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Abstract: Microbial exopolysaccharides (EPSs) have attracted attention from several fields due
to their high industrial applicability. In the present study, rhizosphere strain CJ11T was isolated
from the root of Glycine max L. in Goyang-si, Republic of Korea, and a novel exopolysaccharide
was purified from the Lysobacter sp. CJ11T fermentation broth. The exopolysaccharide’s average
molecular weight was 0.93 × 105 Da. Its monosaccharide composition included 72.2% mannose,
17.2% glucose, 7.8% galactose, and 2.8% arabinose. Fourier-transform infrared spectroscopy identified
the exopolysaccharide carbohydrate polymer functional groups, and the structural properties were
investigated using nuclear magnetic resonance. In addition, a microstructure of lyophilized EPS was
determined by scanning electron microscopy. Using thermogravimetric analysis, the degradation of
the exopolysaccharide produced by strain CJ11T was determined to be 210 ◦C. The exopolysaccharide
at a concentration of 4 mg/mL exhibited 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging
activity of 73.47%. Phylogenetic analysis based on the 16S rRNA gene sequencing results revealed
that strain CJ11T was a novel isolate for which the name Lysobacter soyae sp. nov is proposed.

Keywords: rhizosphere; bacterial exopolysaccharide; Lysobacter; Glycine max L.

1. Introduction

Soil is a repository of various microorganisms, and soil microorganisms inhabiting it
are very important to humans because they also affect air quality [1]. Exopolysaccharides
(EPSs) are biological polymers secreted by microorganisms to cope with harsh environ-
mental conditions such as antibiotics, pH, osmotic stress, and host immune defenses [2–4].
Naturally occurring biopolymers are produced by living organisms and the like [5]. Polysac-
charides are considered natural polymers because they are complex polymers composed
of monosaccharide chains linked by glycosidic bonds and are considered nontoxic, with
good biocompatibility [6,7]. EPSs produced by microorganisms are polymer materials
widely used in various industries [8–10]. The biopolymers produced by bacteria have
different chemical properties, and some of these biopolymers have physiologically active
functions [11–13]. Bacterial EPSs perform anti-inflammatory, immunomodulatory, and
antioxidant functions [14]. Moreover, bacterial EPS production is one way to survive
changes in the microenvironment, which prevents plants from drying out due to their high
water-holding capacity and improves survival by avoiding the drying of bacterial cells [15].

To withstand soil drying, rhizosphere microbes employ a variety of strategies to main-
tain high water content using exopolysaccharides that are characterized as hygroscopic.
This will help to keep the plant growing and prevent the roots from drying [16,17]. Addi-
tionally, EPS not only protects plants from drought stress, but also helps bacteria to attach
to plant roots [18]. Reactive oxygen species (ROS) are byproducts of oxygen metabolism
and play an important role in maintaining homeostasis and redox balance [19]. However,
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since excessive ROS can cause damage to the body, including cancer, diabetes, aging, and
chronic diseases, it is important to reduce the negative aspects. Finding natural antioxidants
rather than chemical ones is extremely important [20,21]. Using DPPH free radicals, it was
confirmed that EPS produced by strain CJ11 had free-radical-scavenging activity [22].

The genus Lysobacter, belonging to the family Lysobacteraceae within the class Lysobac-
terales, was first proposed by Christensen and Cook as a nonfruiting, gliding bacterium [23],
and most of the species in this genus are rhizosphere, freshwater, and soil-dwelling organ-
isms [23,24]. Lysobacter species are Gram-negative, aerobic, nonfruiting, gliding bacteria.
The Lysobacter strain CJ11T isolated in this study was isolated from the roots of Glycine
max L. and showed typical Lysobacter species characteristics. The genus Lysobacter consists
of more than 70 species, which have potential in waste degradation and biotechnology
because they can produce enzymes such as proteases, chitinases, and lipases [25–28]. In
addition, some strains have been found to inhibit biofilm formation or produce antioxi-
dants, biocontrol agents, and antibiotics, and they are expected to have potential in various
industries [13,29,30]. Antibacterial compounds produced by Lysobacter include maltophilin,
dihydromaltophilin, lysobactin, tripopeptin, phenazine, and lactivicin [30]. The potential
of the Lysobacter species for protection against plant pathogenicity has been asserted in
some studies [31,32]. In this study, the EPS produced by the Lysobacter species isolated from
the rhizosphere of beans in the Republic of Korea was characterized by Fourier-transform
infrared (FTIR) analysis, bio-liquid chromatography (Bio-LC), gel permeation chromatogra-
phy (GPC), and nuclear magnetic resonance spectroscopy (NMR). Furthermore, the EPS
showed DPPH-scavenging ability, thus displaying potential antioxidant capability. More-
over, on the basis of phylogenetic and polyphasic analyses, the isolated Lysobacter species
is proposed as a novel species in the genus Lysobacter. Among the strains isolated from
the rhizome (soybean field) in Ilsan, Korea, strains that were confirmed to produce EPS
and exhibited DPPH free-radical-scavenging activity were selected. Accordingly, CJ11T,
a rhizosphere strain, was proposed as a novel species in the genus Lysobacter through
phylogenetic and polyphasic analysis. The study also provides theoretical support for
industrial applications of the EPS produced by strain CJ11T.

