Complete Genome Sequence of Pantoea stewartii RON18713 from Brazil Nut Tree Phyllosphere Reveals Genes Involved in Plant Growth Promotion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of B. excelsa Leaves and DNA Sequencing
2.2. Genome Assembly
2.3. Comparative Genomics
2.4. Gene Annotation
2.5. Genome and Gene Visualization
3. Results
3.1. Genome Assembly and Phylogenetic Classification
3.2. Genome Assembly Metrics
3.3. Comparative Genomic Analyses
3.4. Biosynthetic Gene Clusters
3.5. Virulence Factors
3.6. Plant Growth-Promotion Factors
3.6.1. Phosphate and Iron Assimilation
3.6.2. Phytohormones
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyu, D.; Zajonc, J.; Pagé, A.; Tanney, C.A.S.; Shah, A.; Monjezi, N.; Msimbira, L.A.; Antar, M.; Nazari, M.; Backer, R.; et al. Plant Holobiont Theory: The Phytomicrobiome Plays a Central Role in Evolution and Success. Microorganisms 2021, 9, 675. [Google Scholar] [CrossRef]
- Kandasamy, G.D.; Kathirvel, P. Insights into Bacterial Endophytic Diversity and Isolation with a Focus on Their Potential Applications—A Review. Microbiol. Res. 2023, 266, 127256. [Google Scholar] [CrossRef]
- Sohrabi, R.; Paasch, B.C.; Liber, J.A.; He, S.Y. Phyllosphere Microbiome. Annu. Rev. Plant Biol. 2023, 74, 539–568. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.M.H.; Soares, H.M.V.M.; Soares, E.V. Promising Bacterial Genera for Agricultural Practices: An Insight on Plant Growth-Promoting Properties and Microbial Safety Aspects. Sci. Total Environ. 2019, 682, 779–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, Z.; Glick, B.R. Secondary Metabolites Produced by Plant Growth-Promoting Bacterial Endophytes. Microorganisms 2022, 10, 2008. [Google Scholar] [CrossRef] [PubMed]
- Bogas, A.C.; Ferreira, A.J.; Araújo, W.L.; Astolfi-Filho, S.; Kitajima, E.W.; Lacava, P.T.; Azevedo, J.L. Endophytic Bacterial Diversity in the Phyllosphere of Amazon Paullinia Cupana Associated with Asymptomatic and Symptomatic Anthracnose. Springerplus 2015, 4, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liotti, R.G.; da Silva Figueiredo, M.I.; da Silva, G.F.; de Mendonça, E.A.F.; Soares, M.A. Diversity of Cultivable Bacterial Endophytes in Paullinia Cupana and Their Potential for Plant Growth Promotion and Phytopathogen Control. Microbiol. Res. 2018, 207, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-Acetic Acid in Microbial and Microorganism-Plant Signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Chalita, P.B.; Farias, E.d.N.C.; da Costa, I.B.; Sousa, B.F.; dos Santos, M.A.O.; de Albuquerque, T.C.S.; Vital, M.J.S.; da Silva, K. Characterization of Bacterial Endophytes from the Roots of Native and Cultivated Brazil Nut Trees (Bertholletia Excelsa). Acta Amaz. 2019, 49, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a Highly Versatile and Diverse Genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef] [Green Version]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Milanowski, J. Pantoea agglomerans: A Mysterious Bacterium of Evil and Good. Part IV. Beneficial Effects. Ann. Agric. Environ. Med. 2016, 23, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, F.X.; Hernandez, A.G.; Glick, B.R.; Rossi, M.J. The Extreme Plant-Growth-Promoting Properties of Pantoea phytobeneficialis MSR2 Revealed by Functional and Genomic Analysis. Environ. Microbiol. 2020, 22, 1341–1355. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, A.S.; Bonatelli, M.L.; Chia, M.A.; Peressim, L.; Quecine, M.C. Opposite Sides of Pantoea agglomerans and Its Associated Commercial Outlook. Microorganisms 2022, 10, 2072. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, J.; Mackiewicz, B.; Kinga Lemieszek, M.; Golec, M.; Milanowski, J. Pantoea agglomerans: A Mysterious Bacterium of Evil and Good. Part III. Deleterious Effects: Infections of Humans, Animals and Plants. Ann. Agric. Environ. Med. 2016, 23, 197–205. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, S.; Xu, Z.; Hu, H. Complete Genome Sequence of Pantoea stewartii subsp. indologenes ZJ-FGZX1, a Lucky Bamboo Pathogen. Mol.-Plant-Microbe Interact.® 2020, 33, 1274–1276. [Google Scholar] [CrossRef]
