Clinical Sepsis Phenotypes in Critically Ill Patients
Abstract
:1. Introduction
2. Sepsis: A Very Heterogeneous Disease
2.1. Patient-Specific Causes of Heterogeneity
2.2. Clinical Expression-Related Heterogeneity
2.3. The Definition of Sepsis as a Cause of Heterogeneity
2.4. Sepsis and Precision (or Personalized) Medicine
3. Critical Care Septic Patients
4. Phenotyping Sepsis in Critical Care Patients
5. The Artificial Intelligence and Machine Learning Approach
6. Temperature Phenotyping and Correlation with Immunological Profile
7. Hemodynamic Phenotyping and Sepsis
8. Multiorgan Dysfunction Phenotyping during Sepsis
9. Sepsis Phenotypes, Fluid Status and Outcome
10. Phenotyping ICU Trajectories: Mortality and Beyond
11. Sepsis and Phenotypes: There Is More to Come
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vincent, J.L.; van der Poll, T.; Marshall, J.C. The End of “One Size Fits All” Sepsis Therapies: Toward an Individualized Approach. Biomedicines 2022, 10, 2260. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Hussain, H.; Vutipongsatorn, K.; Jimenez, B.; Antcliffe, D.B. Patient Stratification in Sepsis: Using Metabolomics to Detect Clinical Phenotypes, Sub-Phenotypes and Therapeutic Response. Metabolites 2022, 12, 376. [Google Scholar] [CrossRef] [PubMed]
- Taj, M.; Brenner, M.; Sulaiman, Z.; Pandian, V. Sepsis protocols to reduce mortality in resource-restricted settings: A systematic review. Intensive Crit. Care Nurs. 2022, 72, 103255. [Google Scholar] [CrossRef]
- Afonso, E.; Smets, K.; Deschepper, M.; Verstraete, E.; Blot, S. The effect of late-onset sepsis on mortality across different gestational ages in a neonatal intensive care unit: A historical study. Intensive Crit. Care Nurs. 2023, 77, 103421. [Google Scholar] [CrossRef]
- Verstraete, E.H.; Mahieu, L.; De Coen, K.; Vogelaers, D.; Blot, S. Impact of healthcare-associated sepsis on mortality in critically ill infants. Eur. J. Pediatr. 2016, 175, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, E.; Boelens, J.; De Coen, K.; Claeys, G.; Vogelaers, D.; Vanhaesebrouck, P.; Blot, S. Healthcare-associated bloodstream infections in a neonatal intensive care unit over a 20-year period (1992–2011): Trends in incidence, pathogens, and mortality. Infect. Control Hosp. Epidemiol. 2014, 35, 511–518. [Google Scholar] [CrossRef]
- Arvaniti, K.; Dimopoulos, G.; Antonelli, M.; Blot, K.; Creagh-Brown, B.; Deschepper, M.; de Lange, D.; De Waele, J.; Dikmen, Y.; Eckmann, C.; et al. Epidemiology and age-related mortality in critically ill patients with intra-abdominal infection or sepsis: An international cohort study. Int. J. Antimicrob. Agents 2022, 60, 106591. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Koulenti, D.; Blot, S.; Sakr, Y.; Anzueto, A.; Spies, C.; Sole-Violan, J.; Kett, D.; Armaganidis, A.; Martin, C.; et al. Critically ill elderly adults with infection: Analysis of the extended prevalence of infection in intensive care study. J. Am. Geriatr. Soc. 2013, 61, 2065–2071. [Google Scholar] [CrossRef]
- Blot, S.; Cankurtaran, M.; Petrovic, M.; Vandijck, D.; Lizy, C.; Decruyenaere, J.; Danneels, C.; Vandewoude, K.; Piette, A.; Vershraegen, G.; et al. Epidemiology and outcome of nosocomial bloodstream infection in elderly critically ill patients: A comparison between middle-aged, old, and very old patients. Crit. Care Med. 2009, 37, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Koulenti, D.; Dimopoulos, G.; Martin, C.; Komnos, A.; Krueger, W.A.; Spina, G.; Armaganidis, A.; Rello, J.; EU-VAP Study Investigators. Prevalence, risk factors, and mortality for ventilator-associated pneumonia in middle-aged, old, and very old critically ill patients. Crit. Care Med. 2014, 42, 601–609. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Cavaillon, J.M.; Singer, M.; Skirecki, T. Sepsis therapies: Learning from 30 years of failure of translational research to propose new leads. EMBO Mol. Med. 2020, 12, e10128. [Google Scholar] [CrossRef]
- Sakr, Y.; Jaschinski, U.; Wittebole, X.; Szakmany, T.; Lipman, J.; Namendys-Silva, S.A.; Martin-Loeches, I.; Leone, M.; Lupu, M.N.; Vincent, J.L.; et al. Sepsis in Intensive Care Unit Patients: Worldwide Data From the Intensive Care over Nations Audit. Open Forum Infect. Dis. 2018, 5, ofy313. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Papadopoulos, D.; Koulenti, D.; Chatzimichail, M.; Papamichalis, P.; Ntafoulis, N.; Valsamaki, A.; Katsiafylloudis, P.; Vaitsi, E.; Oikonomou, K.; et al. Impact of secondary sepsis on mortality in adult intensive care unit patients. Intensive Crit. Care Nurs. 2023, 75, 103345. [Google Scholar] [CrossRef]
- Blot, S.; Ruppe, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Investigators, A.; Group, A.C.T.; Peake, S.L.; Delaney, A.; Bailey, M.; Bellomo, R.; Cameron, P.A.; Cooper, D.J.; Higgins, A.M.; Holdgate, A.; et al. Goal-directed resuscitation for patients with early septic shock. N. Engl. J. Med. 2014, 371, 1496–1506. [Google Scholar] [CrossRef]
- Morelli, A.; Ertmer, C.; Westphal, M.; Rehberg, S.; Kampmeier, T.; Ligges, S.; Orecchioni, A.; D’Egidio, A.; D’Ippoliti, F.; Raffone, C.; et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: A randomized clinical trial. JAMA 2013, 310, 1683–1691. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M.; Sepsis Definitions Task, F. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef]
- de Grooth, H.J.; Postema, J.; Loer, S.A.; Parienti, J.J.; Oudemans-van Straaten, H.M.; Girbes, A.R. Unexplained mortality differences between septic shock trials: A systematic analysis of population characteristics and control-group mortality rates. Intensive Care Med. 2018, 44, 311–322. [Google Scholar] [CrossRef]
