 2010, 47, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolau, S.M.; Camargo, C.G.; Stavale, J.N.; Castelo, A.; Dores, G.B.; Lorincz, A.; de Lima, G.R. Human papillomavirus DNA detection in male sexual partners of women with genital human papillomavirus infection. Urology 2005, 65, 251–255. [Google Scholar] [CrossRef]
- Lorenzon, L.; Terrenato, I.; Dona, M.G.; Ronchetti, L.; Rollo, F.; Marandino, F.; Carosi, M.; Diodoro, M.G.; Sentinelli, S.; Visca, P.; et al. Prevalence of HPV infection among clinically healthy Italian males and genotype concordance between stable sexual partners. J. Clin. Virol. 2014, 60, 264–269. [Google Scholar] [CrossRef]
- Parada, R.; Morales, R.; Giuliano, A.R.; Cruz, A.; Castellsague, X.; Lazcano-Ponce, E. Prevalence, concordance and determinants of human papillomavirus infection among heterosexual partners in a rural region in central Mexico. BMC Infect. Dis. 2010, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Benevolo, M.; Mottolese, M.; Marandino, F.; Carosi, M.; Diodoro, M.G.; Sentinelli, S.; Visca, P.; Rollo, F.; Mariani, L.; Vocaturo, G.; et al. HPV prevalence among healthy Italian male sexual partners of women with cervical HPV infection. J. Med. Virol. 2008, 80, 1275–1281. [Google Scholar] [CrossRef]
- Davarmanesh, M.; Dezfulian, M.; Gharavi, M.J.; Younesi, S.; Saadati, P.; Amin, M.M.T.; Jazayeri, S.M. Human papilloma virus (HPV) genotypes concordance between Iranian couples referrals. Infect. Agents Cancer 2019, 14, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abalos, A.T.; Harris, R.B.; Nyitray, A.G.; Mitchell, A.; Thompson, P.A.; Giuliano, A.R.; Garcia, F. Human papillomavirus type distribution among heterosexual couples. J. Low. Genit. Tract Dis. 2012, 16, 10–15. [Google Scholar] [CrossRef]
- Nyitray, A.G.; Menezes, L.; Lu, B.; Lin, H.Y.; Smith, D.; Abrahamsen, M.; Papenfuss, M.; Gage, C.; Giuliano, A.R. Genital human papillomavirus (HPV) concordance in heterosexual couples. J. Infect. Dis. 2012, 206, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.L.; Gravitt, P.E.; Martinson, N.A.; Hoffmann, J.; D’Souza, G. Concordant Oral-Genital HPV Infection in South Africa Couples: Evidence for Transmission. Front. Oncol. 2013, 3, 303. [Google Scholar] [CrossRef] [Green Version]
- Nyitray, A.G.; Carvalho da Silva, R.J.; Baggio, M.L.; Lu, B.; Smith, D.; Abrahamsen, M.; Papenfuss, M.; Villa, L.L.; Lazcano-Ponce, E.; Giuliano, A.R. Age-specific prevalence of and risk factors for anal human papillomavirus (HPV) among men who have sex with women and men who have sex with men: The HPV in men (HIM) study. J. Infect. Dis. 2011, 203, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Nyitray, A.G.; Smith, D.; Villa, L.; Lazcano-Ponce, E.; Abrahamsen, M.; Papenfuss, M.; Giuliano, A.R. Prevalence of and risk factors for anal human papillomavirus infection in men who have sex with women: A cross-national study. J. Infect. Dis. 2010, 201, 1498–1508. [Google Scholar] [CrossRef] [Green Version]
- Gillison, M.L. Molecular Epidemiology of Human Papillomaviurs Infection. In Human. Cancer Viruses: Principles of Transformation and Pathogenesis; Nicholas, J., Jeang, K.T., Wu, T.C., Eds.; Karger: Basel, Switzerland, 2008; Volume 1, p. 244. [Google Scholar]
- Giuliano, A.R.; Lee, J.H.; Fulp, W.; Villa, L.L.; Lazcano, E.; Papenfuss, M.R.; Abrahamsen, M.; Salmeron, J.; Anic, G.M.; Rollison, D.E.; et al. Incidence and clearance of genital human papillomavirus infection in men (HIM): A cohort study. Lancet 2011, 377, 932–940. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, A.R.; Anic, G.; Nyitray, A.G. Epidemiology and pathology of HPV disease in males. Gynecol. Oncol. 2010, 117, S15–S19. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human Papillomaviruses. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100B, 1–499. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human Papillomaviruses. IARC Monogr. Eval. Carcinog. Risks Hum./World Health Organ. Int. Agency Res. Cancer 2007, 90, 1–636. [Google Scholar]
- Potocnik, M.; Kocjan, B.; Seme, K.; Poljak, M. Distribution of human papillomavirus (HPV) genotypes in genital warts from males in Slovenia. Acta Dermatovenerol. Alp. Pannonica Adriat. 2007, 16, 91–96. [Google Scholar]