- Agarwal, G.; Gitaitis, R.D.; Dutta, B. Pan-Genome of Novel Pantoea stewartii subsp. indologenes Reveals Genes Involved in Onion Pathogenicity and Evidence of Lateral Gene Transfer. Microorganisms 2021, 9, 1761. [Google Scholar] [CrossRef]
- Barash, I.; Manulis-Sasson, S. Recent Evolution of Bacterial Pathogens: The Gall-Forming Pantoea agglomerans Case. Annu. Rev. Phytopathol. 2009, 47, 133–152. [Google Scholar] [CrossRef]
- Roper, M.C. Pantoea stewartii subsp. stewartii: Lessons Learned from a Xylem-Dwelling Pathogen of Sweet Corn. Mol. Plant Pathol. 2011, 12, 628–637. [Google Scholar] [CrossRef]
- Lv, L.; Luo, J.; Ahmed, T.; Zaki, H.E.M.; Tian, Y.; Shahid, M.S.; Chen, J.; Li, B. Beneficial Effect and Potential Risk of Pantoea on Rice Production. Plants 2022, 11, 2608. [Google Scholar] [CrossRef]
- Saldierna Guzmán, J.P.; Nguyen, K.; Hart, S.C. Simple Methods to Remove Microbes from Leaf Surfaces. J. Basic Microbiol. 2020, 60, 730–734. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and Accurate Long-Read Assembly via Adaptivek-Mer Weighting and Repeat Separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, M.; Silva, N.D.; Otto, T.D.; Parkhill, J.; Keane, J.A.; Harris, S.R. Circlator: Automated Circularization of Genome Assemblies Using Long Sequencing Reads. Genome Biol. 2015, 16, 294. [Google Scholar] [CrossRef] [Green Version]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness. In Methods in Molecular Biology; Springer: New York, NY, USA, 2019; pp. 227–245. [Google Scholar] [CrossRef]
- Schwengers, O.; Hain, T.; Chakraborty, T.; Goesmann, A. ReferenceSeeker: Rapid Determination of Appropriate Reference Genomes. J. Open Source Softw. 2020, 5, 1994. [Google Scholar] [CrossRef] [Green Version]
- Meier-Kolthoff, J.P.; Göker, M. TYGS Is an Automated High-Throughput Platform for State-of-the-Art Genome-Based Taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [Green Version]
- Avram, O.; Rapoport, D.; Portugez, S.; Pupko, T. M1CR0B1AL1Z3R-a User-Friendly Web Server for the Analysis of Large-Scale Microbial Genomics Data. Nucleic Acids Res. 2019, 47, W88–W92. [Google Scholar] [CrossRef] [Green Version]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A Fast and Versatile Genome Alignment System. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef] [Green Version]
- Goel, M.; Sun, H.; Jiao, W.B.; Schneeberger, K. SyRI: Finding Genomic Rearrangements and Local Sequence Differences from Whole-Genome Assemblies. Genome Biol. 2019, 20, 277. [Google Scholar] [CrossRef] [Green Version]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded Prediction of Genomic Islands for Larger-Scale Datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Avram, O.; Gold-Binshtok, D.; Zerah, B.; Teper, D.; Pupko, T. Effectidor: An Automated Machine-Learning-Based Web Server for the Prediction of Type-III Secretion System Effectors. Bioinformatics 2022, 38, 2341–2343. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, J.; Wang, M.; Li, G.; Djordjevic, M.; Tai, C.; Wang, H.; Deng, Z.; Chen, Z.; Ou, H.Y. SecReT6 Update: A Comprehensive Resource of Bacterial Type VI Secretion Systems. Sci. China Life Sci. 2023, 66, 626–634. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Goel, M.; Schneeberger, K. Plotsr: Visualizing Structural Similarities and Rearrangements between Multiple Genomes. Bioinformatics 2022, 38, 2922–2926. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, İ.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An Information Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, C.L.M.; Chooi, Y.H. Clinker & Clustermap.Js: Automatic Generation of Gene Cluster Comparison Figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar] [CrossRef]
- Pal, N.; Block, C.C.; Gardner, C.A.C. A Real-Time PCR Differentiating Pantoea stewartii subsp. stewartii from P. Stewartii Subsp. Indologenes in Corn Seed. PLant Dis. 2019, 103, 1474–1486. [Google Scholar] [CrossRef]
- Zeng, Q.; Shi, G.; Nong, Z.; Ye, X.; Hu, C. Complete Genome Sequence of Pantoea ananatis Strain NN08200, an Endophytic Bacterium Isolated from Sugarcane. Curr. Microbiol. 2020, 77, 1864–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bible, A.N.; Fletcher, S.J.; Pelletier, D.A.; Schadt, C.W.; Jawdy, S.S.; Weston, D.J.; Engle, N.L.; Tschaplinski, T.; Masyuko, R.; Polisetti, S.; et al. A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus Deltoides, Is Defective in Root Colonization. Front. Microbiol. 2016, 7, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, V.R.; Majerczak, D.R.; Ammar, E.D.; Merighi, M.; Pratt, R.C.; Hogenhout, S.A.; Coplin, D.L.; Redinbaugh, M.G. The Bacterium Pantoea stewartii Uses Two Different Type III Secretion Systems to Colonize Its Plant Host and Insect Vector. Appl. Environ. Microbiol. 2012, 78, 6327–6336. [Google Scholar] [CrossRef] [Green Version]
- Bernal, P.; Llamas, M.A.; Filloux, A. Type VI Secretion Systems in Plant-Associated Bacteria. Environ. Microbiol. 2018, 20, 1–15. [Google Scholar] [CrossRef] [Green Version]
- De Maayer, P.; Venter, S.N.; Kamber, T.; Duffy, B.; Coutinho, T.A.; Smits, T.H.M. Comparative Genomics of the Type VI Secretion Systems of Pantoea and Erwinia Species Reveals the Presence of Putative Effector Islands That May Be Translocated by the VgrG and Hcp Proteins. BMC Genom. 2011, 12, 576. [Google Scholar] [CrossRef] [Green Version]
- Shariati J, V.; Malboobi, M.A.; Tabrizi, Z.; Tavakol, E.; Owlia, P.; Safari, M. Comprehensive Genomic Analysis of a Plant Growth-Promoting Rhizobacterium Pantoea agglomerans Strain P5. Sci. Rep. 2017, 7, 15610. [Google Scholar] [CrossRef] [Green Version]
- Luziatelli, F.; Ficca, A.G.; Cardarelli, M.; Melini, F.; Cavalieri, A.; Ruzzi, M. Genome Sequencing of Pantoea agglomerans C1 Provides Insights into Molecular and Genetic Mechanisms of Plant Growth-Promotion and Tolerance to Heavy Metals. Microorganisms 2020, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Saadouli, I.; Mosbah, A.; Ferjani, R.; Stathopoulou, P.; Galiatsatos, I.; Asimakis, E.; Marasco, R.; Daffonchio, D.; Tsiamis, G.; Ouzari, H.I. The Impact of the Inoculation of Phosphate-Solubilizing Bacteria Pantoea agglomerans on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. Microorganisms 2021, 9, 1661. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, T.; Sahu, S.K.; Xu, J.; Shi, Q.; Liu, H.; Wang, Y. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules 2019, 24, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-Acetic Acid in Plant-Microbe Interactions. Antonie Van Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef] [PubMed]
- Silva Dias, B.H.; Jung, S.H.; de Castro Oliveira, J.V.; Ryu, C.M. C4 Bacterial Volatiles Improve Plant Health. Pathogens 2021, 10, 682. [Google Scholar] [CrossRef]