- Fohner, A.E.; Greene, J.D.; Lawson, B.L.; Chen, J.H.; Kipnis, P.; Escobar, G.J.; Liu, V.X. Assessing clinical heterogeneity in sepsis through treatment patterns and machine learning. J. Am. Med. Inform. Assoc. 2019, 26, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Suarez-de-la-Rica, A.; Maseda, E. Precision Medicine in Sepsis and Septic Shock. J. Clin. Med. 2022, 11, 5332. [Google Scholar] [CrossRef]
- Gotts, J.E.; Matthay, M.A. Sepsis: Pathophysiology and clinical management. BMJ 2016, 353, i1585. [Google Scholar] [CrossRef]
- Wong, H.R. Personalized medicine, endotypes, and intensive care medicine. Intensive Care Med. 2015, 41, 1138–1140. [Google Scholar] [CrossRef]
- Rhee, C.; Kadri, S.S.; Danner, R.L.; Suffredini, A.F.; Massaro, A.F.; Kitch, B.T.; Lee, G.; Klompas, M. Diagnosing sepsis is subjective and highly variable: A survey of intensivists using case vignettes. Crit. Care 2016, 20, 89. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L. The Clinical Challenge of Sepsis Identification and Monitoring. PLoS Med. 2016, 13, e1002022. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Formeck, C.L.; Kernan, K.F.; Gomez, H.; Carcillo, J.A. Subtypes and Mimics of Sepsis. Crit. Care Clin. 2022, 38, 195–211. [Google Scholar] [CrossRef]
- Liu, C.; Suo, S.; Luo, L.; Chen, X.; Ling, C.; Cao, S. SOFA Score in relation to Sepsis: Clinical Implications in Diagnosis, Treatment, and Prognostic Assessment. Comput. Math. Methods Med. 2022, 2022, 7870434. [Google Scholar] [CrossRef]
- Vincent, J.L.; Opal, S.M.; Marshall, J.C.; Tracey, K.J. Sepsis definitions: Time for change. Lancet 2013, 381, 774–775. [Google Scholar] [CrossRef]
- Simpson, S.Q. New Sepsis Criteria: A Change We Should Not Make. Chest 2016, 149, 1117–1118. [Google Scholar] [CrossRef]
- Shah, F.A.; Meyer, N.J.; Angus, D.C.; Awdish, R.; Azoulay, E.; Calfee, C.S.; Clermont, G.; Gordon, A.C.; Kwizera, A.; Leligdowicz, A.; et al. A Research Agenda for Precision Medicine in Sepsis and Acute Respiratory Distress Syndrome: An Official American Thoracic Society Research Statement. Am. J. Respir. Crit. Care Med. 2021, 204, 891–901. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Seymour, C.W. (Eds.) Handbook of Sepsis; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Castela Forte, J.; Perner, A.; van der Horst, I.C.C. The use of clustering algorithms in critical care research to unravel patient heterogeneity. Intensive Care Med. 2019, 45, 1025–1028. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Singer, M.; Einav, S.; Moreno, R.; Wendon, J.; Teboul, J.L.; Bakker, J.; Hernandez, G.; Annane, D.; de Man, A.M.E.; et al. Equilibrating SSC guidelines with individualized care. Crit. Care 2021, 25, 397. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Executive Summary: Surviving Sepsis Campaign: International Guidelines for the Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Nachtomy, O.; Shavit, A.; Yakhini, Z. Gene expression and the concept of the phenotype. Stud. Hist. Philos. Biol. Biomed. Sci. 2007, 38, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Gomez, H.; Chang, C.H.; Clermont, G.; Kellum, J.A.; Kennedy, J.; Yende, S.; Angus, D.C. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit. Care 2017, 21, 257. [Google Scholar] [CrossRef]
- Beutler, B.; Du, X.; Hoebe, K. From phenomenon to phenotype and from phenotype to gene: Forward genetics and the problem of sepsis. J. Infect. Dis. 2003, 187 (Suppl. S2), S321–S326. [Google Scholar] [CrossRef]
- Ward, N.S.; Levy, M.M. (Eds.) Sepsis, Definitions, Pathophysiology and the Challenge of Bedside Management; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Available online: https://www.ibm.com/topics/machine-learning (accessed on 12 May 2023).
- Ke, X.; Zhang, F.; Huang, G.; Wang, A. Interpretable Machine Learning to Optimize Early In-Hospital Mortality Prediction for Elderly Patients with Sepsis: A Discovery Study. Comput. Math. Methods Med. 2022, 2022, 4820464. [Google Scholar] [CrossRef]
- Vranas, K.C.; Jopling, J.K.; Sweeney, T.E.; Ramsey, M.C.; Milstein, A.S.; Slatore, C.G.; Escobar, G.J.; Liu, V.X. Identifying Distinct Subgroups of ICU Patients: A Machine Learning Approach. Crit. Care Med. 2017, 45, 1607–1615. [Google Scholar] [CrossRef]
- Qin, Y.; Caldino Bohn, R.I.; Sriram, A.; Kernan, K.F.; Carcillo, J.A.; Kim, S.; Park, H.J. Refining empiric subgroups of pediatric sepsis using machine-learning techniques on observational data. Front. Pediatr. 2023, 11, 1035576. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, M.; Green, A.; Tatham, K.C.; Seymour, C.; Antcliffe, D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. eBioMedicine 2022, 86, 104394. [Google Scholar] [CrossRef]
- Li, H.; Markal, A.; Balch, J.A.; Loftus, T.J.; Efron, P.A.; Ozrazgat-Baslanti, T.; Bihorac, A. Methods for Phenotyping Adult Patients in Sepsis and Septic Shock: A Scoping Review. Crit. Care Explor. 2022, 4, e0672. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Taweesedt, P.T.; Surani, S. Utilizing Artificial Intelligence in Critical Care: Adding A Handy Tool to Our Armamentarium. Cureus 2021, 13, e15531. [Google Scholar] [CrossRef]
- Loftus, T.J.; Shickel, B.; Balch, J.A.; Tighe, P.J.; Abbott, K.L.; Fazzone, B.; Anderson, E.M.; Rozowsky, J.; Ozrazgat-Baslanti, T.; Ren, Y.; et al. Phenotype clustering in health care: A narrative review for clinicians. Front. Artif. Intell. 2022, 5, 842306. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.S.; Kim, J.H.; Kwon, Y.S. Cluster analysis integrating age and body temperature for mortality in patients with sepsis: A multicenter retrospective study. Sci. Rep. 2022, 12, 1090. [Google Scholar] [CrossRef]