- Anic, G.M.; Lee, J.H.; Stockwell, H.; Rollison, D.E.; Wu, Y.; Papenfuss, M.R.; Villa, L.L.; Lazcano-Ponce, E.; Gage, C.; Silva, R.J.; et al. Incidence and human papillomavirus (HPV) type distribution of genital warts in a multinational cohort of men: The HPV in men study. J. Infect. Dis. 2011, 204, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Poljak, M.; Kocjan, B.J.; Potocnik, M.; Seme, K. Anogenital hairs are an important reservoir of alpha-papillomaviruses in patients with genital warts. J. Infect. Dis. 2009, 199, 1270–1274. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, M.; Yang, Y.; Zhong, X.; Feng, B.; Xin, H.; Li, Z.; Jin, Q.; Gao, L. Anal HPV/HIV co-infection among Men Who Have Sex with Men: A cross-sectional survey from three cities in China. Sci. Rep. 2016, 6, 21368. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Li, P.; Ouyang, L.; Yuan, T.; Gong, H.; Ding, Y.; Luo, Z.; Wu, G.; Yu, M.; Zou, H. Anal Human Papillomavirus Infection among MSM Attending University in China: Implications for Vaccination. Vaccines 2020, 8, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, A.L.; Karthik, R.; Sivasubramanian, M.; Raghavendran, A.; Gnanamony, M.; Lensing, S.; Lee, J.Y.; Kannangai, R.; Abraham, P.; Mathai, D.; et al. Prevalence of Anal HPV Infection Among HIV-Positive Men Who Have Sex With Men in India. J. Acquir. Immune Defic. Syndr. 2016, 71, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajdic, C.M.; van Leeuwen, M.T.; Jin, F.; Prestage, G.; Medley, G.; Hillman, R.J.; Stevens, M.P.; Botes, L.P.; Zablotska, I.; Tabrizi, S.N.; et al. Anal human papillomavirus genotype diversity and co-infection in a community-based sample of homosexual men. Sex. Transm. Infect. 2009, 85, 330–335. [Google Scholar] [CrossRef]
- Canadas, M.P.; Darwich, L.; Sirera, G.; Bofill, M.; Pinol, M.; Garcia-Cuyas, F.; Llatjos, M.; Corbasi, P.; Clotet, B.; Videla, S.; et al. Human papillomavirus 16 integration and risk factors associated in anal samples of HIV-1 infected men. Sex. Transm. Dis. 2010, 37, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.G.; Schumaker, L.M.; Ambulos, N.P.; Ndembi, N.; Dauda, W.; Nnaji, C.H.; Mitchell, A.; Mathias, T.J.; Jibrin, P.; Darragh, T.M.; et al. Multiple HPV infections among men who have sex with men engaged in anal cancer screening in Abuja, Nigeria. Papillomavirus Res. 2020, 10, 100200. [Google Scholar] [CrossRef]
- Daling, J.R.; Madeleine, M.M.; Johnson, L.G.; Schwartz, S.M.; Shera, K.A.; Wurscher, M.A.; Carter, J.J.; Porter, P.L.; Galloway, D.A.; McDougall, J.K. Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. Cancer 2004, 101, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Ingles, D.J.; Pierce Campbell, C.M.; Messina, J.A.; Stoler, M.H.; Lin, H.Y.; Fulp, W.J.; Abrahamsen, M.; Sirak, B.A.; O’Keefe, M.T.; Papenfuss, M.; et al. Human papillomavirus virus (HPV) genotype- and age-specific analyses of external genital lesions among men in the HPV Infection in Men (HIM) Study. J. Infect. Dis. 2015, 211, 1060–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemany, L.; Cubilla, A.; Halec, G.; Kasamatsu, E.; Quiros, B.; Masferrer, E.; Tous, S.; Lloveras, B.; Hernandez-Suarez, G.; Lonsdale, R.; et al. Role of Human Papillomavirus in Penile Carcinomas Worldwide. Eur. Urol. 2016, 69, 953–961. [Google Scholar] [CrossRef]
- Gu, W.; Zhang, P.; Zhang, G.; Zhou, J.; Ding, X.; Wang, Q.; Wang, B.; Wei, Y.; Jin, S.; Ye, D.; et al. Importance of HPV in Chinese Penile Cancer: A Contemporary Multicenter Study. Front. Oncol. 2020, 10, 1521. [Google Scholar] [CrossRef]
- Kreimer, A.R.; Pierce Campbell, C.M.; Lin, H.Y.; Fulp, W.; Papenfuss, M.R.; Abrahamsen, M.; Hildesheim, A.; Villa, L.L.; Salmeron, J.J.; Lazcano-Ponce, E.; et al. Incidence and clearance of oral human papillomavirus infection in men: The HIM cohort study. Lancet 2013, 382, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Martinez, R.; Maldonado-Frias, S.; Vazquez-Vega, S.; Caro-Vega, Y.; Rendon-Maldonado, J.G.; Guido-Jimenez, M.; Crabtree-Ramirez, B.; Sierra-Madero, J.G.; Garcia-Carranca, A. High prevalent human papillomavirus infections of the oral cavity of asymptomatic HIV-positive men. BMC Infect. Dis. 2020, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Gheit, T.; Rollo, F.; Brancaccio, R.N.; Robitaille, A.; Galati, L.; Giuliani, M.; Latini, A.; Pichi, B.; Benevolo, M.; Cuenin, C.; et al. Oral Infection by Mucosal and Cutaneous Human Papillomaviruses in the Men Who Have Sex with Men from the OHMAR Study. Viruses 2020, 12, 899. [Google Scholar] [CrossRef]
- Wiley, D.J.; Douglas, J.; Beutner, K.; Cox, T.; Fife, K.; Moscicki, A.B.; Fukumoto, L. External genital warts: Diagnosis, treatment, and prevention. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2002, 35, S210–S224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, V.N.; Koranne, R.V.; Srivastava, S.B. Genital warts. Current status. Int. J. Dermatol. 1989, 28, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, G.L.; Larsen, H.K. The quality of life of patients with genital warts: A qualitative study. BMC Public. Health 2010, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.; Wagner, M.; Singhal, P.; Kothari, S. Systematic review of the incidence and prevalence of genital warts. BMC Infect. Dis. 2013, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Fathi, R.; Tsoukas, M.M. Genital warts and other HPV infections: Established and novel therapies. Clin. Dermatol. 2014, 32, 299–306. [Google Scholar] [CrossRef]
- Oriel, J.D. Natural history of genital warts. Br. J. Vener. Dis. 1971, 47, 1. [Google Scholar] [CrossRef] [Green Version]