2. Materials and Methods
2.1. Isolation, 16S rRNA Gene Analysis, Physiology, and Chemotaxonomy Characterization

A novel bacterial strain, designated CJ11T, was isolated from the root of Glycine max L.
in Goyang-si, Republic of Korea (Figure S1; 37◦40′32.0′′ N, 126◦48′19.7′′ E). To purify this
novel strain, a standard dilution method was employed, as described previously, using
Reasoner’s 2A agar (R2A; MB cell, Seoul, Republic of Korea) plates [33]. One hundred
microliter aliquots of the aforementioned sample suspensions were spread onto R2A plates
supplemented with 1% glucose (w/v) and subsequently incubated at 30 ◦C for 3 days. The
purification procedure was repeated four times. Lysobacter tolerans UM1T and Lysobacter
silvestris AM20-91T were obtained from The Leibniz Institute DSMZ German Collection
of Microorganisms and Cell Cultures GmbH (DSMZ; Braunschweig-Süd, Germany). The
selected CJ11T strain and reference strains were stored in 25% glycerol (w/v) at −80 ◦C. All
strains used in taxonomic experiments were cultured on R2A agar plates or in R2A broth at
30 ◦C for 72 h. The isolated CJ11T strain was deposited in the Korean Agricultural Culture
Collection (KACC, Jeonju, Republic of Korea) and the National Institute of Technology and
Evaluation (NITE) Biological Resource Center (NBRC, Shibuya-ku, Japan) (CJ11T = KACC
21716T = NBRC 114478T).

The 16S rRNA gene sequence of strain CJ11T was amplified using universal bacterial
primer sets 27F, 518F, 805R, and 1492R, and sequencing was performed by SolGent Co.,
Ltd. (Daejeon, Republic of Korea) [34]. The nearly complete sequence of the 16S rRNA
genes (1469 bp) was assembled using the SeqMan 2 software (DNASTAR Inc., Madison,
WI, USA), and full-length 16S rRNA gene sequences (1547 bp) were extracted from the
genome using Basic Rapid Ribosomal RNA Predictor (Barrnap) (0.9-dev) (https://github.
com/tseemaan/barrnap (accessed on 13 September 2022)); both yielded identical results.

https://github.com/tseemaan/barrnap
https://github.com/tseemaan/barrnap
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In order to compare the complete sequence of 16S rRNA genes with those of the other
taxa, the National Center for Biotechnology Information (NCBI) Basic Local Alignment
Search Tool (BLAST) and the EzBioCloud.net (https://www.ezbiocloud.net/ (accessed
on 4 August 2022)) databases were searched [35,36]. Multiple sequences were aligned
using the Molecular Evolutionary Genetics Analysis (MEGA) 11 software and analyzed
using CLUSTAL W [37,38]. Phylogenetic trees were constructed according to the neighbor-
joining (NJ) and maximum-likelihood (ML) methods employing the Kimura two-parameter
model [39]. The min-mini heuristic algorithm was applied to the maximum-parsimony
(MP) method to compare the phylogenetic trees that were constructed using the neighbor-
joining method [40]. MEGA 11 software was used to not only construct neighbor-joining
trees to estimate the confidence of tree topologies, but also construct phylogenetic trees
using bootstrap analyses with 1000 replications [41].

The Gram staining reaction for the strain was performed using a previously described
method [42]. To identify the morphology of strain CJ11T, cells that were grown in R2A agar
at 30 ◦C for 3 days were negatively stained using 3% uranyl acetate and observed under
a transmission electron microscope (TEM; Libra 120; Zeiss, Oberkochen, Germany). The
growth of strain CJ11T was examined on R2A, marine agar (MA; MB cell), nutrient agar
(NA; Difco, Franklin Lakes, NJ, USA), Luria–Bertani agar (LB; Difco), and tryptic soy agar
(TSA; Difco) media at 30 ◦C for 10 days to identify the optimal medium. The growth of
strain CJ11T was assessed at temperatures of 2, 4, 10, 15, 25, 30, 35, 37, 40, and 42 ◦C on
R2A and MA for 10 days. In addition, NaCl tolerance was tested by culturing the strains in
R2A broth containing various NaCl concentrations ranging from 0% to 8% (with intervals
of 1%) for 10 days. The optimal pH for growth was determined by culturing the cells in
R2A broth made using four different buffers with pH levels ranging from 5.0 to 11.0 (with
1 unit pH intervals) and subsequently incubating these cultures at 30 ◦C for 10 days. The
pH level was modulated using the following filter sterilized buffers at a final concentration
of 50 mM: acetate buffer (pH 5.0), phosphate buffer (pH 6.0–8.0), Tris buffer (pH 9.0–10.0),
and Na2HPO4/NaOH buffer (pH 11.0). A GasPak jar (BBL, Cockeysville, MD, USA) was
used to assess bacterial growth under anaerobic conditions on R2A plates at 30 ◦C for
10 days. An oxygen absorber strip (Mitsubishi Gas Chemical, Tokyo, Japan) was used and
continuously monitored to remove oxygen in the anaerobic chamber. Catalase activity
was observed by detecting oxygen bubble production using a 3% (v/v) aqueous hydrogen
peroxide solution, and oxidase activity was observed through the oxidation of 1% (w/v)
tetramethyl-p-phenylenediamine (BioMérieux, Durham, NC, USA). Motility was observed
by employing a 0.4% agar stabbing technique (tube method), and gliding motility was
tested using the hanging-drop technique [43]. Hydrolysis of DNA (DNase agar; MB cell),
CM-cellulose (2%; Duksan, Seoul, Republic of Korea), and casein (2% skim milk powder;
Biopure, Seoul, Republic of Korea) was tested on R2A, as described previously [44]. The
presence of flexirubin-type pigments was investigated using a 20% potassium hydroxide
(KOH) solution (w/v) [45]. Biochemical and enzymatic tests were performed using the API
20NE kit according to the manufacturer’s instructions (BioMérieux).