- Thomas-Ruddel, D.O.; Hoffmann, P.; Schwarzkopf, D.; Scheer, C.; Bach, F.; Komann, M.; Gerlach, H.; Weiss, M.; Lindner, M.; Ruddel, H.; et al. Fever and hypothermia represent two populations of sepsis patients and are associated with outside temperature. Crit. Care 2021, 25, 368. [Google Scholar] [CrossRef]
- Wu, D.Y.; Lu, S.Q. The Effects of Abnormal Body Temperature on the Prognosis of Patients with Septic Shock. Ther. Hypothermia Temp. Manag. 2020, 10, 148–152. [Google Scholar] [CrossRef]
- Honore, P.M.; Barreto Gutierrez, L.; Kugener, L.; Redant, S.; Attou, R.; Gallerani, A.; De Bels, D. Mortality in non-elderly septic patients was increased with hypothermia and decreased with fever while mortality in elderly patients was not associated with body temperature: Beware of some confounders! Crit. Care 2020, 24, 606. [Google Scholar] [CrossRef] [PubMed]
- Bhavani, S.V.; Carey, K.A.; Gilbert, E.R.; Afshar, M.; Verhoef, P.A.; Churpek, M.M. Identifying Novel Sepsis Subphenotypes Using Temperature Trajectories. Am. J. Respir. Crit. Care Med. 2019, 200, 327–335. [Google Scholar] [CrossRef]
- Henning, D.J.; Carey, J.R.; Oedorf, K.; Day, D.E.; Redfield, C.S.; Huguenel, C.J.; Roberts, J.C.; Sanchez, L.D.; Wolfe, R.E.; Shapiro, N.I. The Absence of Fever Is Associated with Higher Mortality and Decreased Antibiotic and IV Fluid Administration in Emergency Department Patients with Suspected Septic Shock. Crit. Care Med. 2017, 45, e575–e582. [Google Scholar] [CrossRef] [PubMed]
- Sunden-Cullberg, J.; Rylance, R.; Svefors, J.; Norrby-Teglund, A.; Bjork, J.; Inghammar, M. Fever in the Emergency Department Predicts Survival of Patients with Severe Sepsis and Septic Shock Admitted to the ICU. Crit. Care Med. 2017, 45, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Rumbus, Z.; Matics, R.; Hegyi, P.; Zsiboras, C.; Szabo, I.; Illes, A.; Petervari, E.; Balasko, M.; Marta, K.; Miko, A.; et al. Fever Is Associated with Reduced, Hypothermia with Increased Mortality in Septic Patients: A Meta-Analysis of Clinical Trials. PLoS ONE 2017, 12, e0170152. [Google Scholar] [CrossRef]
- Wiewel, M.A.; Harmon, M.B.; van Vught, L.A.; Scicluna, B.P.; Hoogendijk, A.J.; Horn, J.; Zwinderman, A.H.; Cremer, O.L.; Bonten, M.J.; Schultz, M.J.; et al. Risk factors, host response and outcome of hypothermic sepsis. Crit. Care 2016, 20, 328. [Google Scholar] [CrossRef]
- Bhavani, S.V.; Huang, E.S.; Verhoef, P.A.; Churpek, M.M. Novel Temperature Trajectory Subphenotypes in COVID-19. Chest 2020, 158, 2436–2439. [Google Scholar] [CrossRef]
- Shimazui, T.; Nakada, T.A.; Walley, K.R.; Oshima, T.; Abe, T.; Ogura, H.; Shiraishi, A.; Kushimoto, S.; Saitoh, D.; Fujishima, S.; et al. Significance of body temperature in elderly patients with sepsis. Crit. Care 2020, 24, 387. [Google Scholar] [CrossRef]
- Bhavani, S.V.; Wolfe, K.S.; Hrusch, C.L.; Greenberg, J.A.; Krishack, P.A.; Lin, J.; Lecompte-Osorio, P.; Carey, K.A.; Kress, J.P.; Coopersmith, C.M.; et al. Temperature Trajectory Subphenotypes Correlate with Immune Responses in Patients with Sepsis. Crit. Care Med. 2020, 48, 1645–1653. [Google Scholar] [CrossRef]
- Ito, Y.; Kudo, D.; Kushimoto, S. Association between low body temperature on admission and in-hospital mortality according to body mass index categories of patients with sepsis. Medicine 2022, 101, e31657. [Google Scholar] [CrossRef]
- Bhavani, S.V.; Verhoef, P.A.; Maier, C.L.; Robichaux, C.; Parker, W.F.; Holder, A.; Kamaleswaran, R.; Wang, M.D.; Churpek, M.M.; Coopersmith, C.M. Coronavirus Disease 2019 Temperature Trajectories Correlate with Hyperinflammatory and Hypercoagulable Subphenotypes. Crit. Care Med. 2022, 50, 212–223. [Google Scholar] [CrossRef]
- Zhu, J.L.; Yuan, S.Q.; Huang, T.; Zhang, L.M.; Xu, X.M.; Yin, H.Y.; Wei, J.R.; Lyu, J. Influence of systolic blood pressure trajectory on in-hospital mortality in patients with sepsis. BMC Infect. Dis. 2023, 23, 90. [Google Scholar] [CrossRef]
- Daulasim, A.; Vieillard-Baron, A.; Geri, G. Hemodynamic clinical phenotyping in septic shock. Curr. Opin. Crit. Care 2021, 27, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Geri, G.; Vignon, P.; Aubry, A.; Fedou, A.L.; Charron, C.; Silva, S.; Repesse, X.; Vieillard-Baron, A. Cardiovascular clusters in septic shock combining clinical and echocardiographic parameters: A post hoc analysis. Intensive Care Med. 2019, 45, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Knox, D.B.; Lanspa, M.J.; Kuttler, K.G.; Brewer, S.C.; Brown, S.M. Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome. Intensive Care Med. 2015, 41, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Z.M.; Wu, H.; Hamoud, A.; Stappen, L.; Dobson, R.J.B.; Agarossi, A. On classifying sepsis heterogeneity in the ICU: Insight using machine learning. J. Am. Med. Inform. Assoc. 2020, 27, 437–443. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Goyal, H.; Mo, L.; Hong, Y. Identification of subclasses of sepsis that showed different clinical outcomes and responses to amount of fluid resuscitation: A latent profile analysis. Crit. Care 2018, 22, 347. [Google Scholar] [CrossRef]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef]
- Xu, Z.; Mao, C.; Su, C.; Zhang, H.; Siempos, I.; Torres, L.K.; Pan, D.; Luo, Y.; Schenck, E.J.; Wang, F. Sepsis subphenotyping based on organ dysfunction trajectory. Crit. Care 2022, 26, 197. [Google Scholar] [CrossRef]
- Sharafoddini, A.; Dubin, J.A.; Lee, J. Identifying subpopulations of septic patients: A temporal data-driven approach. Comput. Biol. Med. 2021, 130, 104182. [Google Scholar] [CrossRef]