- Al-Awadhi, R.; Al-Mutairi, N.; Albatineh, A.N.; Chehadeh, W. Association of HPV genotypes with external anogenital warts: A cross sectional study. BMC Infect. Dis. 2019, 19, 375. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grulich, A.E.; Poynten, I.M.; Machalek, D.A.; Jin, F.; Templeton, D.J.; Hillman, R.J. The epidemiology of anal cancer. Sex. Health 2012, 9, 504–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machalek, D.A.; Poynten, M.; Jin, F.; Fairley, C.K.; Farnsworth, A.; Garland, S.M.; Hillman, R.J.; Petoumenos, K.; Roberts, J.; Tabrizi, S.N.; et al. Anal human papillomavirus infection and associated neoplastic lesions in men who have sex with men: A systematic review and meta-analysis. Lancet Oncol. 2012, 13, 487–500. [Google Scholar] [CrossRef]
- Chin-Hong, P.V.; Husnik, M.; Cranston, R.D.; Colfax, G.; Buchbinder, S.; Da Costa, M.; Darragh, T.; Jones, D.; Judson, F.; Koblin, B.; et al. Anal human papillomavirus infection is associated with HIV acquisition in men who have sex with men. AIDS 2009, 23, 1135–1142. [Google Scholar] [CrossRef]
- Yu, C.T.; Chao, S.C.; Lee, H.C.; Chou, C.Y.; Ko, W.C.; Liu, H.Y.; Lai, Y.Y.; Lee, N.Y.; Chang, C.M.; Ko, N.Y. High prevalence of anal human papillomavirus infection and associated risky behaviors in men infected with human immunodeficiency virus in Taiwan. AIDS Behav. 2013, 17, 1211–1218. [Google Scholar] [CrossRef]
- Marra, E.; Lin, C.; Clifford, G.M. Type-Specific Anal Human Papillomavirus Prevalence Among Men, According to Sexual Preference and HIV Status: A Systematic Literature Review and Meta-Analysis. J. Infect. Dis. 2019, 219, 590–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, H.F.; Morgenstern, H.; Mack, T.M.; Peters, R.K. Risk factors for anal cancer: Results of a population-based case--control study. Cancer Causes Control. 2003, 14, 837–846. [Google Scholar] [CrossRef]
- Weis, S.E.; Vecino, I.; Pogoda, J.M.; Susa, J.S.; Nevoit, J.; Radaford, D.; McNeely, P.; Colquitt, C.A.; Adams, E. Prevalence of anal intraepithelial neoplasia defined by anal cytology screening and high-resolution anoscopy in a primary care population of HIV-infected men and women. Dis. Colon. Rectum 2011, 54, 433–441. [Google Scholar] [CrossRef]
- Walker, F.; Abramowitz, L.; Benabderrahmane, D.; Duval, X.; Descatoire, V.; Henin, D.; Lehy, T.; Aparicio, T. Growth factor receptor expression in anal squamous lesions: Modifications associated with oncogenic human papillomavirus and human immunodeficiency virus. Hum. Pathol. 2009, 40, 1517–1527. [Google Scholar] [CrossRef]
- Zhou, W.; Jiang, C.; Zhan, N.; Lv, X.; Fan, L.; Ninu, M. Human epidermal growth factor receptor 2, epidermal growth factor receptor, and c-MET overexpression and survival in biliary tract cancer: A meta-analysis. J. Cancer Res. Ther. 2018, 14, S28–S35. [Google Scholar] [CrossRef] [PubMed]
- Ndiaye, C.; Mena, M.; Alemany, L.; Arbyn, M.; Castellsague, X.; Laporte, L.; Bosch, F.X.; de Sanjose, S.; Trottier, H. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: A systematic review and meta-analysis. Lancet Oncol. 2014, 15, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Wessely, A.; Heppt, M.V.; Kammerbauer, C.; Steeb, T.; Kirchner, T.; Flaig, M.J.; French, L.E.; Berking, C.; Schmoeckel, E.; Reinholz, M. Evaluation of PD-L1 Expression and HPV Genotyping in Anal Squamous Cell Carcinoma. Cancers 2020, 12, 2516. [Google Scholar] [CrossRef] [PubMed]
- Iorga, L.; Dragos Marcu, R.; Cristina Diaconu, C.; Maria Alexandra Stanescu, A.; Pantea Stoian, A.; Liviu Dorel Mischianu, D.; Surcel, M.; Bungau, S.; Constantin, T.; Boda, D.; et al. Penile carcinoma and HPV infection (Review). Exp. Ther. Med. 2020, 20, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palefsky, J.M. Human papillomavirus-related disease in men: Not just a women’s issue. J. Adolesc. Health 2010, 46, S12–S19. [Google Scholar] [CrossRef] [Green Version]
- Douglawi, A.; Masterson, T.A. Updates on the epidemiology and risk factors for penile cancer. Transl. Androl. Urol. 2017, 6, 785–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottenhof, S.R.; Bleeker, M.C.G.; Heideman, D.A.M.; Snijders, P.J.F.; Meijer, C.J.L.M.; Horenblas, S. Epidemiology of Penile Cancer. In Textbook of Penile Cancer; Muneer, A., Horenblas, S., Eds.; Springer International Publishing: London, UK, 2016. [Google Scholar]
- Peter, M.; Rosty, C.; Couturier, J.; Radvanyi, F.; Teshima, H.; Sastre-Garau, X. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene 2006, 25, 5985–5993. [Google Scholar] [CrossRef] [Green Version]
- Couturier, J.; Sastre-Garau, X.; Schneider-Maunoury, S.; Labib, A.; Orth, G. Integration of papillomavirus DNA near myc genes in genital carcinomas and its consequences for proto-oncogene expression. J. Virol. 1991, 65, 4534–4538. [Google Scholar] [CrossRef] [Green Version]
