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Abstract: Recanalization therapy is the most effective treatment for eligible patients with acute
ischemic stroke (AIS). Gut microbiota are involved in the pathological mechanisms and outcomes
of AIS. However, the association of gut microbiota features with adverse recanalization therapy
outcomes remains unclear. Herein, we investigated gut microbiota features associated with neu-
rological deficits in patients with AIS after recanalization therapy and whether they predict the
patients’ functional outcomes. We collected fecal samples from 51 patients with AIS who received
recanalization therapy and performed 16S rRNA gene sequencing (V3–V4). We compared the gut
microbiota diversity and community composition between mild to moderate and severe disability
groups. Next, the characteristic gut microbiota was compared between groups, and we noted that
the characteristic gut microbiota in patients with mild to moderate disability included Bilophila,
Butyricimonas, Oscillospiraceae_UCG-003, and Megamonas. Moreover, the relative abundance of
Bacteroides fragilis, Fusobacterium sp., and Parabacteroides gordonii was high in patients with severe
disability. The characteristic gut microbiota was correlated with neurological deficits, and areas under
the receiver operating characteristic curves confirmed that the characteristic microbiota predicted
adverse recanalization therapy outcomes. In conclusion, gut microbiota characteristics are correlated
with recanalization therapy outcomes in patients with AIS. Gut microbiota may thus be a promising
biomarker associated with early neurological deficits and predict recanalization therapy outcomes.

Keywords: acute ischemic stroke; endovascular thrombectomy; gut microbiota; intravenous
thrombolysis

1. Introduction

Stroke is a brain injury caused by a disruption in the blood supply to a specific region
of the brain, resulting in permanent neurological deficits or even death. Stroke is not only
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a major global health issue but also the fourth leading cause of death and a significant
contributor to disability in Taiwan. It can be classified into ischemic and hemorrhagic
stroke. Approximately 87% of stroke cases are of the ischemic type [1]. Recanalization
therapy, which includes intravenous thrombolysis (IVT) and endovascular thrombectomy
(EVT), is currently recommended by treatment guidelines for patients with acute ischemic
stroke (AIS) who meet the selection criteria [2]. However, most patients with AIS remain
dependent in their activities of daily living. Therefore, investigating prognostic factors
that potentially predict recanalization therapy outcomes in patients with AIS is of clinical
significance. Several predictors for functional outcomes after recanalization therapy for
AIS have been reported; they include age, atrial fibrillation, initial stroke severity, onset to
treatment time, cerebral collateral flow, and the number of EVT passes [3].

In addition to clinical factors, the role of inflammatory reactions in the prognosis of
AIS is a crucial area of investigation. Neuroinflammatory cascades are activated early, and
their progression is rapid after AIS [4]. The mechanisms of neuroinflammation-driven
injury during the acute phase of AIS involve several factors, including excessive oxida-
tive stress, increased production of matrix metalloproteinase, activation of microglia and
astrocytes, release of proinflammatory cytokines, and migration of immune cells into the
ischemic area [5,6]. This cascade can lead to disruption of the blood–brain barrier (BBB),
neuronal injury, cerebral edema, hemorrhagic transformation, and a worsened neurological
outcome [6,7]. Furthermore, following recanalization therapy for AIS, oxidative stress,
mitochondrial dysfunction, calcium overload, and excitotoxicity are dramatically increased
due to the reperfusion injury. This, in turn, potentiates the extent of neuroinflammation and
brain tissue damage caused by the initial ischemic insult [8,9]. Consequently, counteracting
neuroinflammation should be considered as an adjunct therapeutic strategy in AIS patients,
which could extend the range of the clinical benefits of recanalization therapy [10].