CJ11T cells grown on R2A plates at 30 ◦C for 3 days were used to analyze quinone and
polar lipid contents. The polar lipid extracts were separated via two-dimensional thin layer
chromatography (TLC) by employing two different development solvents, with a chloroform–
methanol–water ratio of 65:25:4 (v/v/v) and a chloroform–acetic acid–methanol–water ratio
of 80:15:12:4 (v/v/v/v). The results were visualized by spraying with Zinzadze’s reagent
(molybdenum blue spray reagent, 1.3%; MilliporeSigma, St. Louis, MO, USA) to detect
phospholipids, molybdophosphoric acid (phosphomolybdic acid reagent, 5% v/v solution
in ethanol; Sigma, Kawasaki, Kanagawa, Japan) to detect total lipids, α-naphthol reagent to
detect glycolipids, and ninhydrin reagent (0.2% solution; Sigma) to detect amino lipids [46].
Isoprenoid quinones were extracted using chloroform and methanol at a ratio of 2:1 (v/v)
and were analyzed using high-performance lipid chromatography by following a previously
published method [47,48].

https://www.ezbiocloud.net/
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2.2. Genome Features

Genomic DNA was extracted using the Universal Genomic DNA Extraction Kit (Takara
Bio, San Jose, CA, USA) following the manufacturer’s protocol. The draft genome sequenc-
ing of strain CJ11T libraries was performed using the Illumina HiSeq × platform (Illumina,
San Diego, CA, USA). The reads were assembled using the SPAdes ver. 3.14.1 de novo
assembler [49]. The bioinformatics tool CheckM was used to analyze the completeness and
contamination of strain CJ11T [50]. A phylogenomic tree was constructed using an up-to-
date bacterial core gene set (UBCG) and whole-genome sequences of the closely related
genera were obtained from the EzBioCloud Whole-Genome database [51]. The average
nucleotide identity (ANI) values were achieved using the e-service of EzBioCloud [52]. The
ANI between the novel strain and its close relatives was calculated using KBase wrapper for
Fast ANI (https://github.com/ParBLiSS/FastANI (26 April 2023)) [53,54]. The estimated
digital DNA–DNA hybridization values were analyzed using the Genome-to-Genome
Distance Calculator 3.0 (GGDC; http://ggdc.dsmz.de (accessed on 25 April 2023)) [55].
The average amino-acid sequence identity was analyzed and calculated using EzAAI
v1.2.2. [56], and the DNA G + C content of strain CJ11T was calculated from the draft
genome. Genes involved in secondary metabolism were predicted using antibiotics and the
secondary metabolite analysis shell (antiSMASH) 6.0 [57]. The draft genome was annotated
using the Rapid Annotation using Subsystems Technology (RAST) [58,59]. Additionally, the
draft genomes were analyzed with PROKKA (v1.14.6), and the location of the tRNA genes,
protein coding sequences, and rRNA genes was confirmed [60]. Functional annotation
was conducted in the eggNOG 6.0 database of strain CJ11T and the reference strains [61].
The OrthoVenn3 web server was utilized to analyze the comparison and annotation of
orthologous gene clusters among strain CJ11T, L. tolerans UM1T, and L. silvestris AM20-91T

genomes [62]. The genome of strain CJ11T was constructed as a circular functional genome
map using the Circular Genome Viewer (CGView) server [63]. Additionally, the metabolic
predictions of CJ11T and the related phylogenetic species were made using Distilled and
Refined Annotation of Metabolism (DRAM) [64].

2.3. EPS Kinetics and Bacterial Growth

Strain CJ11T (OD600 = 0.6) was inoculated into fresh sterile R2A broth supplemented
with 1% glucose, galactose, and mannose, respectively, incubated at 30 ◦C at 150 rpm for
7 days and monitored. Bacterial growth and EPS production were observed every 24 h to
determine when the batch fermentation was ready for harvesting [65]. Briefly, 2 mL of the
culture was collected every 24 h, aliquoted into 96 wells, and measured in a microplate
at 600 nm. The EPS yield was determined by centrifuging the culture medium, adding
three times the volume of 100% ethanol to 100 mL of the cell-free supernatant, collecting
the precipitated EPS overnight, and measuring the weight after freeze-drying.

2.4. Extraction and Purification of EPS

To produce EPS, 1 L of fresh medium supplemented with 1% glucose in a 3 L Erlen-
meyer flask was inoculated with 1% of the inoculum that was cultured when measuring
bacterial growth. Shaking of the culture was performed in an incubator at 30 ◦C and
150 rpm for 5 days. After centrifugation (8000× g, 20 min) to obtain a cell-free super-
natant, 14% trichloroacetic acid (TCA) was added thereto, and the solution was cultured
with shaking at 90 rpm at room temperature for 30 min. Thereafter, centrifugation was
performed again under the same conditions to remove the denatured protein. Ice-cold
absolute ethanol three times the volume of the upper layer was added, and the EPSs were
precipitated overnight in a refrigerator at 4 ◦C. After separating the precipitated EPSs and
completely removing the residual ethanol, the EPSs were placed in a dialysis membrane
and dialyzed (10 K MWCO, SnakeSkin Dialysis Tubing, Thermo Scientific, Branchburg,
NJ, USA) with ultrapure water (UPW) for 72 h, and the UPW was replaced every 24 h.
Confirmation of protein removal was performed by measuring absorbance at 595 nm to
confirm that protein was removed in the EPS by Bradford assay [66]. The purified EPS

https://github.com/ParBLiSS/FastANI
http://ggdc.dsmz.de
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was then weighed on a balance after lyophilization to determine the yield and stored in a
−80 ◦C deep freezer for further experiments.

2.5. Chemical Analysis of EPS

The total carbohydrate content of the EPS was calorimetrically measured using the
phenol–sulfuric acid method by drawing a standard curve based on D-glucose according
to a previously described method [67]. The total carbohydrate content of the EPS was
measured spectrophotometrically at an absorbance of 490 nm. Lowry analysis was used to
determine the protein content of the EPS, and bovine serum albumin (BSA) was used as the
calibration standard [68]. Standard curves were generated using various concentrations of
BSA (0 to 2 mg/mL) according to the manufacturer’s instructions. (Pierce™ BCA Protein
Assay Kit; Thermo Fisher Scientific, Waltham, MA, USA). Samples were measured at an
absorbance of 562 nm using a spectrophotometer (Multiskan GO; Thermo Fisher Scientific,
Waltham, MA, USA).