- Olesen, T.B.; Sand, F.L.; Rasmussen, C.L.; Albieri, V.; Toft, B.G.; Norrild, B.; Munk, C.; Kjaer, S.K. Prevalence of human papillomavirus DNA and p16(INK4a) in penile cancer and penile intraepithelial neoplasia: A systematic review and meta-analysis. Lancet Oncol. 2019, 20, 145–158. [Google Scholar] [CrossRef]
- Alabi, O.; O’Neill, J.P. ‘Good cancer gone bad’: A narrative review of HPV oropharyngeal cancer and potential poor outcomes. Eur. Arch. Otorhinolaryngol. 2020, 277, 2185–2191. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011, 29, 4294–4301. [Google Scholar] [CrossRef]
- Rettig, E.; Kiess, A.P.; Fakhry, C. The role of sexual behavior in head and neck cancer: Implications for prevention and therapy. Expert. Rev. Anticancer. Ther. 2015, 15, 35–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragin, C.C.; Modugno, F.; Gollin, S.M. The epidemiology and risk factors of head and neck cancer: A focus on human papillomavirus. J. Dent. Res. 2007, 86, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Gillison, M.L.; Koch, W.M.; Capone, R.B.; Spafford, M.; Westra, W.H.; Wu, L.; Zahurak, M.L.; Daniel, R.W.; Viglione, M.; Symer, D.E.; et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 2000, 92, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Faraji, F.; Zaidi, M.; Fakhry, C.; Gaykalova, D.A. Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect. 2017, 19, 464–475. [Google Scholar] [CrossRef]
- Parfenov, M.; Pedamallu, C.S.; Gehlenborg, N.; Freeman, S.S.; Danilova, L.; Bristow, C.A.; Lee, S.; Hadjipanayis, A.G.; Ivanova, E.V.; Wilkerson, M.D.; et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 15544–15549. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas, N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bzhalava, Z.; Arroyo Muhr, L.S.; Dillner, J. Transcription of human papillomavirus oncogenes in head and neck squamous cell carcinomas. Vaccine 2020, 38, 4066–4070. [Google Scholar] [CrossRef]
- Ramqvist, T.; Mints, M.; Tertipis, N.; Nasman, A.; Romanitan, M.; Dalianis, T. Studies on human papillomavirus (HPV) 16 E2, E5 and E7 mRNA in HPV-positive tonsillar and base of tongue cancer in relation to clinical outcome and immunological parameters. Oral. Oncol. 2015, 51, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slebos, R.J.; Yi, Y.; Ely, K.; Carter, J.; Evjen, A.; Zhang, X.; Shyr, Y.; Murphy, B.M.; Cmelak, A.J.; Burkey, B.B.; et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin. Cancer Res. 2006, 12, 701–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Gaykalova, D.A.; Considine, M.; Wheelan, S.; Pallavajjala, A.; Bishop, J.A.; Westra, W.H.; Ideker, T.; Koch, W.M.; Khan, Z.; et al. Characterization of functionally active gene fusions in human papillomavirus related oropharyngeal squamous cell carcinoma. Int. J. Cancer 2016, 139, 373–382. [Google Scholar] [CrossRef] [Green Version]
- De Luca, A.; Esposito Abate, R.; Rachiglio, A.M.; Maiello, M.R.; Esposito, C.; Schettino, C.; Izzo, F.; Nasti, G.; Normanno, N. FGFR Fusions in Cancer: From Diagnostic Approaches to Therapeutic Intervention. Int. J. Mol. Sci. 2020, 21, 6856. [Google Scholar] [CrossRef]
- Chung, J.H.; Jung, H.R.; Jung, A.R.; Lee, Y.C.; Kong, M.; Lee, J.S.; Eun, Y.G. SOX2 activation predicts prognosis in patients with head and neck squamous cell carcinoma. Sci. Rep. 2018, 8, 1677. [Google Scholar] [CrossRef] [Green Version]
- Um, S.H.; Mundi, N.; Yoo, J.; Palma, D.A.; Fung, K.; MacNeil, D.; Wehrli, B.; Mymryk, J.S.; Barrett, J.W.; Nichols, A.C. Variable expression of the forgotten oncogene E5 in HPV-positive oropharyngeal cancer. J. Clin. Virol. 2014, 61, 94–100. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Shang, Z.; Kouznetsoca, V.L.; Tsigelny, I.F. Human Papillomavirus (HPV) Viral Proteins Substitute for the Impact of Somatic Mutations by Affecting Cancer-Related Genes Meta-analysis and Perspectives. J. Infect. Epidemiol. 2020, 3, 29–47. [Google Scholar] [CrossRef]
- Scott, M.; Nakagawa, M.; Moscicki, A.B. Cell-mediated immune response to human papillomavirus infection. Clin. Diagn. Lab. Immunol. 2001, 8, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.C. Immunology of the human papilloma virus in relation to cancer. Curr. Opin. Immunol. 1994, 6, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Viscidi, R.; Deshmukh, I.; Costa, M.D.; Palefsky, J.M.; Farhat, S.; Moscicki, A.B. Time course of humoral and cell-mediated immune responses to human papillomavirus type 16 in infected women. Clin. Diagn. Lab. Immunol. 2002, 9, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Konya, J.; Dillner, J. Immunity to oncogenic human papillomaviruses. Adv. Cancer Res. 2001, 82, 205–238. [Google Scholar] [CrossRef] [PubMed]
- Stanley, M.A. Immune responses to human papilloma viruses. Indian. J. Med. Res. 2009, 130, 266–276. [Google Scholar]
- Frazer, I.H. Immunology of papillomavirus infection. Curr. Opin. Immunol. 1996, 8, 484–491. [Google Scholar] [CrossRef]
