A Transcriptional Analysis Showing the Effects of GH12 Combined with Fluoride for Suppressing the Acidogenicity of Streptococcus mutans Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptide, Reagents and Bacteria
2.2. Biofilm Culture and Treatment
2.3. Lactic Acid Production Assays
2.4. Monitoring of the Biofilm’s pH
2.5. RNA Extraction, Library Preparation and RNA Sequencing
2.6. Bioinformatic Analysis
2.7. Validation by Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
2.8. Statistical Analysis
3. Results
3.1. The Effects of the GF Combination on Arresting the Acidogenicity of S. mutans Biofilms
3.2. RNA-seq and Analysis of Differentially Expressed Genes
3.3. The Effects of the GF Combination on the Expression of Acid-Producing Genes of S. mutans Biofilms
3.4. The Additional Effects of the GF Combination on S. mutans Biofilms Compared with Applying GH12 or NaF Alone
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, P.Y.F.; Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M. Global Burden and Inequality of Dental Caries, 1990 to 2019. J. Dent. Res. 2022, 101, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.N.; Wong, H.M.; Wen, P.Y.F.; Wu, Y.; Zhong, Y.J.; Jiang, Y. Burden, Trends, and Inequality of Dental Caries in the U.S., 1990–2019. Am. J. Prev. Med. 2023, 64, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Butera, A.; Gallo, S.; Pascadopoli, M.; Montasser, M.A.; Abd El Latief, M.H.; Modica, G.G.; Scribante, A. Home Oral Care with Biomimetic Hydroxyapatite vs. Conventional Fluoridated Toothpaste for the Remineralization and Desensitizing of White Spot Lesions: Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 8676. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Y.; Zhang, S.; Li, J.; Li, X.; Ying, Y.; Yuan, J.; Chen, K.; Deng, S.; Wang, Q. Association of polymicrobial interactions with dental caries development and prevention. Front. Microbiol. 2023, 14, 1162380. [Google Scholar] [CrossRef]
- Ribeiro, A.A.; Paster, B.J. Dental caries and their microbiomes in children: What do we do now? J. Oral Microbiol. 2023, 15, 2198433. [Google Scholar] [CrossRef]
- Costa Oliveira, B.E.; Ricomini Filho, A.P.; Burne, R.A.; Zeng, L. The Route of Sucrose Utilization by Streptococcus mutans Affects Intracellular Polysaccharide Metabolism. Front. Microbiol. 2021, 12, 636684. [Google Scholar] [CrossRef]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Whelton, H.P.; Spencer, A.J.; Do, L.G.; Rugg-Gunn, A.J. Fluoride Revolution and Dental Caries: Evolution of Policies for Global Use. J. Dent. Res. 2019, 98, 837–846. [Google Scholar] [CrossRef]
- Veiga, N.; Figueiredo, R.; Correia, P.; Lopes, P.; Couto, P.; Fernandes, G.V.O. Methods of Primary Clinical Prevention of Dental Caries in the Adult Patient: An Integrative Review. Healthcare 2023, 11, 1635. [Google Scholar] [CrossRef]
- Buzalaf, M.A.R.; Pessan, J.P.; Honorio, H.M.; Ten Cate, J.M. Mechanisms of action of fluoride for caries control. Monogr. Oral Sci. 2011, 22, 97–114. [Google Scholar] [CrossRef]
- Bijle, M.N.; Abdalla, M.M.; Hung, I.F.N.; Yiu, C.K.Y. The effect of synbiotic-fluoride therapy on multi-species biofilm. J. Dent. 2023, 133, 104523. [Google Scholar] [CrossRef]
- Boehmer, T.J.; Lesaja, S.; Espinoza, L.; Ladva, C.N. Community Water Fluoridation Levels To Promote Effectiveness and Safety in Oral Health—United States, 2016–2021. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 593–596. [Google Scholar] [CrossRef]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Niu, J.Y.; Yin, I.X.; Wu, W.K.K.; Li, Q.L.; Mei, M.L.; Chu, C.H. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch. Oral Biol. 2021, 122, 105022. [Google Scholar] [CrossRef]
- Adnan, A.; Nadeem, M.; Ahmad, M.H.; Tayyab, M.; Khan, M.K.; Imran, M.; Iqbal, A.; Rahim, M.A.; Awuchi, C.G. Effect of lactoferrin supplementation on composition, fatty acids composition, lipolysis and sensory characteristics of cheddar cheese. Int. J. Food Prop. 2023, 26, 437–452. [Google Scholar] [CrossRef]