The gut microbiota—referring to the collection of bacteria, archaea, and eukaryotes
colonizing the gastrointestinal tract—is a key regulator of the poststroke neuroinflamma-
tory response [11,12]. Patients with AIS demonstrate dysbiosis; that is, a substantial change
in gut microbiota diversity and abundance and an increase in the number of pathogenic
bacteria [13]. The microbiota–gut–brain axis involves bidirectional communication between
the gut and the brain. Through top–down communication, AIS affects gut function and
gut microbial composition through the autonomic nervous system, enteric nervous system,
and hypothalamic–pituitary–adrenal axis. AIS disrupts intestinal motility, leads to in-
creased intestinal permeability, reduces mucus secretion from goblet cells, and contributes
to dysbiosis. In bottom–up communication, dysbiotic gut bacteria produce endotoxins
(e.g., lipopolysaccharide, LPS) and metabolites (e.g., short-chain fatty acids (SCFA) and
trimethylamine-N-oxide), which activate resident immune cells, trigger inflammatory re-
sponses, and secrete proinflammatory cytokines. Immune cells migrate to the ischemic
area of the brain, and inflammatory mediators reach the brain through systemic circulation,
leading to the exacerbation of neuroinflammation and ischemic injury after AIS [12,14].
Dysbiosis is correlated with poor functional outcomes after AIS [15–17].

Modulation of the gut microbiota may improve functional outcomes after AIS [18].
However, clinical studies delineating the potential association between gut microbiota
composition and recanalization therapy outcomes in patients with AIS are lacking. This is
mainly because recanalization therapy is time-limited, and only a few patients with AIS are
eligible for it. Moreover, post-AIS changes in physical activity and diet may influence gut
microbiota composition.

Gut microbiota composition may differ among patients with AIS with different func-
tional outcomes after recanalization therapy. Therefore, in this prospective, observational
study, we compared the gut microbiota profiles of patients with AIS who received recanal-
ization therapy through 16S ribosomal RNA (16S rRNA) gene sequencing. Our results may
provide insights into the factors predicting the post-recanalization therapy prognosis in
patients with AIS.
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2. Materials and Methods
2.1. Patients

This was a single-center, prospective cohort study, and it was conducted at a hospital
in the southern part of Taiwan. As indicated in Figure 1, patients who were admitted to
the hospital within 6 h of symptom onset and given a diagnosis of AIS were enrolled. We
included only patients who received recanalization therapy (i.e., IVT, EVT, or both) as well
as brain magnetic resonance imaging to detect acute ischemic lesions. We excluded patients
who were younger than 20 years, had intracerebral hemorrhage on initial radiological
examination, had contraindications to IVT or EVT, had received probiotics or antibiotics
within 1 week prior to admission, or had received antibiotic therapy prior to fecal sample
collection after admission. Each patient was comprehensively evaluated for demographics,
medical history, physical and neurological examinations, and blood biochemistry analysis.
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2.2. Stroke Severity, Functional Outcomes, and Reperfusion Assessment

Stroke severity was evaluated on the basis of each patient’s National Institutes of
Health Stroke Scale (NIHSS) score, whereas functional outcomes were assessed using
each patient’s modified Rankin Scale (mRS) score. A neurologist blinded to the results of
the gut microbiota analyses assessed both the NIHSS and mRS scores. The NIHSS score
(range of 0–42) indicates the degree of a patient’s neurological impairment; the higher
the NIHSS score, the more severe the patient’s neurological deficit. The NIHSS score was
obtained before treatment and at discharge. The mRS score was assessed at baseline and at
discharge; an mRS score of 0–3 at discharge was considered to indicate mild to moderate
disability. Post-EVT reperfusion status was assessed using the modified treatment in
cerebral ischemia (mTICI) score. The mTICI score was determined by the EVT operator
based on each patient’s final angiogram.
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2.3. Fecal Sample Collection, Bacterial DNA Extraction, and 16S rRNA Gene Sequencing

Fecal samples were collected from each participant before their first meal during
hospitalization. The samples were frozen immediately after collection and delivered to the
laboratory in a cooler bag within 24 h. The fecal samples were stored at −80 ◦C for up to
3 days prior to processing.

Bacterial deoxyribonucleic acid (DNA) was extracted from the fecal samples using
a stool DNA extraction kit (Topgen Biotechnology, Kaohsiung, Taiwan). After its quality
and concentration were assessed on a Colibri Microvolume spectrophotometer (Titertek
Berthold, Pforzheim, Germany), the extracted DNA was immediately frozen at −20 ◦C.