- de Gruijl, T.D.; Bontkes, H.J.; Walboomers, J.M.; Coursaget, P.; Stukart, M.J.; Dupuy, C.; Kueter, E.; Verheijen, R.H.; Helmerhorst, T.J.; Duggan-Keen, M.F.; et al. Immune responses against human papillomavirus (HPV) type 16 virus-like particles in a cohort study of women with cervical intraepithelial neoplasia. I. Differential T-helper and IgG responses in relation to HPV infection and disease outcome. J. Gen. Virol. 1999, 80 Pt 2, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ondondo, R.O.; Bukusi, E.A.; Ng’ang’a, Z.W.; Kiptoo, M.; Mpoke, S. Cellular immune responses against natural human papillomavirus infections among men in Kisumu, Kenya. Clin. Immunol. 2020, 212, 108211. [Google Scholar] [CrossRef]
- Hidalgo Tenorio, C.; Rivero Rodriguez, M.; Concha, A.; Gil Anguita, C.; Lopez Castro, R.; Lopez del Hierro, M.; Angel Lopez Ruz, M.; Pasquau Liano, J. CD4 lymphocytes as a protective factor against infection by oncogenic genotypes of human papillomavirus in the anal mucosa of men who have sex with human immunodeficiency virus positive men. Med. Clin. 2013, 140, 193–199. [Google Scholar] [CrossRef]
- Cheng, S.H.; Chu, F.Y.; Lin, Y.S.; Hsueh, Y.M. Influence of age and CD4+ T cell counts on the prevalence of genital human papillomavirus infection among HIV-seropositive men who have sex with men in Taiwan. J. Med. Virol. 2012, 84, 1876–1883. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Ye, Y.; Shen, W.; Ye, X.; Lin, Y.; Lin, Z.; Tan, S.; Gao, M.; Ding, Y.; et al. Increased CD4(+) T cell count is associated with lower anal human papillomavirus prevalence among HIV-positive male cohort in Taizhou, China: A cross-sectional study. BMC Infect. Dis. 2022, 22, 250. [Google Scholar] [CrossRef]
- Tong, W.W.; Shepherd, K.; Garland, S.; Meagher, A.; Templeton, D.J.; Fairley, C.K.; Jin, F.; Poynten, I.M.; Zaunders, J.; Hillman, R.J.; et al. Human papillomavirus 16-specific T-cell responses and spontaneous regression of anal high-grade squamous intraepithelial lesions. J. Infect. Dis. 2015, 211, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Litwin, T.R.; Irvin, S.R.; Chornock, R.L.; Sahasrabuddhe, V.V.; Stanley, M.; Wentzensen, N. Infiltrating T-cell markers in cervical carcinogenesis: A systematic review and meta-analysis. Br. J. Cancer 2021, 124, 831–841. [Google Scholar] [CrossRef]
- Frazer, I.H.; Leggatt, G.R.; Mattarollo, S.R. Prevention and treatment of papillomavirus-related cancers through immunization. Annu. Rev. Immunol. 2011, 29, 111–138. [Google Scholar] [CrossRef]
- Gutierrez-Xicotencatl, L.; Salazar-Pina, D.A.; Pedroza-Saavedra, A.; Chihu-Amparan, L.; Rodriguez-Ocampo, A.N.; Maldonado-Gama, M.; Esquivel-Guadarrama, F.R. Humoral Immune Response Against Human Papillomavirus as Source of Biomarkers for the Prediction and Detection of Cervical Cancer. Viral Immunol. 2016, 29, 83–94. [Google Scholar] [CrossRef]
- Lu, B.; Viscidi, R.P.; Wu, Y.; Nyitray, A.G.; Villa, L.L.; Lazcano-Ponce, E.; Carvalho da Silva, R.J.; Baggio, M.L.; Quiterio, M.; Salmeron, J.; et al. Seroprevalence of human papillomavirus (HPV) type 6 and 16 vary by anatomic site of HPV infection in men. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2012, 21, 1542–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plett-Torres, T.; Cruz-Valdez, A.; Esquivel-Guadarrama, F.; Hernandez-Nevarez, P.; Lazcano-Ponce, E.; Gutierrez-Xicotencatl, L. Frequency of antibodies against E4 and E7 from human papillomavirus type 16 in Mexican soldiers. Arch. Virol. 2007, 152, 97–114. [Google Scholar] [CrossRef]
- Poynten, I.M.; Waterboer, T.; Jin, F.; Templeton, D.J.; Hillman, R.J.; Law, C.; Cornall, A.; Tabrizi, S.; Roberts, J.M.; Garland, S.M.; et al. Human Papillomavirus Seroprevalence and Association with Anal HPV Infection and Squamous Intraepithelial Lesions in Australian Gay and Bisexual Men. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2018, 27, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Marra, E.; Siegenbeek van Heukelom, M.L.; Leeman, A.; Waterboer, T.; Meijer, C.; Snijders, P.J.F.; King, A.J.; Cairo, I.; van Eeden, A.; Brokking, W.; et al. Virological and Serological Predictors of Anal High-grade Squamous Intraepithelial Lesions Among Human Immunodeficiency Virus-positive Men Who Have Sex With Men. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 1377–1387. [Google Scholar] [CrossRef]
- D’Souza, G.; Tewari, S.R.; Troy, T.; Waterboer, T.; Struijk, L.; Castillo, R.; Wright, H.; Shen, M.; Miles, B.; Johansson, M.; et al. Prevalence of oral and blood oncogenic human papillomavirus biomarkers among an enriched screening population: Baseline results of the MOUTH study. Cancer 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gattoc, L.; Nair, N.; Ault, K. Human papillomavirus vaccination: Current indications and future directions. Obstet. Gynecol. Clin. N. Am. 2013, 40, 177–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J. Gardasil 9 FDA Approval History. Updated on 7 September 2020. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/gardasil-9 (accessed on 14 April 2023).