2.6. Monosaccharide Composition of EPS

Monosaccharide analysis was performed by bioliquid chromatography (Bio-LC). EPS
samples were hydrolyzed to perform monosaccharide compositional analysis. A 2 mg sam-
ple of EPS was hydrolyzed with 2 mL of 2 M trifluoroacetic acid. The monosaccharide com-
position was determined by Bio-LC using a Dionex™ Carbopac™ PA-20 anion-exchange
chromatography column (ICS-5000PC; Thermo Dionex, Rommerskirchen, Germany). Peaks
were identified using the following standards: mannose, arabinose, glucose, galactose,
and rhamnose.

2.7. FE-SEM, TEM, and FTIR Analysis

Field-emission scanning electron microscopy (FE-SEM) was used to visualize, observe,
and analyze the surface morphology and microstructure of the EPS. Three milligrams of
freeze-dried EPSs were attached to carbon tape, mounted on a stub, and coated with gold.
EPS observations with FE-SEM were performed at an accelerating voltage of 15 kV. Images
of the FE-SEM were observed at 3000×, 10,000×, and 30,000×magnifications. To identify
the morphology of strain CJ11T, cells that were grown in R2A agar at 30 ◦C for 3 days were
negatively stained using 3% uranyl acetate and observed under a TEM (Libra 120; Zeiss).
Functional group identification was evaluated by the FTIR attenuated total reflection (ATR)
spectra of the EPS samples. A total of 32 background scans with a resolution of 3 were used
in the diamond crystal ATR method. Spectra were acquired from 4000 to 400 cm−1 on a
Perkin Elmer spectrophotometer.

2.8. Mw Determination of EPS

The average molecular weight (Mw) of EPS was assessed by gel permeation chro-
matography (GPC; HLC-8420; Tosoh, Tokyo, Japan). The TSKgel G2500PWXL column was
used, and the Mw of the EPS was estimated using the refractive index (RI) detector. The
EPS sample (3 mg/mL; 50 µL) was prepared and eluted with 0.1 M NaNO3 at 40 ◦C at a
flow rate of 1 mL/min. Using the EcoSEC Elite HLC-8420 GPC (Tosoh Biosciences, San
Francisco, CA, USA), the Mw of the EPS samples was calculated on the basis of the peak
time. Pullulan, a standard with known peak molecular weights (180–642,000 Da; Sigma),
was used for calibration. A calibration curve was used to determine the mean average Mw
of the EPS.

2.9. X-Ray Diffraction (XRD) and Thermogravimetric (TGA) of EPS

After the EPS samples were ground to a fine powder and mounted on a quartz
substrate, Ckα X-rays were generated to continuously record intensity peaks using a
scintillation counter detector. XRD analysis was performed in the range of 5 to 80 ◦C
(Ultima; Rigaku, Tokyo, Japan). TGA was performed using a Pyris TGA N-1000 model. Ten
milligrams of the EPS samples were heated from 25 to 800 ◦C at a rate of 10 ◦C/min under
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nitrogen airflow. The XRD and TGA analyses were performed to evaluate the physical
properties of the EPS using the lyophilized EPS powder.

2.10. 1H- and 13C-NMR Analysis of EPS

EPSs produced by Lysobacter soyae CJ11T were stored in a lyophilized state at
−80 ◦C for several days. 1H- and 13C-NMR spectra for the EPS were obtained by dis-
solving approximately 25 mg of sample in 0.7 mL of deuterium oxide (D2O, 99.9%) in an
NMR tube (5 mm diameter), and 1H- and 13C-NMR spectra were taken at 27 ◦C. Chem-
ical shifts were expressed in parts per million (ppm) on the Bruker 500 MHz FT-NMR
spectrometer.

2.11. DPPH Free-Radical-Scavenging Activity

The DPPH radical-scavenging capacity of the EPS produced by Lysobacter soyae CJ11T

was determined according to a previously reported method with minor modifications [69].
Briefly, 100 µL of DPPH solution (0.2 mM) was mixed with 100 µL of the EPS sample
solution at various concentrations (0, 0.5, 1, 2, and 4 mg). After incubation at room
temperature for 30 min, 200 µL was transferred to a 96-well microplate, and the absorbance
was measured in a microplate reader (517 nm). The antioxidant experiment was conducted
in triplicate using ascorbic acid as a positive control and deionized water as a negative
control. DPPH free-radical-scavenging activity was calculated using the following equation:

Scavenging activity of EPS (%) = [1 − (Asample − Ablank)/Acontrol] × 100%, (1)

where Asample is the absorbance of the DPPH solution mixed with the EPS solution, Ablank
is the absorbance of the DPPH solution, and Acontrol is the absorbance of the control.

3. Results and Discussions
3.1. Phylogenetic Analysis, Physiology, and Morphological Characteristics

Strain CJ11T has a single copy of the 1574 bp 16S rRNA gene. As a result of the
EzBioCloud search based on the 16S rRNA gene sequence, the CJ11T strain was found
to be closely related to L. tolerans UM1T (98.2%) and L. silvestris AM20-91T (97.8%). In
the NJ, ML, and MP phylogenetic trees based on 16S rRNA gene sequences, strain CJ11T

formed consistent clusters with two species of genus Lysobacter (phylum, Pseudomonadota;
class, Gammaproteobacteria; order, Lysobacteriales). The NJ phylogenetic tree method re-
vealed similar topologies, wherein strain CJ11T formed a cluster with L. tolerans UM1T and
L. silvestris AM20-91T (Figure 1). This relationship was also observed in trees reconstructed
using the MP and ML phylogenetic trees with similar topologies (not shown). These re-
sults suggest that strain CJ11T belongs to the family Lysobacteraceae and is a novel species
in the genus Lysobacter. On the basis of 16S rRNA gene sequence analysis, L. tolerans
UM1T and L. silvestris AM20-91T were selected for further phenotypic and chemotaxo-
nomic comparisons.