- Azizi, M.M.F.; Ismail, S.I.; Hata, E.M.; Zulperi, D.; Ina-Salwany, M.Y.; Abdullah, M.A.F. First Report of Pantoea stewartii subsp. indologenes Causing Leaf Blight on Rice in Malaysia. Plant Dis. 2019, 103, 1407. [Google Scholar] [CrossRef]
- Stumpf, S.; Kvitko, B.; Gitaitis, R.; Dutta, B. Isolation and Characterization of Novel Pantoea stewartii subsp. indologenes Strains Exhibiting Center Rot in Onion. Plant Dis. 2018, 102, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Frederick, R.D.; Ahmad, M.; Majerczak, D.R.; Arroyo-Rodríguez, A.S.; Manulis, S.; Coplin, D.L. Genetic Organization of the Pantoea stewartii subsp. stewartii Hrp Gene Cluster and Sequence Analysis of the hrpA, hrpC, hrpN, and wtsE Operons. Mol. Plant Microbe Interact. 2001, 14, 1213–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirzinger, M.W.B.; Butz, C.J.; Stavrinides, J. Inheritance of Pantoea Type III Secretion Systems through Both Vertical and Horizontal Transfer. Mol. Genet. Genom. 2015, 290, 2075–2088. [Google Scholar] [CrossRef] [PubMed]
- Shyntum, D.Y.; Theron, J.; Venter, S.N.; Moleleki, L.N.; Toth, I.K.; Coutinho, T.A. Pantoea ananatis Utilizes a Type VI Secretion System for Pathogenesis and Bacterial Competition. Mol. Plant Microbe Interact. 2015, 28, 420–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polidore, A.L.A.; Furiassi, L.; Hergenrother, P.J.; Metcalf, W.W. A Phosphonate Natural Product Made by Pantoea ananatis Is Necessary and Sufficient for the Hallmark Lesions of Onion Center Rot. mBio 2021, 12, e03402-20. [Google Scholar] [CrossRef]
- Zhao, M.; Shin, G.Y.; Stice, S.; Bown, J.L.; Coutinho, T.; Metcalf, W.W.; Gitaitis, R.; Kvitko, B.; Dutta, B. A Novel Biosynthetic Gene Cluster Across the Pantoea Species Complex Is Important for Pathogenicity in Onion. MPMI 2023, 36, 176–188. [Google Scholar] [CrossRef]
- Carobbi, A.; Di Nepi, S.; Fridman, C.M.; Dar, Y.; Ben-Yaakov, R.; Barash, I.; Salomon, D.; Sessa, G. An Antibacterial T6SS in Pantoea agglomerans pv. betae Delivers a Lysozyme-like Effector to Antagonize Competitors. Environ. Microbiol. 2022, 24, 4787–4802. [Google Scholar] [CrossRef]
- Rasul, M.; Yasmin, S.; Yahya, M.; Breitkreuz, C.; Tarkka, M.; Reitz, T. The Wheat Growth-Promoting Traits of Ochrobactrum and Pantoea Species, Responsible for Solubilization of Different P Sources, Are Ensured by Genes Encoding Enzymes of Multiple P-Releasing Pathways. Microbiol. Res. 2021, 246, 126703. [Google Scholar] [CrossRef]
- Cunha, H.F.V.; Andersen, K.M.; Lugli, L.F.; Santana, F.D.; Aleixo, I.F.; Moraes, A.M.; Garcia, S.; Di Ponzio, R.; Mendoza, E.O.; Brum, B.; et al. Direct Evidence for Phosphorus Limitation on Amazon Forest Productivity. Nature 2022, 608, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, E.; Breen, S. Interplay between Phytohormone Signalling Pathways in Plant Defence—Other than Salicylic Acid and Jasmonic Acid. Essays Biochem. 2022, 66, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Chalupowicz, L.; Barash, I.; Panijel, M.; Sessa, G.; Manulis-Sasson, S. Regulatory Interactions between Quorum-Sensing, Auxin, Cytokinin, and the Hrp Regulon in Relation to Gall Formation and Epiphytic Fitness of Pantoea agglomerans pv. gypsophilae. Mol. Plant Microbe Interact. 2009, 22, 849–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | RON18713 | ZJ-FGZX1 | LMG 2632 | LMG 2715 |
---|---|---|---|---|
Qualifier | current study | Reference genome | Type strain | Type strain |
Accession number | GCA_030064655 | GCA_011044475 | GCA_000757405 | GCA_008801695 |
Subspecies | indologenes | indologenes | indologenes | stewartii |
Number of contigs | 2 | 3 | 35 | 352 |
Total length (bp) | 4,596,865 | 4,982,863 | 4,681,235 | 4,916,637 |