- Spinu, A.D.; Anghel, R.F.; Marcu, D.R.; Iorga, D.L.; Cherciu, A.; Mischianu, D.L.D. HPV vaccine for men: Where to? (Review). Exp. Ther. Med. 2021, 22, 1266. [Google Scholar] [CrossRef]
- Hillman, R.J.; Giuliano, A.R.; Palefsky, J.M.; Goldstone, S.; Moreira, E.D., Jr.; Vardas, E.; Aranda, C.; Jessen, H.; Ferris, D.G.; Coutlee, F.; et al. Immunogenicity of the quadrivalent human papillomavirus (type 6/11/16/18) vaccine in males 16 to 26 years old. Clin. Vaccine Immunol. 2012, 19, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, I.; Plata, M.; Gonzalez, M.; Correa, A.; Nossa, C.; Giuliano, A.R.; Joura, E.A.; Ferenczy, A.; Ronnett, B.M.; Stoler, M.H.; et al. Effectiveness, immunogenicity, and safety of the quadrivalent HPV vaccine in women and men aged 27-45 years. Hum. Vaccin. Immunother. 2022, 18, 2078626. [Google Scholar] [CrossRef]
- Olsson, S.E.; Villa, L.L.; Costa, R.L.; Petta, C.A.; Andrade, R.P.; Malm, C.; Iversen, O.E.; Hoye, J.; Steinwall, M.; Riis-Johannessen, G.; et al. Induction of immune memory following administration of a prophylactic quadrivalent human papillomavirus (HPV) types 6/11/16/18 L1 virus-like particle (VLP) vaccine. Vaccine 2007, 25, 4931–4939. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, A.R.; Isaacs-Soriano, K.; Torres, B.N.; Abrahamsen, M.; Ingles, D.J.; Sirak, B.A.; Quiterio, M.; Lazcano-Ponce, E. Immunogenicity and safety of Gardasil among mid-adult aged men (27–45 years)—The MAM Study. Vaccine 2015, 33, 5640–5646. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, A.R.; Palefsky, J.M.; Goldstone, S.; Moreira, E.D., Jr.; Penny, M.E.; Aranda, C.; Vardas, E.; Moi, H.; Jessen, H.; Hillman, R.; et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N. Engl. J. Med. 2011, 364, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Castellsague, X.; Giuliano, A.R.; Goldstone, S.; Guevara, A.; Mogensen, O.; Palefsky, J.M.; Group, T.; Shields, C.; Liu, K.; Maansson, R.; et al. Immunogenicity and safety of the 9-valent HPV vaccine in men. Vaccine 2015, 33, 6892–6901. [Google Scholar] [CrossRef]
- Drolet, M.; Benard, E.; Perez, N.; Brisson, M.; Group, H.P.V.V.I.S. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: Updated systematic review and meta-analysis. Lancet 2019, 394, 497–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depuydt, C.E.; Boulet, G.A.; Horvath, C.A.; Benoy, I.H.; Vereecken, A.J.; Bogers, J.J. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J. Cell Mol. Med. 2007, 11, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Li, R.; Lv, J.; Yi, G.; Sun, X.; Zhao, N.; Zhao, F.; Xu, A.; Kou, Z.; Wen, H. Epidemiology of human papillomavirus on condyloma acuminatum in Shandong Province, China. Hum. Vaccin. Immunother. 2023, 19, 2170662. [Google Scholar] [CrossRef]
- Silva, R.J.; Casseb, J.; Andreoli, M.A.; Villa, L.L. Persistence and clearance of HPV from the penis of men infected and non-infected with HIV. J. Med. Virol. 2011, 83, 127–131. [Google Scholar] [CrossRef]
- Van Bilsen, W.P.H.; Kovaleva, A.; Bleeker, M.C.G.; King, A.J.; Bruisten, S.M.; Brokking, W.; De Vries, H.J.C.; Meijer, C.; Schim Van Der Loeff, M.F. HPV infections and flat penile lesions of the penis in men who have sex with men. Papillomavirus Res. 2019, 8, 100173. [Google Scholar] [CrossRef]
- Yanagawa, N.; Osakabe, M.; Hayashi, M.; Tamura, G.; Motoyama, T. Frequent epigenetic silencing of the FHIT gene in penile squamous cell carcinomas. Virchows Arch. 2008, 452, 377–382. [Google Scholar] [CrossRef]
- Takamoto, D.; Kawahara, T.; Kasuga, J.; Sasaki, T.; Yao, M.; Yumura, Y.; Uemura, H. The analysis of human papillomavirus DNA in penile cancer tissue by in situ hybridization. Oncol. Lett. 2018, 15, 8102–8106. [Google Scholar] [CrossRef]
- Smelov, V.; Eklund, C.; Bzhalava, D.; Novikov, A.; Dillner, J. Expressed prostate secretions in the study of human papillomavirus epidemiology in the male. PLoS ONE 2013, 8, e66630. [Google Scholar] [CrossRef]
- Choi, Y.; Loutfy, M.; Remis, R.S.; Liu, J.; Rebbapragada, A.; Huibner, S.; Brunetta, J.; Smith, G.; Reko, T.; Halpenny, R.; et al. HPV genotyping and risk factors for anal high-risk HPV infection in men who have sex with men from Toronto, Canada. Sci. Rep. 2021, 11, 4779. [Google Scholar] [CrossRef] [PubMed]