Cells of strain CJ11T were observed to be Gram-negative, strictly aerobic, nonmotile,
non-spore-forming, and rod-shaped, which revealed the absence of flagella. Colonies
of strain CJ11T were circular, yellow, convex, and smooth on R2A and TSA agar. Strain
CJ11T grew well on TSA, R2A, and NA agar in descending order, and only slightly on
LB agar; however, the cells did not grow on MA agar. Growth occurred at pH 5.0–11.0
(optimum, pH 7.0–8.0), with 0–2% NaCl (optimum, 0%; w/v), and at 15–37 ◦C (optimum,
30 ◦C). Strain CJ11T also tested positive for catalase and negative for oxidase activity. It
was also negative for the hydrolysis of CM-cellulose, casein, chitin, Tween-80, and DNase;
however, its hydrolysis of Tween-20 was positive. Flexirubin-type pigments were absent.
Biochemical and phenotypic characteristics of strain CJ11T were compared with those of
the reference strains and are presented in Table S1.
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strain CJ11T. Bootstrap values are shown as percentages of 1000 replicates (above 50%). Filled
circles indicate that the corresponding nodes were recovered in trees generated using the maximum-
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The total polar lipid profile of strain CJ11T was found to contain phosphatidylethano-
lamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and two uniden-
tified phospholipids (PL1-2) (Figure S1). Although the major polar lipid profile of strain
CJ11T was similar to that of the phylogenetically related Lysobacter species, the presence of
minor polar lipids differentiates it from other closely related species [70,71]. Ubiquinone
Q-8 was identified as the respiratory quinone.

3.2. Genome Features of Strain CJ11T

The genome sequence size for strain CJ11T was determined to be 2,135,237 bp with one
contig, an N50 contig of 2,135,137 bp, and a DNA G + C content of 59.2 mol.% (Figure S2).
The genome of strain CJ11T encoded 2069 genes in total, containing 2007 protein coding
genes (Table S2). CheckM revealed that the completeness of the CJ11T strain genome was
97.8% with a contamination level of 0.17%. On the basis of the constructed 92 core genes
using the UBCG method, the phylogenomic tree was constructed to show the genomic
evolutionary distance of the species in the family Lysobacteraceae (Figure S3). The tree shows
that the closest phylogenetic neighbors were of L. tolerans UM1T and L. silvestris AM20-91T,
similar to the results of the NJ, ML, and MP phylogenetic trees based on the 16S rRNA
genes and genetic relatedness. ANI values were calculated with FastANI using orthogonal
mapping, and then the genomic conservation of strain CJ11T and the two phylogenetically
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close strains were visualized (Figure 2). Reciprocal mappings between the variant CJ11T

and the reference genome are shown as red lines, indicating evolutionarily conserved re-
gions. The ANI values between strain CJ11T and L. tolerans UM1T and L. silvestris AM20-91T

were 71.6% and 72.0%, respectively, with respective in silico DNA–DNA hybridization
values of 19.5% (17.3–21.9%) and 18.5% (16.4–20.9%). These values are considerably below
the ANI threshold of 95%, which facilitated the discrimination of the bacterial species [72].
ANI values between strain CJ11T and L. tolerans UM1T and L. silvestris AM20-91T were
65.4% and 65.9%, respectively. The ANI values between strain CJ11T and other species
of Lysobacteraceae are shown in Table S3. The antiSMASH server revealed one secondary
metabolite biosynthetic gene cluster for aryl polyene (located from 317,699 to 359,837). The
aryl polyene biosynthetic clusters involved in the production of flexirubin pigments are
structurally similar to carotenoid pigments and are widespread in bacteria [73]. Strain
CJ11T was experimentally found to have the flexirubin pigmentation. A total of 26 cell-wall-
and capsule-associated proteins in the genome of CJ11T were predicted. Among them,
11 proteins belonged to the capsular and extracellular polysaccharide part, one protein
belonged to the Gram-negative cell-wall component, and 14 unclassified proteins were
predicted. Under the capsular and extracellular polysaccharide subcategories were dTDP-
rhamnose synthesis (five) and rhamnose-containing glycans (six). According to the results
of the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), strain CJ11T has a gene
that putatively encodes exopolysaccharide biosynthesis protein (824,161 to 824,799; length
212 bp) and pyruvate glycosyltransferase EpsE. It is known that the pyruvate glycosyl-
transferase EpsE is required for the initial steps of EPS biosynthesis [74]. Upon the clusters
of orthologous groups (COG) classification of strain CJ11T, a total of 1965 genes were
assigned to 21 functional categories. The eight major parts of the COG categories were as
follows: S (function unknown; 23.8%), K (transcription, ribosomal structure, and biogenesis;
7.9%), M (cell wall/membrane/envelope biogenesis; 7.3%), E (amino-acid transport and
metabolism; 6.5%), C (energy production and conversion; 6.0%), L (replication, recombina-
tion, and repair; 5.9%), O (post-translational modification, protein turnover, and chaperones;
5.6%), and T (signal transduction mechanisms; 5.1%). The overall comparative analysis of
strain CJ11T and its phylogenetically related neighbors are shown in Figure S4. A total of
1467 orthologous genes were shared among all three compared species (strain CJ11T,
L. tolerans UM1T, and L. silvestris AM20-91T), of which 130 orthologous genes were shared
only between strains CJ11T and L. silvestris AM20-91T, and 86 orthologous genes were
shared between strains CJ11T and L. tolerans UM1T (Figure 3). To compare the metabolic
abilities between CJ11T and two phylogenetically related Lysobacter species, the Refined
Annotation of Metabolism function of the Distilled and KBase platforms was used. The
DRAM tool provided a metabolic profile for each genome (Figure 4). The metagenome-
assembled genome (MAG) of strain CJ11T showed that its genes were involved in glycolysis
(Embden–Meyerhof pathway), the pentose phosphate pathway (pentose phosphate cycle),
reductive pentose phosphate cycle (Calvin cycle), reductive citrate cycle (Arnon–Buchanan
cycle), dicarboxylate–hydroxybutyrate cycle, and reductive acetyl-CoA pathway (Wood–
Ljungdahl pathway). In addition, glycolysis, the phosphate pathway, citrate cycle (TCA
cycle or Krebs cycle), glyoxylate cycle, reductive Acetyl-CoA pathway, reducing pentose
phosphate cycle, dicarboxyl ate-hydroxybutyrate cycle, and reducing citrate cycle were
found in all MAGs. The carbohydrate-active enzyme (CAZyme) genes were examined
in MAGs, and it was confirmed that all three strains (strain CJ11T, L. tolerans UM1T, and
L. silvestris AM20-91T) lacked genes related to carbohydrate decomposition, such as xylan
and chitin (Figure S5). Bacterial alcohol production is known to be commonly used in
the production of alcoholic beverages and can be used as an important renewable energy
source in the production of biofuels such as ethanol. However, this study does not suggest
that strain CJ11T fulfills the aforementioned roles.