- Aldewereld, Z.T.; Zhang, L.A.; Urbano, A.; Parker, R.S.; Swigon, D.; Banerjee, I.; Gomez, H.; Clermont, G. Identification of Clinical Phenotypes in Septic Patients Presenting with Hypotension or Elevated Lactate. Front. Med. 2022, 9, 794423. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Luo, Y. Unsupervised phenotyping of sepsis using nonnegative matrix factorization of temporal trends from a multivariate panel of physiological measurements. BMC Med. Inform. Decis. Mak. 2021, 21, 95. [Google Scholar] [CrossRef] [PubMed]
- Papin, G.; Bailly, S.; Dupuis, C.; Ruckly, S.; Gainnier, M.; Argaud, L.; Azoulay, E.; Adrie, C.; Souweine, B.; Goldgran-Toledano, D.; et al. Clinical and biological clusters of sepsis patients using hierarchical clustering. PLoS ONE 2021, 16, e0252793. [Google Scholar] [CrossRef]
- Shald, E.A.; Erdman, M.J.; Ferreira, J.A. Impact of Clinical Sepsis Phenotypes on Mortality and Fluid Status in Critically Ill Patients. Shock 2022, 57, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, B.; Jiang, L.; Luo, X.; Wang, N.; Zhu, Y.; Xi, X. Association between Latent Trajectories of Fluid Balance and Clinical Outcomes in Critically Ill Patients with Acute Kidney Injury: A Prospective Multicenter Observational Study. Kidney Dis. 2022, 8, 82–92. [Google Scholar] [CrossRef]
- Ma, P.; Liu, J.; Shen, F.; Liao, X.; Xiu, M.; Zhao, H.; Zhao, M.; Xie, J.; Wang, P.; Huang, M.; et al. Individualized resuscitation strategy for septic shock formalized by finite mixture modeling and dynamic treatment regimen. Crit. Care 2021, 25, 243. [Google Scholar] [CrossRef]
- Zhang, Z.; Ho, K.M.; Gu, H.; Hong, Y.; Yu, Y. Defining persistent critical illness based on growth trajectories in patients with sepsis. Crit. Care 2020, 24, 57. [Google Scholar] [CrossRef]
- Yang, R.; Han, D.; Zhang, L.; Huang, T.; Xu, F.; Zheng, S.; Yin, H.; Lyu, J. Analysis of the correlation between the longitudinal trajectory of SOFA scores and prognosis in patients with sepsis at 72 hour after admission based on group trajectory modeling. J. Intensive Med. 2022, 2, 39–49. [Google Scholar] [CrossRef]
- Soussi, S.; Sharma, D.; Juni, P.; Lebovic, G.; Brochard, L.; Marshall, J.C.; Lawler, P.R.; Herridge, M.; Ferguson, N.; Del Sorbo, L.; et al. Identifying clinical subtypes in sepsis-survivors with different one-year outcomes: A secondary latent class analysis of the FROG-ICU cohort. Crit. Care 2022, 26, 114. [Google Scholar] [CrossRef]
- Taylor, S.P.; Bray, B.C.; Chou, S.H.; Burns, R.; Kowalkowski, M.A. Clinical Subtypes of Sepsis Survivors Predict Readmission and Mortality after Hospital Discharge. Ann. Am. Thorac. Soc. 2022, 19, 1355–1363. [Google Scholar] [CrossRef]
- Boede, M.; Gensichen, J.S.; Jackson, J.C.; Eissler, F.; Lehmann, T.; Schulz, S.; Petersen, J.J.; Wolf, F.P.; Dreischulte, T.; Schmidt, K.F.R. Trajectories of depression in sepsis survivors: An observational cohort study. Crit. Care 2021, 25, 161. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.A.; Gensichen, J.S.; Cakiroglu, A.S.; Cashmore, R.; Edbrooke, L.; Heintze, C.; Neumann, K.; Wollersheim, T.; Denehy, L.; Schmidt, K.F.R. Implications for post critical illness trial design: Sub-phenotyping trajectories of functional recovery among sepsis survivors. Crit. Care 2020, 24, 577. [Google Scholar] [CrossRef] [PubMed]
- Prescott, H.C. Identifying Sepsis Subtypes from Routine Clinical Data. Am. J. Respir. Crit. Care Med. 2019, 200, 272–273. [Google Scholar] [CrossRef] [PubMed]
- Nagin, D.S.; Jones, B.L.; Passos, V.L.; Tremblay, R.E. Group-based multi-trajectory modeling. Stat. Methods Med. Res. 2018, 27, 2015–2023. [Google Scholar] [CrossRef]
- Leijte, G.P.; Kox, M.; Pickkers, P. Fever in Sepsis: Still a Hot Topic. Am. J. Respir. Crit. Care Med. 2019, 200, 263–264. [Google Scholar] [CrossRef]
- Harmon, M.B.A.; Scicluna, B.P.; Wiewel, M.A.; Schultz, M.J.; Horn, J.; Cremer, O.L.; van der Poll, T.; Joost Wiersinga, W.; Juffermans, N.P.; The MARS Consortium. Patients with hypothermic sepsis have a unique gene expression profile compared to patients with fever and sepsis. J. Cell. Mol. Med. 2022, 26, 1896–1904. [Google Scholar] [CrossRef]
- Young, P.J.; Bellomo, R. Fever in sepsis: Is it cool to be hot? Crit. Care 2014, 18, 109. [Google Scholar] [CrossRef]
- Drewry, A.M.; Mohr, N.M.; Ablordeppey, E.A.; Dalton, C.M.; Doctor, R.J.; Fuller, B.M.; Kollef, M.H.; Hotchkiss, R.S. Therapeutic Hyperthermia Is Associated with Improved Survival in Afebrile Critically Ill Patients with Sepsis: A Pilot Randomized Trial. Crit. Care Med. 2022, 50, 924–934. [Google Scholar] [CrossRef]
- Kula, R. Therapeutic Hyperthermia Is Associated with Improved Survival in Afebrile Critically Ill Patients with Sepsis: A Pilot Randomized Trial. Crit. Care Med. 2022, 50, e693–e694. [Google Scholar] [CrossRef]
- Nowak, R.M.; Reed, B.P.; Nanayakkara, P.; DiSomma, S.; Moyer, M.L.; Millis, S.; Levy, P. Presenting hemodynamic phenotypes in ED patients with confirmed sepsis. Am. J. Emerg. Med. 2016, 34, 2291–2297. [Google Scholar] [CrossRef]
- Hess, M.L.; Hastillo, A.; Greenfield, L.J. Spectrum of cardiovascular function during gram-negative sepsis. Prog. Cardiovasc. Dis. 1981, 23, 279–298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Yin, W.; Zhang, H.; Liu, L.; Pan, P.; Zhu, Y.; Huang, W.; Xing, Z.; Yao, B.; et al. A multicenter prospective cohort study of cardiac ultrasound phenotypes in patients with sepsis: Study protocol for a multicenter prospective cohort trial. Front. Med. 2022, 9, 938536. [Google Scholar] [CrossRef] [PubMed]