- Chin-Hong, P.V.; Vittinghoff, E.; Cranston, R.D.; Buchbinder, S.; Cohen, D.; Colfax, G.; Da Costa, M.; Darragh, T.; Hess, E.; Judson, F.; et al. Age-Specific prevalence of anal human papillomavirus infection in HIV-negative sexually active men who have sex with men: The EXPLORE study. J. Infect. Dis. 2004, 190, 2070–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westra, W.H. Detection of human papillomavirus (HPV) in clinical samples: Evolving methods and strategies for the accurate determination of HPV status of head and neck carcinomas. Oral. Oncol. 2014, 50, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.; Shroyer, K.R. Biomarkers of cervical dysplasia and carcinoma. J. Oncol. 2012, 2012, 507286. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, A.; Wakeham, K.; Pan, J.; Kavanagh, K.; Millan, D.; Bell, S.; McLellan, D.; Graham, S.V.; Cuschieri, K. Droplet digital PCR quantification suggests that higher viral load correlates with improved survival in HPV-positive oropharyngeal tumours. J. Clin. Virol. 2020, 129, 104505. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study Reference | Couples (n) | HPV Genotype Concordance (%) | ||
---|---|---|---|---|
Complete * | Partial ** | Absent *** | ||
[34] | 25 | 68.0 | NR | 12.0 |
[35] | 49 | 36.7 | NR | NR |
[36] | 238 | 31.5 | 68.0 | 32.0 |
[37] | 34 | 26.5 | 35.3 | 38.3 |
[38] | 25 | 16.0 | 8.0 | 76.0 |
[39] | 114 | 7.0 | 0.9 | 40.3 |
[40] | 29 | 6.9 | 24.1 | 34.5 |
[21] | 23 | 4.3 | 52.2 | 43.5 |
[41] | 88 | 2.3 | 21.6 | 40.9 |
[42] | 34 | NR | 35.0 | NR |
Sample/Lesion | HPV Genotypes | Prevalence (%) | Reference |
---|---|---|---|
Genital Warts | 6, 11, 62, 16, 84, 53, 52, 40, 55, CP6108, 51, 66, 42, 59, 39, 54, 18, 58, 68, 61, 83, 71, 72, 31, 45, 56, 67, 82, 73, 81 | 11–44 1–9 | [51] |
Genital Warts | 6, 11 73, 16, 66, 62, 84, 53, 31, 51, 55, 44, 70, 91 | 15–80 1–8 | [52] |
Genital Warts | 6 11 73, 16, 66, 53, 62, 84, 31, 51, 44, 70, 55, 91 | 76 18 1–7 | [50] |
Anus: Normal (MSM, MSW, MSMW, HIV positive/negative) | HIV-negative: 6, 18, 16, 11 59, 56, 82, 52, 39, 58, 68, 51, 61 66, 31, 40, 33, 45, 55, 84, 53, 44, 35, 81, 83, 42, 54, 26, 57 HIV-positive: 6, 18, 56, 59, 11, 16 52, 82, 39, 45, 51, 31, 68 44, 55, 61, 66, 40, 58, 33, 35, 83, 53, 42 | 10–14 3–9 0.1–2 12–16 8–10 1–7 | [53] |
Anus: Normal (MSM, HIV-positive) | 6, 16, 11, 18, 68, 51, 52, 40, 39 67, 61, 45, 58, 56, 81, 42, 33, 53, 54, 84, 31, 73, 82, 43, 66, 55, 44, 35, 72, 59, 69, 70, 71 | 3–9 0.2–2 | [54] |
Anus: Normal (MSM, MSMW, HIV-positive) | 35, 16, 70, 6/11 58, 33, 18, 56, 51, 81, 82, 68, 66, 32/42, 39, 30, 71, 61 85, 53, 72, 89/102, 52, 31, 73, 83, 84, 62, 90/106, 86/87, 26/69 | 10–20 4–8 2–3 | [55] |
Anus: Normal (MSM HIV-positive/negative) | HIV-negative: 16, 53, 6, 18 61, 59, 62, 45, 58, 39, 55, 51, 70, 72, 42, 73 33, 56, 66, 54, 84, 35, 11, 68, 81, 82, 52, 83, 40, 69, 26, 71, 67, 64 HIV-positive: 6, 16, 51, 45, 35, 53, 70, 39, 59, 56, 84 68, 73, 55, 11, 82, 81, 18, 42, 72, 33, 52 58, 69, 62, 61, 40, 66, 67, 83, 54 | 18–27 11–17 1–10 25–39 14–22 3–11 | [56] |
Anus: ASCUS, LSIL, or HSIL (MSM-HIV-positive) | 33, 16, 39 59, 52, 51, 58, 11, 6 | 21–30 14–19 | [57] |
Anus: External Genital Lesions | 16 CP6108, 6, 62, 51, 59 53, 84, 61, 66, 40, 18, 11 | 3 1–1.4 0.1–0.9 | [44] |
Anus: Benign, LSIL or HSIL (MSM, HIV-positive/negative) | HIV-negative: 6, 16, 45, 51 56, 11, 18, 42, 59, 67, 35, 54, 52 68, 39, 58, 31, 33 HIV-positive: 6, 16, 42, 11, 45, 51 35, 67, 18, 39, 54, 56, 52, 59, 68, 58, 33, 31 | 12–22 7–11 1–6 21–37 12–19 2–11 | [58] |
Anus: Anal Cancer (MSW, MSM, MSMW) | 16 18 | 72 7 | [59] |
Penis, coronal sulcus, glans, shaft, and scrotum: Normal |
84, 62, 6, 16, CP6108, 51, 59, 61, 66, 53 39, 81, 52, 83, 54, 68, 58, 70, 56, 44, 35, 18 11, 73, 40, 31, 42, 72, 82, IS39, 67, 69, 26, 33, 64 | 5–8 2–4 0.1–1.5 | [30] |
Penis: Any EGL, Condyloma, Suggestive of Condyloma, PIN, other (MSM, MSW, MSMW) | EGL: 6, 11 51, 55, 74, 16, 31, 44, 39, 54 66, 26, 53, 40, 33, 18, 43, 69/71, 58, 68, 82, 45, 56, 73 Condyloma: 6, 11 74, 52, 39, 51 16, 31, 66, 26, 40, 44, 54, 18, 45, 56, 68, 82, 9/71 Suggestive Condyloma: 6, 11 51, 52, 74 16, 31, 39, 53, 43, 44, 18, 33, 58, 66, 40, 54 PIN: 16, 11 39, 51, 6, 18, 73 | 25–47 2–6 0.3–1 30–49 2–5 0–5–1 18–57 4–7 1–3 29–57 7–14 | [60] |
Penis: HGSIL | 16 33, 58, 31, 11, 61 | 80 1–5 | [61] |