We outsourced our DNA samples to Welgene Biotech (Taipei, Taiwan) for 16S rRNA
gene sequencing. Each bacterial DNA sample was subjected to 16S rDNA amplicon sequenc-
ing using Illumina Sequencing-by-Synthesis technology on an Illumina MiSeq sequencer
to produce 2 × 300 bp paired-end reads. The primers for the 16S rRNA gene (V3–V4
region) were as follows: forward, TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC-
CTACGGGNGGCWGCAG; and reverse, GTCTCGTGGGCTCGGAGATGT GTATAAGA-
GACAGGACTACHVGGGTATCTAATCC.

2.4. Statistical and Bioinformatic Analyses of Microbiota

The patients’ demographic, medical history, and blood biochemistry data were classi-
fied as either categorical or continuous variables. In order to compare the data between
patients with mild to moderate disability (mRS score = 0–3) and severe disability (mRS
score = 4–6), we utilized the two-tailed independent t-test to analyze continuous variables,
while categorical variables were assessed using the chi-square test. The NIHSS scores,
type of recanalization therapy, onset to treatment time, presence of good angiographic
reperfusion (mTICI score ≥ 2b), and occluded artery were also compared between the
two groups.

The raw sequencing data were imported into QIIME2 [19] and processed using the
DADA2 plugin [20] to merge and denoise paired-end reads into amplicon sequence variants
(ASVs). The median number (interquartile range (IQR)) of reads filtered through each
quality control step was 105,487 (95,432, 117,353). To avoid false conclusions due to an
uneven sampling depth in the microbiome diversity assessment, we standardized the
sampling depth of each sample by rarefying it to 66,649 reads, which corresponded to
the lowest number of reads detected in all samples and the point at which the rarefaction
curves of both groups leveled off.

We compared the alpha diversity indexes using pairwise Kruskal–Wallis tests. To
assess beta diversity, we performed a pairwise analysis of similarities (ANOSIM) and
permutational multivariate analyses of variance (PERMANOVA) with 999 permutations
as well as a principal coordinate analysis (PCoA) based on various distance matrixes.
All p values were adjusted using the Benjamini–Hochberg procedure (to obtain q values).

The ASV taxonomy was classified using a SciKit Learn-based approach and by search-
ing in the SILVA reference database (version 138; trimmed to the V3–V4 region; L7 taxon-
omy) [21]. We analyzed the relative abundance of taxa using linear discriminant analysis
(LDA) effect size (LEfSe) [22]. Next, we identified differential taxa features between the
groups, which were identified on the basis of a log LDA score for discriminative features of
>2 and p < 0.05 in the factorial Kruskal–Wallis test.

The Spearman correlation was used to analyze the associations between gut microbiota
and stroke severity, as determined by NIHSS. To explore the value of gut microbiota features
in the prediction of post-recanalization therapy outcomes, we plotted receiver operating
characteristic (ROC) curves based on the relative abundance of the bacteria in the two
patient groups and calculated the areas under ROC curves (AUCs).

2.5. Ethics Approval

This study was conducted in accordance with the guidelines of the Declaration of
Helsinki and approved by the Institutional Review Board of Kaohsiung Medical University
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Hospital [KMUHIRB-E(I)-20200424]. Informed consent was obtained from all patients
involved in this study or their legal representatives.

3. Results
3.1. Patient Characteristics

A total of 51 fecal samples were collected from patients undergoing recanalization
therapy for AIS. The mean age of the patients was 70.6 (±13.2) years, and 29 (56.9%)
were men. At admission, the median (IQR) NIHSS score was 15 (10, 21). Of the patients,
30 (58.8%) received IVT, 13 (25.5%) received EVT, and 8 (15.7%) received both. The patients
were discharged a median (IQR) of 19 (12, 36) days after admission; their median (IQR)
NIHSS score was 5 (2, 15). Overall, 40 (78.4%) patients showed neurological improvement,
and 23 (45.1%) were classified as having mild to moderate disability. Patients with mild
to moderate disability had significantly lower median NIHSS scores at admission and
discharge than those with severe disability.