- Kattan, E.; Bakker, J.; Estenssoro, E.; Ospina-Tascon, G.A.; Cavalcanti, A.B.; Backer, D.; Vieillard-Baron, A.; Teboul, J.L.; Castro, R.; Hernandez, G. Hemodynamic phenotype-based, capillary refill time-targeted resuscitation in early septic shock: The ANDROMEDA-SHOCK-2 Randomized Clinical Trial study protocol. Rev. Bras. Ter. Intensiva 2022, 34, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Bhavani, S.V.; Semler, M.; Qian, E.T.; Verhoef, P.A.; Robichaux, C.; Churpek, M.M.; Coopersmith, C.M. Development and validation of novel sepsis subphenotypes using trajectories of vital signs. Intensive Care Med. 2022, 48, 1582–1592. [Google Scholar] [CrossRef]
- Knaus, W.A.; Marks, R.D. New Phenotypes for Sepsis: The Promise and Problem of Applying Machine Learning and Artificial Intelligence in Clinical Research. JAMA 2019, 321, 1981–1982. [Google Scholar] [CrossRef]
- Hasegawa, D.; Nishida, O. Patient selection in sepsis: Precision medicine using phenotypes and its implications for future clinical trial design. J. Thorac. Dis. 2019, 11, 3672–3675. [Google Scholar] [CrossRef]
- Stortz, J.A.; Cox, M.C.; Hawkins, R.B.; Ghita, G.L.; Brumback, B.A.; Mohr, A.M.; Moldawer, L.L.; Efron, P.A.; Brakenridge, S.C.; Moore, F.A. Phenotypic heterogeneity by site of infection in surgical sepsis: A prospective longitudinal study. Crit. Care 2020, 24, 203. [Google Scholar] [CrossRef]
- Blot, S.; Antonelli, M.; Arvaniti, K.; Blot, K.; Creagh-Brown, B.; de Lange, D.; De Waele, J.; Deschepper, M.; Dikmen, Y.; Dimopoulos, G.; et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med. 2019, 45, 1703–1717. [Google Scholar] [CrossRef]
- Miao, H.; Cui, Z.; Guo, Z.; Chen, Q.; Su, W.; Sun, Y.; Sun, M.; Ma, X.; Ding, R. Identification of Subphenotypes of Sepsis-Associated Liver Dysfunction Using Cluster Analysis. Shock 2023, 59, 368–374. [Google Scholar] [CrossRef]
- Wiersema, R.; Jukarainen, S.; Vaara, S.T.; Poukkanen, M.; Lakkisto, P.; Wong, H.; Linder, A.; van der Horst, I.C.C.; Pettila, V. Two subphenotypes of septic acute kidney injury are associated with different 90-day mortality and renal recovery. Crit. Care 2020, 24, 150. [Google Scholar] [CrossRef]
- Thau, M.R.; Bhatraju, P.K. Sub-Phenotypes of Acute Kidney Injury: Do We Have Progress for Personalizing Care? Nephron 2020, 144, 677–679. [Google Scholar] [CrossRef]
- Luo, X.Q.; Yan, P.; Zhang, N.Y.; Luo, B.; Wang, M.; Deng, Y.H.; Wu, T.; Wu, X.; Liu, Q.; Wang, H.S.; et al. Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis. Sci. Rep. 2021, 11, 20269. [Google Scholar] [CrossRef] [PubMed]
- Ozrazgat-Baslanti, T.; Loftus, T.J.; Mohandas, R.; Wu, Q.; Brakenridge, S.; Brumback, B.; Efron, P.A.; Anton, S.; Moore, F.A.; Moldawer, L.L.; et al. Clinical Trajectories of Acute Kidney Injury in Surgical Sepsis: A Prospective Observational Study. Ann. Surg. 2022, 275, 1184–1193. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Liu, G.; Chen, X.; Huang, S.; Li, H.; Liu, S.; Li, D.; Yang, H.; Zheng, H.; et al. Identification of Distinct Clinical Phenotypes of Heterogeneous Mechanically Ventilated ICU Patients Using Cluster Analysis. J. Clin. Med. 2023, 12, 1499. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, Z.; Zheng, F.; Pan, P.; Hong, N.; Liu, C.; He, J.; Zhu, W.; Long, Y.; Liu, D. Five novel clinical phenotypes for critically ill patients with mechanical ventilation in intensive care units: A retrospective and multi database study. Respir. Res. 2020, 21, 325. [Google Scholar] [CrossRef]
- Yu, S.; Ma, X.; Li, X. Phenotype-oriented anticoagulant therapy for sepsis: Still a work in progress. Int. J. Hematol. 2022, 116, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Kudo, D.; Goto, T.; Uchimido, R.; Hayakawa, M.; Yamakawa, K.; Abe, T.; Shiraishi, A.; Kushimoto, S. Coagulation phenotypes in sepsis and effects of recombinant human thrombomodulin: An analysis of three multicentre observational studies. Crit. Care 2021, 25, 114. [Google Scholar] [CrossRef]
- Helms, J.; Iba, T.; Connors, J.M.; Gando, S.; Levi, M.; Meziani, F.; Levy, J.H. How to manage coagulopathies in critically ill patients. Intensive Care Med. 2023, 49, 273–290. [Google Scholar] [CrossRef]
- Guo, F.; Zhu, X.; Wu, Z.; Zhu, L.; Wu, J.; Zhang, F. Clinical applications of machine learning in the survival prediction and classification of sepsis: Coagulation and heparin usage matter. J. Transl. Med. 2022, 20, 265. [Google Scholar] [CrossRef]
- Dong, M.; Chen, S.; Lin, S.; Han, F.; Zhong, M. Insights into COVID-19-associated critical illness: A narrative review. Ann. Transl. Med. 2023, 11, 220. [Google Scholar] [CrossRef]
- Dubowski, K.; Braganza, G.T.; Bozack, A.; Colicino, E.; DeFelice, N.; McGuinn, L.; Maru, D.; Lee, A.G. COVID-19 subphenotypes at hospital admission are associated with mortality: A cross-sectional study. Ann. Med. 2023, 55, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.; Jayaraman, P.; Sawant, A.S.; Chan, L.; Levin, M.A.; Charney, A.W.; Kovatch, P.; Glicksberg, B.S.; Nadkarni, G.N. Using sequence clustering to identify clinically relevant subphenotypes in patients with COVID-19 admitted to the intensive care unit. J. Am. Med. Inform. Assoc. 2022, 29, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Fish, M.; Rynne, J.; Jennings, A.; Lam, C.; Lamikanra, A.A.; Ratcliff, J.; Cellone-Trevelin, S.; Timms, E.; Jiriha, J.; Tosi, I.; et al. Coronavirus disease 2019 subphenotypes and differential treatment response to convalescent plasma in critically ill adults: Secondary analyses of a randomized clinical trial. Intensive Care Med. 2022, 48, 1525–1538. [Google Scholar] [CrossRef] [PubMed]
- Bruse, N.; Kooistra, E.J.; Jansen, A.; van Amstel, R.B.E.; de Keizer, N.F.; Kennedy, J.N.; Seymour, C.; van Vught, L.A.; Pickkers, P.; Kox, M. Clinical sepsis phenotypes in critically ill COVID-19 patients. Crit. Care 2022, 26, 244. [Google Scholar] [CrossRef]