Penis: Invasive penile cancer | 16 6, 35, 45, 33, 18, 52, 59, 11, 58, 73, 26, 31, 39, 51, 53, 56, 30, 32, 74, 70, 66, 68, 82, 27, 40, 42, 43, 76 | 69 0.3–4 | [61] |
Penis: Invasive penile cancer | 16, 18 33, 11, 45, 56, 42, 31, 52, 59, 6, 43, 58, 66, 81, 35, 51, 73 | 15–78 1–3 | [62] |
Oral cavity: normal (MSW, MSM, MSMW) |
55, 16 61, 62, 66, 51, 6, 71, 72, 84, 70, 56, 59, 35, 39, 52, 58, 11, 82, 53, 64, 69, 83, CP6108 | 1 0.1–0.3 | [63] |
Oral cavity: asymptomatic HIV MSM | 16, 39 11, 18, 52, 51, 6, 66 68, 70, 44 | 60–80 30–54 1–14 | [64] |
Oral cavity (MSM, HIV-positive/negative) | HIV-negative:16, CP6108, 56, 45, 66, 53, 33, 68, 55, 83, 84, 18, 35, 58, 59, 26, 70, 73, 82, 6, 11, 54, 62, 72 HIV-positive: 55, 72, 84, IS39, 16, 18, CP6108 39, 51, 59, 66, 68, 82, 11, 61, 62, 33, 45, 53, 69, 70, 6, 71, 73, 81 | 2–4 0.5–1 3 1–2 | [65] |
Gene | Function | Alterations | References | |
---|---|---|---|---|
(A) HPV gene expression in HNSCC * | ||||
E2, E4, E5 | Viral genes | High expression. | Non-integrated vs integrated viral genome. | [99,100] |
E6/E7 | Viral oncogenes | Low expression. | ||
E6/E7 | Viral oncogenes | 79.6% of total transcripts in HNSCC express HPV viral oncogenes. | [101] | |
E2 ** | Viral genes | HPV E2 mRNA expression correlates with relapse-free (p < 0.01) and progression-free (p < 0.05) survival. | [102] | |
E2 mRNA without E5 expression * | Viral genes | Correlate with a worse prognosis when estimated as progression-free survival but not overall survival of patients. | ||
(B) Gene alterations in HNSCC * associated with HPV infection | ||||
PIK3CA | Oncogene. Proliferation, growth, cell cycle, apoptosis, and cytoskeletal rearrangement. | High expression. Mutations (56%) *** CNA: amplification (27.8%) | [100,103,104] | |
SOX2 | Oncogene. Cell fate-determining transcription factor. | *** CNA: amplification 27.8% | [100,103,104] | |
E2F1 | Cell cycle progression, DNA-damage response, apoptosis. | High expression. Mutations 19% | [98,100] | |
FGFR3 | Oncogene. Growth, proliferation, differentiation, migration, and survival. | Gene fusion/Mutations 11% | [100] | |
EGFR | Cell differentiation and proliferation. | Mutations 6%. *** CNA: homozygous deletion 2.8% | [100,103,104] | |
TRAF3 | Innate immune response, apoptotic process. | Mutations 11.1% Inactivation 22% Deletions 3% *** CNA: homozygous deletion 13.9% | [98,100,103,104] | |
NOTCH1 | Tumor suppressors. | Mutations 8.3% *** CNA: amplification 2.8% | [100,103,104] | |
RB1 | Tumor suppressors. | Mutations 5.6% | [103,104] | |
TP53 | Tumor suppressors. | Mutations 3% | [100] | |
CDKN2A (P16) | Cell cycle regulator, Tumor suppressors. | Mutations. 5.29 fold high expression | [105] | |
RFC4 | Sensor in multiple DNA checkpoint pathways. | 3.64-fold higher expression | [105,106] | |
CDC7 | Cell cycle regulator. | 2.99-fold higher expression | [105,106] | |
TOPBP1 | DNA damage response protein. | 2.83-fold higher expression | [105,106] | |
CDKN2C (P18) | Cell cycle regulator. | 2.39-fold higher expression | [105] | |
NAP1L2 | Nucleosome assembly. | 0.66-fold lower expression | [106] | |
KIRREL | Cell-cell adhesion, excretion, negative regulation of protein phosphorylation, positive regulation of actin filament polymerization. | 0.55-fold lower expression | [105,106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chihu-Amparan, L.; Pedroza-Saavedra, A.; Gutierrez-Xicotencatl, L. The Immune Response Generated against HPV Infection in Men and Its Implications in the Diagnosis of Cancer. Microorganisms 2023, 11, 1609. https://doi.org/10.3390/microorganisms11061609
Chihu-Amparan L, Pedroza-Saavedra A, Gutierrez-Xicotencatl L. The Immune Response Generated against HPV Infection in Men and Its Implications in the Diagnosis of Cancer. Microorganisms. 2023; 11(6):1609. https://doi.org/10.3390/microorganisms11061609
Chicago/Turabian StyleChihu-Amparan, Lilia, Adolfo Pedroza-Saavedra, and Lourdes Gutierrez-Xicotencatl. 2023. "The Immune Response Generated against HPV Infection in Men and Its Implications in the Diagnosis of Cancer" Microorganisms 11, no. 6: 1609. https://doi.org/10.3390/microorganisms11061609
APA StyleChihu-Amparan, L., Pedroza-Saavedra, A., & Gutierrez-Xicotencatl, L. (2023). The Immune Response Generated against HPV Infection in Men and Its Implications in the Diagnosis of Cancer. Microorganisms, 11(6), 1609. https://doi.org/10.3390/microorganisms11061609