- Mahendra, J.; Srinivasan, S.; Kanakamedala, A.; Namasivayam, A.; Mahendra, L.; Muralidharan, J.; Cherian, S.M.; Ilango, P. Expression of trefoil factor 2 and 3 and adrenomedullin in chronic periodontitis subjects with coronary heart disease. J. Periodontol. 2023, 94, 694–703. [Google Scholar] [CrossRef]
- Argyris, P.P.; Saavedra, F.; Malz, C.; Stone, I.A.; Wei, Y.; Boyle, W.S.; Johnstone, K.F.; Khammanivong, A.; Herzberg, M.C. Intracellular calprotectin (S100A8/A9) facilitates DNA damage responses and promotes apoptosis in head and neck squamous cell carcinoma. Oral Oncol. 2023, 137, 106304. [Google Scholar] [CrossRef]
- Leite, M.L.; Duque, H.M.; Rodrigues, G.R.; da Cunha, N.B.; Franco, O.L. The LL-37 domain: A clue to cathelicidin immunomodulatory response? Peptides 2023, 165, 171011. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.; Zhou, Z.; Tu, H.; Ren, Q.; Wang, X.; Ding, L.; Zhou, X.; Zhang, L. De novo synthetic short antimicrobial peptides against cariogenic bacteria. Arch. Oral Biol. 2017, 80, 41–50. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Jiang, W.; Wang, K.; Luo, J.; Li, W.; Zhou, X.; Zhang, L. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J. Oral Microbiol. 2018, 10, 1442089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Wang, Y.; Luo, J.; Li, X.; Zhou, X.; Li, W.; Zhang, L. Effects of Antimicrobial Peptide GH12 on the Cariogenic Properties and Composition of a Cariogenic Multispecies Biofilm. Appl. Environ. Microbiol. 2018, 84, e01423-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zeng, Y.; Wang, Y.; Li, H.; Yu, S.; Jiang, W.; Li, Y.; Zhang, L. Antimicrobial peptide GH12 targets Streptococcus mutans to arrest caries development in rats. J. Oral Microbiol. 2018, 11, 1549921. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zeng, Y.; Feng, Z.; Li, Z.; Jiang, X.; Han, S.; Washio, J.; Takahashi, N.; Zhang, L. Combined Treatment with Fluoride and Antimicrobial Peptide GH12 Efficiently Controls Caries in vitro and in vivo. Caries Res. 2022, 56, 524–534. [Google Scholar] [CrossRef]
- Li, M.Y.; Huang, R.J.; Zhou, X.D.; Gregory, R.L. Role of sortase in Streptococcus mutans under the effect of nicotine. Int. J. Oral Sci. 2013, 5, 206–211. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Ferrer, M.D.; Perez, S.; Lopez, A.L.; Sanz, J.L.; Melo, M.; Llena, C.; Mira, A. Evaluation of Clinical, Biochemical and Microbiological Markers Related to Dental Caries. Int. J. Environ. Res. Public Health 2021, 18, 6049. [Google Scholar] [CrossRef]
- Poza-Pascual, A.; Serna-Muñoz, C.; Pérez-Silva, A.; Martínez-Beneyto, Y.; Cabello, I.; Ortiz-Ruiz, A. Effects of Fluoride and Calcium Phosphate-Based Varnishes in Children at High Risk of Tooth Decay: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2021, 18, 10049. [Google Scholar] [CrossRef]
- Hor, J.; Gorski, S.A.; Vogel, J. Bacterial RNA Biology on a Genome Scale. Mol. Cell 2018, 70, 785–799. [Google Scholar] [CrossRef] [Green Version]
- Reizer, J.; Saier, M.H., Jr.; Deutscher, J.; Grenier, F.; Thompson, J.; Hengstenberg, W. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: Properties, mechanism, and regulation. Crit. Rev. Microbiol. 1988, 15, 297–338. [Google Scholar] [CrossRef]
- Zeng, L.; Walker, A.R.; Burne, R.A.; Taylor, Z.A. Glucose Phosphotransferase System Modulates Pyruvate Metabolism, Bacterial Fitness, and Microbial Ecology in Oral Streptococci. J. Bacteriol. 2023, 205, e0035222. [Google Scholar] [CrossRef]
- Webb, A.J.; Homer, K.A.; Hosie, A.H. Two closely related ABC transporters in Streptococcus mutans are involved in disaccharide and/or oligosaccharide uptake. J. Bacteriol. 2008, 190, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Nagayama, K.; Fujita, K.; Takashima, Y.; Ardin, A.C.; Ooshima, T.; Matsumoto-Nakano, M. Role of ABC transporter proteins in stress responses of Streptococcus mutans. Oral Health Dent. Manag. 2014, 13, 359–365. [Google Scholar]
- Tianlei, L.; Shoubin, X.; Liang, W. ABC Transporter CslAB, a Stabilizer of ComCDE Signal in Streptococcus mutans. Jundishapur J. Microbiol. 2015, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, GPP3-0051-2018. [Google Scholar] [CrossRef]