- de Prost, N.; Audureau, E.; Heming, N.; Gault, E.; Pham, T.; Chaghouri, A.; de Montmollin, N.; Voiriot, G.; Morand-Joubert, L.; Joseph, A.; et al. Clinical phenotypes and outcomes associated with SARS-CoV-2 variant Omicron in critically ill French patients with COVID-19. Nat. Commun. 2022, 13, 6025. [Google Scholar] [CrossRef]
- Morales Chacon, L.M.; Galan Garcia, L.; Cruz Hernandez, T.M.; Pavon Fuentes, N.; Maragoto Rizo, C.; Morales Suarez, I.; Morales Chacon, O.; Abad Molina, E.; Rocha Arrieta, L. Clinical Phenotypes and Mortality Biomarkers: A Study Focused on COVID-19 Patients with Neurological Diseases in Intensive Care Units. Behav. Sci. 2022, 12, 234. [Google Scholar] [CrossRef]
- Wang, X.; Jehi, L.; Ji, X.; Mazzone, P.J. Phenotypes and Subphenotypes of Patients with COVID-19: A Latent Class Modeling Analysis. Chest 2021, 159, 2191–2204. [Google Scholar] [CrossRef]
- Bos, L.D.J.; Sjoding, M.; Sinha, P.; Bhavani, S.V.; Lyons, P.G.; Bewley, A.F.; Botta, M.; Tsonas, A.M.; Serpa Neto, A.; Schultz, M.J.; et al. Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: Results from three observational cohorts. Lancet Respir. Med. 2021, 9, 1377–1386. [Google Scholar] [CrossRef]
- Su, C.; Xu, Z.; Hoffman, K.; Goyal, P.; Safford, M.M.; Lee, J.; Alvarez-Mulett, S.; Gomez-Escobar, L.; Price, D.R.; Harrington, J.S.; et al. Identifying organ dysfunction trajectory-based subphenotypes in critically ill patients with COVID-19. Sci. Rep. 2021, 11, 15872. [Google Scholar] [CrossRef]
- Ranjeva, S.; Pinciroli, R.; Hodell, E.; Mueller, A.; Hardin, C.C.; Thompson, B.T.; Berra, L. Identifying clinical and biochemical phenotypes in acute respiratory distress syndrome secondary to coronavirus disease-2019. eClinicalMedicine 2021, 34, 100829. [Google Scholar] [CrossRef]
- Vasquez, C.R.; Gupta, S.; Miano, T.A.; Roche, M.; Hsu, J.; Yang, W.; Holena, D.N.; Reilly, J.P.; Schrauben, S.J.; Leaf, D.E.; et al. Identification of Distinct Clinical Subphenotypes in Critically Ill Patients with COVID-19. Chest 2021, 160, 929–943. [Google Scholar] [CrossRef]
- Gutierrez-Gutierrez, B.; Del Toro, M.D.; Borobia, A.M.; Carcas, A.; Jarrin, I.; Yllescas, M.; Ryan, P.; Pachon, J.; Carratala, J.; Berenguer, J.; et al. Identification and validation of clinical phenotypes with prognostic implications in patients admitted to hospital with COVID-19: A multicentre cohort study. Lancet Infect. Dis. 2021, 21, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhu, Z.; Su, N.; Wang, J.; Gu, J.; Lu, S.; Zhang, L.; Chen, X.; Xu, L.; Shao, X.; et al. Identification and Prediction of Novel Clinical Phenotypes for Intensive Care Patients with SARS-CoV-2 Pneumonia: An Observational Cohort Study. Front. Med. 2021, 8, 681336. [Google Scholar] [CrossRef] [PubMed]
- Osuchowski, M.F.; Rosengart, M.R. Change Is the Only Constant: How to Adopt the New Trends in Sepsis Modeling? Crit. Care Med. 2019, 47, 1673–1675. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Calfee, C.S.; Cherian, S.; Brealey, D.; Cutler, S.; King, C.; Killick, C.; Richards, O.; Cheema, Y.; Bailey, C.; et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: A prospective observational study. Lancet Respir. Med. 2020, 8, 1209–1218. [Google Scholar] [CrossRef]
- Blanchard, F.; James, A.; Assefi, M.; Kapandji, N.; Constantin, J.M. Personalized medicine targeting different ARDS phenotypes: The future of pharmacotherapy for ARDS? Expert. Rev. Respir. Med. 2023, 17, 41–52. [Google Scholar] [CrossRef]
- Sinha, P.; Meyer, N.J.; Calfee, C.S. Biological Phenotyping in Sepsis and Acute Respiratory Distress Syndrome. Annu. Rev. Med. 2023, 74, 457–471. [Google Scholar] [CrossRef]
- Maddali, M.V.; Churpek, M.; Pham, T.; Rezoagli, E.; Zhuo, H.; Zhao, W.; He, J.; Delucchi, K.L.; Wang, C.; Wickersham, N.; et al. Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: An observational, multicohort, retrospective analysis. Lancet Respir. Med. 2022, 10, 367–377. [Google Scholar] [CrossRef]
- Bai, Y.; Xia, J.; Huang, X.; Chen, S.; Zhan, Q. Using machine learning for the early prediction of sepsis-associated ARDS in the ICU and identification of clinical phenotypes with differential responses to treatment. Front. Physiol. 2022, 13, 1050849. [Google Scholar] [CrossRef]
- Hashem, M.D.; Hopkins, R.O.; Colantuoni, E.; Dinglas, V.D.; Sinha, P.; Aronson Friedman, L.; Morris, P.E.; Jackson, J.C.; Hough, C.L.; Calfee, C.S.; et al. Six-month and 12-month patient outcomes based on inflammatory subphenotypes in sepsis-associated ARDS: Secondary analysis of SAILS-ALTOS trial. Thorax 2022, 77, 22–30. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zheng, W.; Zhang, L.; Yang, T.; Xie, K.; Yu, Y. Risk stratification of patients with acute respiratory distress syndrome complicated with sepsis using lactate trajectories. BMC Pulm. Med. 2022, 22, 339. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lei, Q.; Gao, Z.; Zhang, W. Research Progress on Phenotypic Classification of Acute Respiratory Distress Syndrome: A Narrative Review. Int. J. Gen. Med. 2022, 15, 8767–8774. [Google Scholar] [CrossRef]
- Alipanah, N.; Calfee, C.S. Phenotyping in acute respiratory distress syndrome: State of the art and clinical implications. Curr. Opin. Crit. Care 2022, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.R.; Zemans, R.L.; Ware, L.B.; Schmidt, E.P.; Riches, D.W.H.; Bastarache, L.; Calfee, C.S.; Desai, T.J.; Herold, S.; Hough, C.L.; et al. New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. Am. J. Respir. Cell Mol. Biol. 2022, 67, 284–308. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, Q.; Xie, J.; Liu, S.; Pan, C.; Liu, L.; Huang, Y.; Guo, F.; Qiu, H.; Yang, Y. Longitudinal phenotypes in patients with acute respiratory distress syndrome: A multi-database study. Crit. Care 2022, 26, 340. [Google Scholar] [CrossRef]