Contig N50 (bp) | 4,334,600 | 4,550,072 | 304,929 | 47,061 |
Plasmids | 1 | 2 | 1 | not resolved |
ANI | - | 99.09 | 99.08 | 99.06 |
Gene | Annotation | Gene(s) Location, Strand |
---|---|---|
Mineral and organic phosphate solubilization | ||
gad | gluconate 2-dehydrogenase, membrane-bound | 1433796-1437636, − |
gcd | glucose/quinate/shikimate PQQ-dependent dehydrogenase | 1420776-1423166, + |
pqq | Coenzyme PQQ synthesis cluster | 4055459-4058544, − |
phoU | Phosphate-specific transport system accessory protein | 1750440-1751177, − |
pstBACS | Phosphate ABC transporter complex | 1751195-1754992, − |
agp | 3-phytase (EC:3.1.3.8) | 292050-293642, − |
phnAGMP | Phosphonate C-P lyase system components | 2723515-2723895, + |
phnDE | Phosphonate ABC transporter subunits | 3447629-3449532, + |
Siderophores biosynthesis and iron transporters | ||
iucABCD | Aerobactin gene cluster | 1380722-1386465, − |
dfoJACS | Desferrioxamine E gene cluster | 1129538-1136058, − |
fhuABCD | Fe3+-hydroxamate ABC transporter | 964875-970778, − |
fepDC | ABC-type Fe3+-siderophore transport system | 3242782-3244646, + |
efeUOB | Ferrous iron uptake system | 3593902-3597190, + |
Phytohormones | ||
IAA production | ||
aatA | Aromatic-amino-acid transaminase | 1472613-1473806, − |
ipdC | Indole-3-pyruvate decarboxylase | 3032974-3034626, + |
aldA | Aldehyde dehydrogenase | 3687880-3689352, + |
aec | Auxin efflux carrier family protein | 3267773-3268732, − |
Cytokinins | ||
miaA | tRNA dimethylallyltransferase | 2227421-2228326, + |
miaB | tRNA2-methylthio-N-6-isopentenyl adenosine synthase | 584029-585414, + |
miaE | tRNA isopentenyl-2-thiomethyl-A-37 hydroxylase | 1246775-1247536, − |
xdhABC | Xanthine dehydrogenase | 3907249-3911807, + |
ppnN | nucleotide 5’-monophosphate nucleosidase | 2665271-2666635, − |
Volatile organic compounds (VOCs) | ||
Acetoin and 2,3-butanediol | ||
alsR | Transcriptional regulator of alpha-acetolactate operon alsR | Plasmid: 18242-19123, + |
alsD | Acetolactate decarboxylase | Plasmid: 17355-18137, − |
alsS | Acetolactate synthase | Plasmid: 15660-17339, − |
bdh | (S)-acetoin forming diacetyl reductase | Plasmid: 14861-15637, − |
γ-aminobutyric acid | ||
gabD | NAD-dependent succinate-semialdehyde dehydrogenase | 3417320-3418774, + |
gabT | 4-aminobutyrate–2-oxoglutarate transaminase | 3432281-3433591, + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, R.T.; de Almeida, F.M.; Pappas, M.C.R.; Pappas, G.J., Jr.; Martins, K. Complete Genome Sequence of Pantoea stewartii RON18713 from Brazil Nut Tree Phyllosphere Reveals Genes Involved in Plant Growth Promotion. Microorganisms 2023, 11, 1729. https://doi.org/10.3390/microorganisms11071729
Rocha RT, de Almeida FM, Pappas MCR, Pappas GJ Jr., Martins K. Complete Genome Sequence of Pantoea stewartii RON18713 from Brazil Nut Tree Phyllosphere Reveals Genes Involved in Plant Growth Promotion. Microorganisms. 2023; 11(7):1729. https://doi.org/10.3390/microorganisms11071729
Chicago/Turabian StyleRocha, Rodrigo Theodoro, Felipe Marques de Almeida, Marília C. R. Pappas, Georgios Joannis Pappas, Jr., and Karina Martins. 2023. "Complete Genome Sequence of Pantoea stewartii RON18713 from Brazil Nut Tree Phyllosphere Reveals Genes Involved in Plant Growth Promotion" Microorganisms 11, no. 7: 1729. https://doi.org/10.3390/microorganisms11071729
APA StyleRocha, R. T., de Almeida, F. M., Pappas, M. C. R., Pappas, G. J., Jr., & Martins, K. (2023). Complete Genome Sequence of Pantoea stewartii RON18713 from Brazil Nut Tree Phyllosphere Reveals Genes Involved in Plant Growth Promotion. Microorganisms, 11(7), 1729. https://doi.org/10.3390/microorganisms11071729