Microorganisms 2023, 11, 1900 9 of 20

Microorganisms 2023, 11, x FOR PEER REVIEW 9 of 21 
 

 

known to be commonly used in the production of alcoholic beverages and can be used as 
an important renewable energy source in the production of biofuels such as ethanol. How-
ever, this study does not suggest that strain CJ11T fulfills the aforementioned roles. 

 
Figure 2. Illustration representing FastANI’s workflow between the novel strain CJ11T genome and 
a phylogenetically close reference genome. 

 
Figure 3. Using OrthoVenn3 showed the proteome comparison among the selected three Lysobacter 
species: (1) strain CJ11T (blue); (2) L. tolerans UM1T (green); (3) L. silvestris AM20-91T (orange). There 
were 1467 orthologous gene clusters shared by three strains. When strain CJ11T was compared with 
phylogenetically close Lysobacter species, 130 and 86 clusters were shared between strains 2 and 3, 
respectively. Strains 1, 2, and 3 had five, 21, and 36 unique clusters, respectively. 

Figure 2. Illustration representing FastANI’s workflow between the novel strain CJ11T genome and a
phylogenetically close reference genome.

Microorganisms 2023, 11, x FOR PEER REVIEW 9 of 21 
 

 

known to be commonly used in the production of alcoholic beverages and can be used as 
an important renewable energy source in the production of biofuels such as ethanol. How-
ever, this study does not suggest that strain CJ11T fulfills the aforementioned roles. 

 
Figure 2. Illustration representing FastANI’s workflow between the novel strain CJ11T genome and 
a phylogenetically close reference genome. 

 
Figure 3. Using OrthoVenn3 showed the proteome comparison among the selected three Lysobacter 
species: (1) strain CJ11T (blue); (2) L. tolerans UM1T (green); (3) L. silvestris AM20-91T (orange). There 
were 1467 orthologous gene clusters shared by three strains. When strain CJ11T was compared with 
phylogenetically close Lysobacter species, 130 and 86 clusters were shared between strains 2 and 3, 
respectively. Strains 1, 2, and 3 had five, 21, and 36 unique clusters, respectively. 

Figure 3. Using OrthoVenn3 showed the proteome comparison among the selected three Lysobacter
species: (1) strain CJ11T (blue); (2) L. tolerans UM1T (green); (3) L. silvestris AM20-91T (orange). There
were 1467 orthologous gene clusters shared by three strains. When strain CJ11T was compared with
phylogenetically close Lysobacter species, 130 and 86 clusters were shared between strains 2 and 3,
respectively. Strains 1, 2, and 3 had five, 21, and 36 unique clusters, respectively.
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(2) L. tolerans UM1T; (3) L. silvestris AM20-91T.

3.3. Bacterial Growth and EPS Production Kinetics

Growth and fermentation kinetics are required for cultivating strain CJ11T and deter-
mining the maximum EPS yield. When the novel strain CJ11T was inoculated into a fresh
sterile medium containing 1% (w/v) galactose, mannose, and glucose, it showed rapid
cell growth for 24 to 48 h in a medium with mannose and galactose. The medium with
glucose showed rapid cell growth between 48 and 60 h (Figure 5a). The logarithmic phase
was confirmed between 48 and 72 h in the liquid medium supplemented with 1% glucose,
and the stationary phase was shown for about 72 h after approximately 72 h. In addition,
we elucidated the cell cycle of strain CJ11T and identified the step-by-step fermentation
kinetics of EPS production. The lyophilization of the EPS showed the highest yield in the
medium supplemented with 1% glucose (Figure 5b). The bacterial growth curves over
time for 0–7 days showed a classical pattern, and the EPS yields were generated faster
in the medium supplemented with galactose and mannose within 96 h. However, after
96 h, the medium supplemented with glucose showed a higher yield than the medium
supplemented with galactose and mannose, and at 144 h, the maximum yield was 1.2 g/L,
which was confirmed to be higher than the EPS yield of the previously studied strains of
the genus Lysobacter [13].
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3.4. Chemical Analysis, Average Mw, and Monosaccharide Composition of EPS

The Lowry assay and bovine serum albumin (BSA) method of protein determination
indicated that EPS contains 1.2% (w/w) protein content. The percentage of the carbohydrate
content in lyophilized EPS was 83.8% (w/w). The protein content of the EPS produced by
the novel strain, Lysobacter soyae CJ11T, was lower than that of Lysobacter sp. MMG2 [13].
As a result of measuring the average molecular weight of EPS produced by the new
strain CJ11, it was confirmed to be 0.93 × 105 Da (Figure S6). Although similar to the
EPS and average molecular weight of previously published Lysobacter species, it was
confirmed that the average molecular weight of the EPS produced by our strain was
slightly lower [13]. Meanwhile, it was confirmed that the molecular weight was lower than
that of Bacillus haynesii CamB6 [10]. Mw is a parameter that affects the functional properties
of a exopolysaccharide and can vary depending on the nature of the starting material, the
extraction temperature of the exopolysaccharide, and the fractionation method used [75,76].