Compared with the severe disability group, the mild to moderate disability group
had a significantly lower atrial fibrillation or flutter prevalence and a significantly higher
rate of only IVT use. However, the between-group differences in the median time from
stroke onset to IVT, groin puncture, or reperfusion and in the rates of successful reperfusion
(mTICI score ≥ 2b) were nonsignificant. Most (84.3%) of the occluded vessels were in the
anterior circulation; the proportions of the patients in each group with such vessels were
similar. Table 1 presents an overview of the patient characteristics, vascular risk factor, and
administration details of the recanalization therapy.

Table 1. Participant characteristics.

Characteristic Total (n = 51) Mild to Moderate
Disability (n = 23)

Severe Disability
(n = 28) p-Value

Age, years, mean (±SD) 70.6 ± 13.2 69.0 ± 12.7 72.0 ± 13.7 0.418
Sex, man, n (%) 29 (56.9%) 13 (56.5%) 16 (57.1%) 0.964
BMI, mean (±SD) 25.8 ± 3.5 26.3 ± 3.6 25.4 ± 3.3 0.371
Prior vascular risk factors

Hypertension, n (%) 41 (80.4%) 16 (69.6%) 25 (89.3%) 0.078
Diabetes mellitus, n (%) 22 (43.1%) 8 (34.8%) 14 (50.0%) 0.275
Hyperlipidemia, n (%) 39 (76.5%) 19 (82.6%) 20 (71.4%) 0.349
Prior stroke, n (%) 10 (19.6%) 3 (13.0%) 7 (25.0%) 0.285
Atrial fibrillation/flutter, n (%) 24 (47.1%) 7 (30.4%) 17 (60.7%) 0.031 *
Smoking, n (%) 10 (19.6%) 2 (8.7%) 8 (28.6%) 0.075

Median initial NIHSS (IQR) 15 (10, 21) 10 (6, 15) 17.5 (13, 21) 0.012 *
Median discharge NIHSS (IQR) 5 (2, 15) 2 (1, 4) 13 (8.25, 24.5) <0.001 **
Recanalization therapy, n (%)

IVT only 30 (58.8%) 18 (78.3%) 12 (42.9%) 0.027 *
EVT only 13 (25.5%) 4 (17.4%) 9 (32.1%)
Both IVT and EVT 8 (15.7%) 1 (4.3%) 7 (25.0%)

Median onset to IVT time, minutes,
IQR (n = 38) 115 (95, 164) 110 (95, 199) 119 (95, 150) 0.745

Median onset to puncture time,
minutes, IQR (n = 21) 299 (252.5, 357.5) 255 (185, 384) 302 (273.25, 353.75) 1.000

Median onset to reperfusion time,
minutes, IQR (n = 21) 370 (282.5, 427.5) 280 (202, 420.5) 379.5 (304, 438.75) 0.311

mTICI ≥ 2b, n (%) (n = 21) 19 (90.5%) 5 (100.0%) 14 (87.5%) 0.406
Occluded vessel, n (%) 0.762

Anterior circulation 43 (84.3%) 19 (82.6%) 24 (85.7%)
Posterior circulation 8 (15.7%) 4 (17.4%) 4 (14.3%)

BMI, body mass index; EVT, endovascular thrombectomy; IQR, interquartile range; IVT, intravenous thrombolysis;
mTICI, modified treatment in cerebral ischemia; NIHSS, National Institute of Health Stroke Scale; SD, standard
deviation. * p < 0.05. ** p < 0.01.
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3.2. Characterization of Gut Microbiota Based on 16S rRNA Gene Sequencing