- Duggal, A.; Kast, R.; Van Ark, E.; Bulgarelli, L.; Siuba, M.T.; Osborn, J.; Rey, D.A.; Zampieri, F.G.; Cavalcanti, A.B.; Maia, I.; et al. Identification of acute respiratory distress syndrome subphenotypes de novo using routine clinical data: A retrospective analysis of ARDS clinical trials. BMJ Open 2022, 12, e053297. [Google Scholar] [CrossRef]
- Whebell, S.; Zhang, J. Bringing biological ARDS phenotypes to the bedside with machine-learning-based classifiers. Lancet Respir. Med. 2022, 10, 319–320. [Google Scholar] [CrossRef]
- Bos, L.D.J.; Ware, L.B. Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes. Lancet 2022, 400, 1145–1156. [Google Scholar] [CrossRef]
- Wendel Garcia, P.D.; Caccioppola, A.; Coppola, S.; Pozzi, T.; Ciabattoni, A.; Cenci, S.; Chiumello, D. Latent class analysis to predict intensive care outcomes in Acute Respiratory Distress Syndrome: A proposal of two pulmonary phenotypes. Crit. Care 2021, 25, 154. [Google Scholar] [CrossRef]
- Sinha, P.; Furfaro, D.; Cummings, M.J.; Abrams, D.; Delucchi, K.; Maddali, M.V.; He, J.; Thompson, A.; Murn, M.; Fountain, J.; et al. Latent Class Analysis Reveals COVID-19-related Acute Respiratory Distress Syndrome Subgroups with Differential Responses to Corticosteroids. Am. J. Respir. Crit. Care Med. 2021, 204, 1274–1285. [Google Scholar] [CrossRef]
- Sathe, N.A.; Zelnick, L.R.; Mikacenic, C.; Morrell, E.D.; Bhatraju, P.K.; McNeil, J.B.; Kosamo, S.; Hough, C.L.; Liles, W.C.; Ware, L.B.; et al. Identification of persistent and resolving subphenotypes of acute hypoxemic respiratory failure in two independent cohorts. Crit. Care 2021, 25, 336. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.; Jia, X.; Ma, X.; Han, C.; Guo, N.; Peng, Y.; Liu, H.; Ju, Y.; Luo, X.; et al. Identification of distinct clinical phenotypes of acute respiratory distress syndrome with differential responses to treatment. Crit. Care 2021, 25, 320. [Google Scholar] [CrossRef]
- Millar, J.E.; Wildi, K.; Bartnikowski, N.; Bouquet, M.; Hyslop, K.; Passmore, M.R.; Ki, K.K.; See Hoe, L.E.; Obonyo, N.G.; Neyton, L.; et al. Characterizing preclinical sub-phenotypic models of acute respiratory distress syndrome: An experimental ovine study. Physiol. Rep. 2021, 9, e15048. [Google Scholar] [CrossRef] [PubMed]
- Heijnen, N.F.L.; Hagens, L.A.; Smit, M.R.; Cremer, O.L.; Ong, D.S.Y.; van der Poll, T.; van Vught, L.A.; Scicluna, B.P.; Schnabel, R.M.; van der Horst, I.C.C.; et al. Biological Subphenotypes of Acute Respiratory Distress Syndrome Show Prognostic Enrichment in Mechanically Ventilated Patients without Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2021, 203, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Arabi, Y.M.; Siegel, E.R.; Ware, L.B.; Bos, L.D.J.; Sinha, P.; Beitler, J.R.; Wick, K.D.; Curley, M.A.Q.; Constantin, J.M.; et al. Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Med. 2020, 46, 2136–2152. [Google Scholar] [CrossRef]
- McNicholas, B.; Madden, M.G.; Laffey, J.G. Machine Learning Classifier Models: The Future for Acute Respiratory Distress Syndrome Phenotyping? Am. J. Respir. Crit. Care Med. 2020, 202, 919–920. [Google Scholar] [CrossRef]
- Sinha, P.; Churpek, M.M.; Calfee, C.S. Machine Learning Classifier Models Can Identify Acute Respiratory Distress Syndrome Phenotypes Using Readily Available Clinical Data. Am. J. Respir. Crit. Care Med. 2020, 202, 996–1004. [Google Scholar] [CrossRef]
- Sinha, P.; Delucchi, K.L.; McAuley, D.F.; O’Kane, C.M.; Matthay, M.A.; Calfee, C.S. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: A secondary analysis of randomised controlled trials. Lancet Respir. Med. 2020, 8, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Delucchi, K.L.; Thompson, B.T.; McAuley, D.F.; Matthay, M.A.; Calfee, C.S.; Network, N.A. Latent class analysis of ARDS subphenotypes: A secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 2018, 44, 1859–1869. [Google Scholar] [CrossRef]
- Levine, A.R.; Shanholtz, C.B. I, DOCTOR: The role of machine learning in phenotyping ARDS. eBioMedicine 2022, 75, 103770. [Google Scholar] [CrossRef]
- Hu, W.; Chen, H.; Wang, H.; Peng, Q.; Wang, J.; Huang, W.; Liu, A.; Xu, J.; Li, Q.; Pan, C.; et al. Identifying high-risk phenotypes and associated harms of delayed time-to-antibiotics in patients with ICU onset sepsis: A retrospective cohort study. J. Crit. Care 2023, 74, 154221. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Spicer, A.; Carey, K.A.; Gilbert, E.R.; Laiteerapong, N.; Shah, N.S.; Winslow, C.; Afshar, M.; Kashiouris, M.G.; Churpek, M.M. Identifying High-Risk Subphenotypes and Associated Harms From Delayed Antibiotic Orders and Delivery. Crit. Care Med. 2021, 49, 1694–1705. [Google Scholar] [CrossRef]
- Qi, J.; Lei, J.; Li, N.; Huang, D.; Liu, H.; Zhou, K.; Dai, Z.; Sun, C. Machine learning models to predict in-hospital mortality in septic patients with diabetes. Front. Endocrinol. 2022, 13, 1034251. [Google Scholar] [CrossRef] [PubMed]
- Bao, C.; Deng, F.; Zhao, S. Machine-learning models for prediction of sepsis patients mortality. Med. Intensiva 2022, 47, 315–325. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Lang, Y.; Li, S.; Wan, X. Identifying the Phenotypes of Sepsis that will Benefit from Red Blood Cell Transfusion Using Unsupervised Cluster Analysis. Clin. Lab. 2022, 68, 210619. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Greenstein, J.L.; Granite, S.J.; Fackler, J.C.; Bembea, M.M.; Sarma, S.V.; Winslow, R.L. Data-driven discovery of a novel sepsis pre-shock state predicts impending septic shock in the ICU. Sci. Rep. 2019, 9, 6145. [Google Scholar] [CrossRef]