The EPS was hydrolyzed with 2 M trifluoracetic acid, and monosaccharide compo-
sition was confirmed by Bio-LC analysis. In the acid-hydrolyzed EPS, four peaks were
observed: mannose (29.53 min), glucose (24.04 min), galactose (20.93 min), and arabinose
(19.56 min). Among them, mannose (72.2%) accounted for the overwhelming majority, fol-
lowed by glucose (17.2%), galactose (7.8%), and arabinose (2.8%; Figure S7). Arabinose, on
the other hand, is not a sugar commonly found in EPS produced by bacteria [77]. Previous
studies have shown that arabinose partially inhibits sucrase activity and lowers the insulin
peak [78]. Therefore, EPS containing arabinose may be useful. However, in this study, the
characteristics of arabinose as an EPS composition of strain CJ11T were not studied.

3.5. FE-SEM, TEM, and FTIR Analyses

A scanning electron microscope can identify the morphology and surface of the EPS
microstructure, making it easier to understand the physical characteristics. The surface
structure of the EPS produced by CJ11T was observed at 10,000× and 30,000×. The surface
morphology of the EPS, observed by SEM, was rough, irregular, and bumpy (Figure 6a,b).
EPSs (white arrow) were observed on the surface of CJ11T cells grown on R2A agar plates
supplemented with 1% glucose. In contrast, the EPS layer was hardly observable on the
surfaces of cells grown on R2A medium not supplemented with a carbon source, and the
cells appeared rod-shaped (Figure 6c,d).

FTIR analysis was applied to confirm the presence of functional groups in EPS
(Figure 7). A hydroxyl expansion vibration of the polysaccharide band was observed
at 3281 cm−1 of the FTIR peak of the CJ11T EPS [79], thus suggesting that this polymer is
EPS. The peak observed around 2933 cm−1 in the spectrum corresponding to the methyl
group was due to the C–H stretching vibration [80]. A 1631 cm−1 peak was found predict-
ing the presence of a C=O group, which showed similar results in our previous study [81].
A peak corresponding to the N–H vibration of the amine group (peptide or proteins) was
observed at 1540 cm−1 [82]. The peaks appearing around 1412 cm−1 and 1223 cm−1 were
presumed to be COO− vibrations and O–S–O groups, which are evidence of sulfuric acid
esters, respectively [83]. The signal representing the stretching vibration of C–O and the
changing angle vibration of O–H appeared around 1048 cm−1 [84]. The absorption band
at 1048 cm−1, which is in the range of 1000–1200 cm−1, corresponded to the presence of
carbohydrates [85]. The peak near 915 cm−1 was suggested to be pyranose [86]. FTIR
analysis with other species of the same Lysobacter genus showed a similar profile [13].
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Figure 6. Microstructure image of exopolysaccharides (EPS) fabricated on L. soyae CJ11T taken
by SEM ((a), 10,000×; (b), 30,000×). Transmission electron microscope (TEM) images of L. soyae
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(d), 0.5 µm). (e) Colony morphology of strain CJ11T.
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3.6. XRD and TGA Analysis of EPS

As shown in Figure 8a, the XRD of the EPS was amorphous and showed a broad
peak approximately from 5◦ to 20◦ (2θ). The XRD result is an indication that the EPS is in
an amorphous state, and the EPS pattern shows a similar result to the EPS produced by
Lysobacter sp. MMG2 [13]. The XRD pattern is a frequently used tool for confirming the
crystallization and properties of materials, and crystallization analysis is important because
it greatly reflects the thermal properties of materials and affects their temperature [87].
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The thermal stability of EPS is important in industrial applications where sterilization
is required, such as food processing and manufacturing [88]. Looking at the TGA analysis
results in Figure 8b, the descending line (a) represents the weight loss of the EPS generated
during the heating process, and the blue line “(b)” represents the heat flux (mW). The
first mass loss occurred between 28 and 92.7 ◦C. This first weight loss was primarily due
to gelatinization and swelling associated with water loss [89]. A weight loss of 8.08% at
210 ◦C indicated the onset of energy release associated with a maximum exothermic peak.
At roughly 300 ◦C, the weight of the EPS dropped dramatically, with a mass loss of 29.9%.

3.7. 1H- and 13C-NMR Analysis

The structure of the EPS produced by L. soyae CJ11T was established on the basis
of one-dimensional NMR spectra (13C and 1H). The 1H-NMR spectrum of the EPS from
L. soyae CJ11T is shown in Figure 9a, displaying 14 resonances at δ 5.42, 5.41, 4.79, 3.99,
3.97, 3.95, 3.88, 3.59, 3.84, 3.82, 3.69, 3.67, 3.63, and 3.65 ppm. In the 1H-NMR result of
the EPS produced by L. soyae CJ11T, one anomeric signal was detected at δ 4.79 ppm [90].
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1H-NMR is usually used to determine the glycosidic bond structure of polysaccharides.
The EPS showed a signal lower than δ 4.8 ppm; therefore, it is a proton signal for β-anomer
pyranose. FTIR analysis showed a band for pyranose; hence, the two results were the
same [91]. The 13C-NMR spectrum of the EPS produced by L. soyae CJ11T showed the signal
of one anomeric region (δH 95–110 ppm) at δH 95.576 ppm [92]. Ring carbons were found
at δH 50–85 ppm, alkyl carbons were found at δH 15–25 ppm, and carbonyl carbons were
found at δH 165–180 ppm [92]. As shown in Figure 9b, on the basis of the chemical shift of
the 13C-NMR, one signal was detected in the anomeric region, indicating the presence of
that obtained from the 1H-NMR results.
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3.8. DPPH Radical Scavenging of EPS