As presented in Figure 2, intragroup diversity tended to be lower in the severe
disability group than in the mild to moderate disability group, as indicated by the
Chao1 index (586.69 ± 101.67 vs. 534.00 ± 114.07, p = 0.091) and Shannon’s
index (5.9 ± 0.6 vs. 5.7 ± 0.7, p = 0.391) values; however, these differences were non-
significant. Regarding the intergroup diversity, PCoA based on Bray–Curtis dissimilarity
(ANOSIM: R = −0.02, p = 0.74; PERMANOVA: pseudo-F = 1.00, p = 0.46) and weighted
unnormalized UniFrac (ANOSIM: R = −0.03, p = 0.90; PERMANOVA: pseudo-F = 0.59,
p = 0.87) demonstrated an absence of significant microbial clustering differences between
the mild to moderate and severe disability groups. These results reveal no significant
differences in the intragroup and intergroup diversity between our mild to moderate and
severe disability groups.
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3.3. Relative Abundance of Discriminative Taxa between Mild to Moderate Disability and Severe
Disability Groups

Between-group differences in the relative abundance of gut microbiota were estimated
using LEfSe based on a log LDA score of >2. The differences in the abundance of the
phyla Firmicutes (49.69% in the mild to moderate disability group vs. 50.16% in the severe
disability group), Bacteroidetes (29.72% in the mild to moderate disability group vs. 29.41%
in the severe disability group), and the Firmicutes/Bacteroidetes ratio (2.68 ± 3.43 in the
mild to moderate disability group vs. 2.25 ± 1.68 in the severe disability group) were
nonsignificant.

Figure 3 presents the abundant taxa among the patient groups. The Oscillospiraceae_
UCG-003 and Megamonas, as well as its family Selenomonadaceae in the phyla Firmicutes,
Butyricimonas and its family Marinifilaceae, Bacteroides fluxus and Alistipes shahii in the
phyla Bacteroidetes, Bifidobacterium sp., and Bilophila were significantly enriched in the mild
to moderate disability group. In contrast, Bacteroides fragilis and Parabacteroides gordonii
in the phyla Bacteroidetes and Fusobacterium sp. were significantly enriched in the severe
disability group. Random forest models were used for taxonomy prediction, and four
genera could be used to discriminate the mild to moderate disability group from the severe
disability group: Bilophila, Butyricimonas, Oscillospiraceae_UCG-003, and Megamonas.
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Figure 3. (A) Histogram of linear discriminant analysis (LDA) scores revealing the most differentially
abundant taxa between mild to moderate and severe disability groups. Bacterial taxa with LDA
score > 2 are presented. (B) Circular cladogram of LDA effect size analysis revealing bacteria with
significant between-group differences.

3.4. Analysis of Association between Gut Microbiota, NIHSS Scores, and Functional Outcomes

We selected Bilophila, Butyricimonas, Oscillospiraceae_UCG-003, Megamonas, Bacteroides
fragilis, Fusobacterium sp., and Parabacteroides gordonii for further analysis of the associations
among gut microbiota, stroke severity, and functional outcomes based on LDA values
and random forest models. As indicated in our Spearman correlation heatmap (Figure 4),
the discharge NIHSS was correlated negatively with Bilophila (p = 0.004) and Megamonas
(p = 0.011) but positively correlated with Bacteroides fragilis (p = 0.037). Moreover, Bilophila
was correlated with neurological improvement, as indicated by NIHSS score changes
between discharge and admission (p = 0.032).
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p < 0.05 and p < 0.01, respectively.
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We subsequently assessed the potential of using gut microbiota as a biomarker for
predicting recanalization therapy outcomes. As presented in Figure 5, Bilophila and Bu-
tyricimonas have good predictive power for mild to moderate disability (AUCs = 0.713
and 0.741, respectively), and Bacteroides fragilis and Parabacteroides gordonii have a good
predictive power for severe disability (AUCs = 0.712 and 0.679, respectively). Therefore,
the identified bacteria could be potential biomarkers for recanalization therapy outcomes
in patients with AIS.
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4. Discussion