- Carcillo, J.A.; Halstead, E.S.; Hall, M.W.; Nguyen, T.C.; Reeder, R.; Aneja, R.; Shakoory, B.; Simon, D.; on behalf of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network investigators. Three Hypothetical Inflammation Pathobiology Phenotypes and Pediatric Sepsis-Induced Multiple Organ Failure Outcome. Pediatr. Crit. Care Med. 2017, 18, 513–523. [Google Scholar] [CrossRef]
- Carcillo, J.A.; Berg, R.A.; Wessel, D.; Pollack, M.; Meert, K.; Hall, M.; Newth, C.; Lin, J.C.; Doctor, A.; Shanley, T.; et al. A Multicenter Network Assessment of Three Inflammation Phenotypes in Pediatric Sepsis-Induced Multiple Organ Failure. Pediatr. Crit. Care Med. 2019, 20, 1137–1146. [Google Scholar] [CrossRef]
- Stroup, E.K.; Luo, Y.; Sanchez-Pinto, L.N. Phenotyping Multiple Organ Dysfunction Syndrome Using Temporal Trends in Critically Ill Children. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 968–972. [Google Scholar] [CrossRef]
- Sanchez-Pinto, L.N.; Stroup, E.K.; Pendergrast, T.; Pinto, N.; Luo, Y. Derivation and Validation of Novel Phenotypes of Multiple Organ Dysfunction Syndrome in Critically Ill Children. JAMA Netw. Open 2020, 3, e209271. [Google Scholar] [CrossRef]
- Atreya, M.R.; Sanchez-Pinto, L.N.; Kamaleswaran, R. Commentary: ‘Critical illness subclasses: All roads lead to Rome’. Crit. Care 2022, 26, 387. [Google Scholar] [CrossRef]
- Dahmer, M.K.; Yang, G.; Zhang, M.; Quasney, M.W.; Sapru, A.; Weeks, H.M.; Sinha, P.; Curley, M.A.Q.; Delucchi, K.L.; Calfee, C.S.; et al. Identification of phenotypes in paediatric patients with acute respiratory distress syndrome: A latent class analysis. Lancet Respir. Med. 2022, 10, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.R.; Sweeney, T.E.; Hart, K.W.; Khatri, P.; Lindsell, C.J. Pediatric Sepsis Endotypes Among Adults with Sepsis. Crit. Care Med. 2017, 45, e1289–e1291. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Kernan, K.F.; Fan, Z.; Park, H.J.; Kim, S.; Canna, S.W.; Kellum, J.A.; Berg, R.A.; Wessel, D.; Pollack, M.M.; et al. Machine learning derivation of four computable 24-h pediatric sepsis phenotypes to facilitate enrollment in early personalized anti-inflammatory clinical trials. Crit. Care 2022, 26, 128. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.R. Searching for a Pediatric Severe Sepsis Phenotype: We Might Indeed Be There. Pediatr. Crit. Care Med. 2017, 18, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Workman, J.K.; Larsen, G.Y. Searching for a Pediatric Severe Sepsis Phenotype: Are We There Yet? Pediatr. Crit. Care Med. 2017, 18, 82–83. [Google Scholar] [CrossRef]
- Jacobs, L.; Wong, H.R. Sepsis Subclasses: Be Careful of What You Wish for. Pediatr. Crit. Care Med. 2017, 18, 591–592. [Google Scholar] [CrossRef]
- Martin, B.; Bennett, T.D. Sepsis Computable Phenotypes in the Service of Observational Research. Crit. Care Med. 2019, 47, 303–305. [Google Scholar] [CrossRef]
- Koutroulis, I.; Velez, T.; Wang, T.; Yohannes, S.; Galarraga, J.E.; Morales, J.A.; Freishtat, R.J.; Chamberlain, J.M. Pediatric sepsis phenotypes for enhanced therapeutics: An application of clustering to electronic health records. J. Am. Coll. Emerg. Physicians Open 2022, 3, e12660. [Google Scholar] [CrossRef]
- Mehta, S.; Gill, S.E. Improving clinical outcomes in sepsis and multiple organ dysfunction through precision medicine. J. Thorac. Dis. 2019, 11, 21–28. [Google Scholar] [CrossRef]
- Maslove, D.M.; Lamontagne, F.; Marshall, J.C.; Heyland, D.K. A path to precision in the ICU. Crit. Care 2017, 21, 79. [Google Scholar] [CrossRef]
Reference | Number of Patients | Number of Clinical Phenotypes |
---|---|---|
Temperature | ||
Baek et al. [51] | 15,574 | 3 |
Thomas-Ruedell et al. [52] | 6542 | 2 |
Bhavani et al. [55] | 31,466 (2 cohorts) | 4 |
Bhavani et al. [62] | 208 | 4 |
Bhavani et al. [64] | 5903 | 4 |
Hemodynamic status | ||
Zhu et al. [65] | 3034 | 7 |
Daulasim et al. [66] | 127 | 3 |
Geri et al. [67] | 360 | 5 |
Ito et al. [63] | 20,729 (2 cohorts) | 4 |
Multiorgan dysfunction | ||
Knox et al. [68] | 2533 | 4 |
Ibrahim et al. [69] | 13,728 records | 4 |
Zhang et al. [70] | 14,993 | 4 |
Seymour et al. [71] | 63,858 (3 cohorts) | 4 |
Xu et al. [72] | 25,429 (4 cohorts) | 4 |
Sharafoddini et al. [73] | 5539 | 12 |
Aldewereld et al. [74] | 1023 | 5 |
Ding et al. [75] | 5782 | 3 |
Papin et al. [76] | 6046 | 6 |
Fluid responsiveness | ||
Shald et al. [77] | 320 | 4 |
Wang et al. [78] | 986 | 3 |
Zhang et al. [70] | 14,993 | 3 |
Ma et al. [79] | 1437 | 5 |
ICU trajectories | ||
Zhang et al. [80] | 22,868 | 5 |
Yang et al. [81] | 16,743 | 5 |
Soussi et al. [82] | 467 | 2 |
Taylor et al. [83] | 20,745 | 5 |
Boede et al. [84] | 224 | 3 |
Puthucheary et al. [85] | 159 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papathanakos, G.; Andrianopoulos, I.; Xenikakis, M.; Papathanasiou, A.; Koulenti, D.; Blot, S.; Koulouras, V. Clinical Sepsis Phenotypes in Critically Ill Patients. Microorganisms 2023, 11, 2165. https://doi.org/10.3390/microorganisms11092165
Papathanakos G, Andrianopoulos I, Xenikakis M, Papathanasiou A, Koulenti D, Blot S, Koulouras V. Clinical Sepsis Phenotypes in Critically Ill Patients. Microorganisms. 2023; 11(9):2165. https://doi.org/10.3390/microorganisms11092165
Chicago/Turabian StylePapathanakos, Georgios, Ioannis Andrianopoulos, Menelaos Xenikakis, Athanasios Papathanasiou, Despoina Koulenti, Stijn Blot, and Vasilios Koulouras. 2023. "Clinical Sepsis Phenotypes in Critically Ill Patients" Microorganisms 11, no. 9: 2165. https://doi.org/10.3390/microorganisms11092165
APA StylePapathanakos, G., Andrianopoulos, I., Xenikakis, M., Papathanasiou, A., Koulenti, D., Blot, S., & Koulouras, V. (2023). Clinical Sepsis Phenotypes in Critically Ill Patients. Microorganisms, 11(9), 2165. https://doi.org/10.3390/microorganisms11092165