DPPH scavenging activity was observed in the EPS produced by L. soyae, which was
lower than that of ascorbic acid used as a positive control (Figure 10). At a concentration
of 0.25 mg/mL, EPS and ascorbic acid showed DPPH free-radical-scavenging activities of
71.85% and 95.36%, respectively, indicating that the scavenging activity of EPS was lower
than that of ascorbic acid. As EPS increased to 4 mg/mL, DPPH free-radical-scavenging
activity increased by 1.62% to 73.47%. This result showed higher activity at lower concen-
trations compared to the EPS isolated from Lysobacter sp. MMG2. These results indicate that
the EPS produced by L. soyae influences free-radical scavenging. The data presented here
indicate that strain CJ11T has the potential to be utilized as a potential natural antioxidant;
however, it was inferior to the positive control, ascorbic acid, in antioxidant capacity. In
addition, DPPH is a commonly used compound to evaluate free-radical scavenging ability.
EPSs are nontoxic and show high antioxidant capacity in vitro and in vivo, attracting atten-
tion as promising antioxidants [93]. The results were statistically analyzed using one-way
ANOVA (analyzed using Prism GraphPad) and showed significance.
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3.9. Description of Lysobacter soyae sp. nov

Lysobacter soyae (so’yae. N.L. gen. n. soyae, of soya, of soybean [referring to the
source of the type strain]) cells are Gram-negative, aerobic, nonmotile, non-spore-forming,
rod-shaped, 0.45–0.51 µm long, and 0.85–1.10 µm wide. Growth occurs on NA and LB
agar, with R2A and TSA being the optimal medium. When grown on R2A agar plates at
30 ◦C for 3 days, colonies appear to be yellow, circular, and convex. Growth also occurs at
15–37 ◦C (optimum, 30 ◦C), pH 5.0–11.0 (optimum, pH 7.0–8.0), and 0–2% NaCl (optimum,
0%; w/v). Although the cells could not hydrolyze CM-cellulose, casein, chitin, Tween-80,
and DNase, they hydrolyzed Tween-20. Its catalase activity was positive, whereas oxidase
activity was negative. In the API 20NE tests, strain CJ11T was positive for β-galactosidase
and the assimilation of potassium gluconate, adipate, malate, and trisodium citrate. A
negative reaction was observed for the nitrate reaction test and the fermentation of D-
glucose, production of L-tryptophan, L-arginine, urease, and β-glucosidase, and hydrolysis
of gelatin; the assimilation of D-glucose, L-arabinose, D-mannitol, D-mannose, N-acetyl-β-
glucosamine, D-maltose, caprate, and phenyl acetate was also negative. The cells contained
PE, DPG, and PG as major polar lipids and two unidentified phospholipids as minor polar
lipids. Ubiquinone Q-8 was predominant in the cells. API ZYM strips gave negative
results for lipase (C14), esterase (C4), cystine arylamidase, valine arylamidase, trypsin, α-
chymotrypsin, α-galactosidase, α-fucosidase, α-mannosidase, N-acetyl-β-glucosaminidase,
β-glucosidase, α-glucosidase, β-glucuronidase, and β-galactosidase, but positive results
for the production of alkaline phosphatase, esterase lipase (C8), acid phosphatase, leucine
arylamidase, and naphthol-AS-BI-phosphohydrolase. The type strain of Lysobacter soyae is
CJ11T (type strain CJ11T = KACC 21716T = NBRC 114478T), which was isolated from the
roots of Glycine max L. at Dongguk university, Goyang-si, Republic of Korea. The G + C
content of the genomic DNA is 59.2 mol.%.

The GenBank/EMBL/DDBJ/PIR accession numbers of the 16S rRNA gene sequences
and the whole-genome sequences of Lysobacter soyae CJ11T are MN915129 and
CP080544, respectively.

4. Conclusions

In this study, EPSs were extracted, isolated, and purified from the fermentation broth
of the novel strain L. soyae CJ11T supplemented with glucose. EPS produced by a novel
strain was composed of mannose, glucose, galactose, and arabinose, of which mannose
was the most dominant, and the average molecular weight of EPS was 0.93 × 105 Da.
Through 13C-NMR spectral analysis at δ 95.576 ppm, we found a signal of one anomeric
region. In addition, one anomeric region was also detected on the basis of 1H-NMR spectral
analysis at δ 4.79 ppm. SEM showed a rough, irregular, and bumpy structured surface
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morphology. In addition, EPS was additionally characterized by FTIR and XRD. Functional
characterization of EPS was also performed, showing DPPH radical-scavenging activity
in a concentration-dependent manner, indicating potential as a natural antioxidant and
high thermal stability. To our knowledge, no previous studies have reported the properties
of EPS produced by Lysobacter isolated from Glycine max. Thus, this study demonstrates
the theoretical knowledge and potential that the EPS produced by the critical strain CJ11T

could benefit several industries. On the basis of our results, we proposed that CJ11T could
be a novel Lyobacter species, which we named Lysobacter soyae sp. nov. and designated
as CJ11T.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/microorganisms11081900/s1: Figure S1. Polar lipid profiles of strain CJ11T

obtained through two-dimensional thin-layer chromatography; Figure S2. Circular genome map of
strain CJ11T. rRNA genes (light green), tRNA genes (red), tmRNA (sky blue), GC content (yellow),
and GC skew (green and purple); Figure S3. Phylogenomic tree reconstructed using coding sequences
of 92 protein clusters showing the position of strain CJ11T; Figure S4. The clusters of orthologous
groups (COG) functional category of strain CJ11T and the phylogenetically related Lysobacter species;
Figure S5. The Distilled and Refined Annotation of Metabolism (DRAM) annotation of the metagenome-
assembled genomes (MAGs) of the phylogenetically related species to the Lysobacter species from
rhizosphere soils of soybean fields. The color of the heatmap indicates the presence (green) or ab-
sence of an associated metabolic function in the genome; Figure S6. Average Mw distributions of EPS;
Figure S7. EPS produced by Lysobacter sp. CJ11T was evaluated for monosaccharide composition using
bio-liquid chromatography (Bio-LC). Retention time is indicated above each peak;
Table S1. Differentiating characteristics of strain CJ11T and other Lysobacter species; Table S2. Genome
sequence features of strain CJ11T and other Lysobacter species. Data for reference strains were retrieved
from the National Center for Biotechnology Information (NCBI); Table S3. Average nucleotide identity
(ANI) indexes for the genome of the type strain of this species belonging to the family Lysobacteraceae.
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