- Ayoub, H.M.; Gregory, R.L.; Tang, Q.; Lippert, F. The influence of biofilm maturation on fluoride’s anticaries efficacy. Clin. Oral Investig. 2022, 26, 1269–1282. [Google Scholar] [CrossRef]
- Andrea, B.; Carolina, M.; Gallo, S.; Pascadopoli, M.; Quintini, M.; Lelli, M.; Tarterini, F.; Foltran, I.; Scribante, A. Biomimetic Action of Zinc Hydroxyapatite on Remineralization of Enamel and Dentin: A Review. Biomimetics 2023, 8, 71. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Gallo, S.; Lelli, M.; Tarterini, F.; Giglia, F.; Scribante, A. SEM/EDS Evaluation of the Mineral Deposition on a Polymeric Composite Resin of a Toothpaste Containing Biomimetic Zn-Carbonate Hydroxyapatite (microRepair (R)) in Oral Environment: A Randomized Clinical Trial. Polymers 2021, 13, 2740. [Google Scholar] [CrossRef]
- Chen, R.; Jin, R.; Li, X.; Fang, X.; Yuan, D.; Chen, Z.; Yao, S.; Tang, R.; Chen, Z. Biomimetic remineralization of artificial caries dentin lesion using Ca/P-PILP. Dent. Mater. 2020, 36, 1397–1406. [Google Scholar] [CrossRef]
- Wang, R.; Jia, C.; Zheng, N.; Liu, S.; Qi, Z.; Wang, R.; Zhang, L.; Niu, Y.; Pan, S. Effects of photodynamic therapy on Streptococcus mutans and enamel remineralization of multifunctional TiO2-HAP composite nanomaterials. Photodiagn Photodyn. 2022, 42, 103141. [Google Scholar] [CrossRef]
Gene Name | Gene Description | Fold Change (GF/DDW) | 2−ΔΔCt (mean ± SD) |
---|---|---|---|
SMURS07250 | BglG family transcription antiterminator | 0.06 | 0.135 ± 0.096 * |
SMURS00600 | Fructose PTS transporter subunit IIA | 0.104 | 0.112 ± 0.005 * |
SMURS00595 | Fructose-specific PTS transporter subunit EIIC | 0.114 | 0.106 ± 0.005 * |
celB | PTS cellobiose transporter subunit IIC | 0.389 | 0.368 ± 0.014 * |
SMURS01555 | PTSglucitol/sorbitoltransportersubunit IIA | 0.361 | 0.308 ± 0.035 * |
SMURS01550 | PTSglucitol/sorbitoltransportersubunit IIB | 0.291 | 0.287 ± 0.003 * |
SMURS01545 | PTS glucitol/sorbitol transporter subunit IIC | 0.285 | 0.370 ± 0.057 * |
SMURS08595 | PTS mannose/fructose/sorbose transporter subunit IIC | 0.148 | 0.192 ± 0.030 * |
SMURS01535 | PTS sugar transporter subunit IIA | 0.398 | 0.184 ± 0.143 * |
SMURS00525 | PTS sugar transporter subunit IIB | 0.395 | 0.176 ± 0.152 * |
SMURS08590 | PTS sugar transporter subunit IIB | 0.095 | 0.134 ± 0.036 * |
SMURS08905 | PTS sugar transporter subunit IIB | 0.068 | 0.176 ± 0.137 * |
SMURS08900 | PTS sugar transporter subunit IIC | 0.093 | 0.220 ± 0.142 * |
SMURS08600 | PTS system mannose/fructose/sorbose family transporter subunit IID | 0.164 | 0.223 ± 0.092 * |
SMURS08895 | PTS system mannose/fructose/sorbose family transporter subunit IID | 0.112 | 0.146 ± 0.095 * |
treP | PTS system trehalose-specific EIIBC component | 0.073 | 0.187 ± 0.126 * |
SMURS09355 | PTS transporter subunit IIBC | 0.357 | 0.246 ± 0.152 * |
SMURS08435 | Sucrose-specific PTS transporter subunit IIBC | 0.207 | 0.200 ± 0.118 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Chen, Y.; Duan, C.; Jiang, X.; Wang, Y.; Zhang, L. A Transcriptional Analysis Showing the Effects of GH12 Combined with Fluoride for Suppressing the Acidogenicity of Streptococcus mutans Biofilms. Microorganisms 2023, 11, 1796. https://doi.org/10.3390/microorganisms11071796
Zeng Y, Chen Y, Duan C, Jiang X, Wang Y, Zhang L. A Transcriptional Analysis Showing the Effects of GH12 Combined with Fluoride for Suppressing the Acidogenicity of Streptococcus mutans Biofilms. Microorganisms. 2023; 11(7):1796. https://doi.org/10.3390/microorganisms11071796
Chicago/Turabian StyleZeng, Yuhao, Yu Chen, Chengchen Duan, Xuelian Jiang, Yufei Wang, and Linglin Zhang. 2023. "A Transcriptional Analysis Showing the Effects of GH12 Combined with Fluoride for Suppressing the Acidogenicity of Streptococcus mutans Biofilms" Microorganisms 11, no. 7: 1796. https://doi.org/10.3390/microorganisms11071796
APA StyleZeng, Y., Chen, Y., Duan, C., Jiang, X., Wang, Y., & Zhang, L. (2023). A Transcriptional Analysis Showing the Effects of GH12 Combined with Fluoride for Suppressing the Acidogenicity of Streptococcus mutans Biofilms. Microorganisms, 11(7), 1796. https://doi.org/10.3390/microorganisms11071796