To the best of our knowledge, this is the first study to delineate gut microbiota features
and their associations with recanalization therapy outcomes in patients with AIS. Our
results demonstrate that after recanalization therapy, gut microbiota composition differs
between patients with mild to moderate and severe disability after AIS. We discovered that
Bilophila, Butyricimonas, Oscillospiraceae_UCG-003, and Megamonas are enriched in patients
with mild to moderate disability, whereas Bacteroides fragilis, Fusobacterium sp., and Parabac-
teroides gordonii are enriched in patients with severe disability. The richness of specific
gut microbiota was noted to be correlated with neurological deficits post-recanalization
therapy. Thus, Bilophila and Butyricimonas may predict mild to moderate disability, whereas
Bacteroides fragilis and Parabacteroides gordonii may predict severe disability. Taken together,
these findings indicate that gut microbiota are ideal, noninvasive fecal biomarkers for the
early prediction of neurological deficits and functional outcomes in patients with AIS after
recanalization therapy.

Bilophila, which is enriched in patients with stroke [23] and acute coronary syn-
dromes [24], is associated with the consumption of animal protein and a lack of plant-based
protein sources [25]. However, the pathological mechanism underlying the association
between Bilophila and AIS outcomes has not been established. The genera Butyricimonas and
Megamonas and the family Oscillospiraceae can improve stroke outcomes through several
mechanisms. Butyricimonas and Oscillospiraceae both produce butyrate [26–28], which has
been noted to reduce neuronal apoptosis occurrence and cerebral infarction volume and
to improve neurological function in animal stroke models [29,30]. In addition, Megamonas
ferments glucose into short-chain fatty acids, mostly acetate and propionate [31], both of
which are beneficial for stroke recovery. Reduced acetate and propionate levels were associ-
ated with an increased risk of poor functional outcomes in patients after stroke [16]. The
results of an animal experiment demonstrated that supplementation with a mix of acetate,
butyrate, and propionate improves poststroke recovery and cortical reorganization [32].

Butyricimonas can activate glucagon-like peptide-1 receptor and peroxisome proliferator-
activated receptor α, which can alleviate diabetes and metabolic disorders induced by
a high-fat diet [33]. Oscillospiraceae was reported to be correlated with adiponectin in
neurodegeneration disease [34], and an abundance of Oscillospiraceae is associated with
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decreased insulin resistance [35]. The abundance of Megamonas is higher in individuals
with normal glucose tolerance than in those with type 2 diabetes mellitus [36]. In general,
the presence of Butyricimonas, Oscillospiraceae, and Megamonas can help stabilize glucose
metabolism and increase short-chain fatty acid levels, potentially leading to improved
stroke recovery and decreased disability.

On the other hand, Bacteroides fragilis can biosynthesize and secrete pathogenic and
proinflammatory neurotoxins, namely LPS and Bacteroides fragilis toxins [37]. Bacteroides
fragilis negatively affects the biophysiological barrier structure and function, and thus
disrupts the normal blood–brain barrier and elicits inflammatory neuronal dysfunction [38].
Additionally, Bacteroides fragilis deteriorates glucose and lipid metabolism, activates an
inflammatory response, and promotes atherosclerosis progression in animal models [39].

Fusobacterium generates a proinflammatory microenvironment in the gut [40], induces
immune cell death [41], alters vascular endothelial integrity, and passes through the blood–
brain barrier [42], eventually impairing stroke outcomes through the microbiota–gut–brain
axis. Numerous studies have indicated that an increase in the number of Fusobacterium
is associated with hypertension [43,44] and is positively correlated with homocysteine
levels [45]—both of which are well-known risk factors for stroke. Therefore, increased
Fusobacterium is considered to be strongly associated with unfavorable stroke outcomes [46].

Parabacteroides, a large artery atherosclerotic stroke biomarker [47], is more abundant
in patients with ischemic stroke than in healthy individuals [15,48,49]. In addition, Parabac-
teroides is associated with vascular risk factors and stroke severity—as reflected by its
positive correlation with infract volume and its negative correlation with poststroke daily
function [47].

Taken together, our results indicate that in patients with AIS, a significant abundance of
Bilophila, Butyricimonas, Oscillospiraceae, and Megamonas, which produce short-chain fatty
acids and contribute to glucose homeostasis, possibly contributes to the beneficial effects of
recanalization therapy. By contrast, Bacteroides fragilis, Fusobacterium, and Parabacteroides
are associated with vascular risk factors, gut integrity disruption, blood–brain barrier
impairment, and neuroinflammation induction, thereby increasing the likelihood of severe
post-AIS disability.

There is a higher prevalence of atrial fibrillation/flutter observed in the severe disabil-
ity group compared to the mild to moderate disability group among the demographics and
medical history analyzed. Studies have shown that dysbiosis is linked to atrial fibrillation,
possibly due to dietary habits, bacterial LPS, and microbial metabolites. These mediators
are suggested to increase inflammation and contribute to atrial arrhythmogenesis, thereby
affecting susceptibility to atrial fibrillation [50]. Furthermore, AIS patients with atrial
fibrillation have reported unfavorable functional outcomes following IVT and EVT [51,52].
Hence, it is possible that in the severe disability group, gut microbiota may contribute to
adverse functional recovery post-recanalization therapy via atrial fibrillation.

The novelty of the current study lies in its recruitment of patients with AIS who
received recanalization therapy; thus far, this patient group has rarely been studied. This is
because this population is small among AIS patients, as recanalization therapy is an urgent
treatment strategy. We thus obtained a newer understanding of the use of gut microbiota
as a prognostic biomarker of recanalization therapy outcomes in patients with AIS than
other studies have.

Furthermore, targeting dysbiosis of the gut microbiota can potentially serve as a
therapeutic intervention to alleviate poststroke neuroinflammation and to enhance stroke
outcomes following recanalization therapy. An animal model revealed that the transplanta-
tion of healthy and SCFAs-producing microbiota notably improved stroke outcomes [11,29],
while the modulation of the microbiota has been linked to a decrease in LPS and stroke-
related neuroinflammation [53]. Additionally, a cerebral ischemia reperfusion model,
similarly to recanalization therapy, demonstrated that microbiota from young mice may
inhibit interleukin-17 production and lower reperfusion injury in aged mice [54].
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In our view, although the majority of evidence comes from animal studies, microbiota-
targeted therapy presents a promising potential for the treatment of AIS, particularly in
patients undergoing recanalization therapy. It is conceivable that a therapy to modify the
microbiota composition, such as dietary regulation, the administration of probiotics or
prebiotics, and fecal microbiota transplantation, could be combined with recanalization
therapy to mitigate the extent of reperfusion injury and neuroinflammation in the acute
phase of AIS [55]. Thus, future clinical investigations are needed to explore the feasibility
of targeting the gut microbiota as an innovative therapeutic approach that can improve
functional outcomes in individuals with AIS.

The current study, however, has several limitations. First, no information regarding
the patients’ dietary habits and lifestyles was collected. Patients who had used probiotics
or antibiotics in the week before AIS diagnosis were excluded, and the fecal samples were
collected before their first meal after receiving an AIS diagnosis. Through this design, we
minimized the effects of diet and antibiotics on the gut microbiota after AIS. Second, we
collected fecal samples at a single timepoint; this limited our ability to assess dynamic
changes in the association of gut microbiota with functional outcomes after recanalization
therapy. Third, because of our limited sample size, we could not determine the association
of characteristic microbiota with their metabolites, such as trimethylamine-N-oxide and
short-chain fatty acids. Thus, we could not investigate the causal association between gut
microbiota and functional outcomes after recanalization therapy. Finally, our follow-up
period was short. We determined functional outcomes on the basis of the mRS scores at
discharge, mostly within 30 days. Future larger-scale and longer-term studies addressing
these limitations and investigating the influence of gut microbiota on recanalization therapy
outcomes by assessing the effects of metabolic products and pathways are warranted.

5. Conclusions

Our results confirmed the associations between gut microbiota characteristics and
recanalization therapy outcomes in patients with AIS. Gut microbiota could be a pertinent
biomarker for predicting adverse recanalization therapy outcomes in patients with AIS.
Given the growing preclinical evidence suggesting that modulation of the gut microbiota is
a promising therapeutic target for AIS, the translation of these results into clinical practice
may represent a major breakthrough in the treatment of AIS and merits further research.
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