Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. V. parahaemolyticus Isolation
2.3. DNA Extraction and Polymerase Chain Reactions (PCRs)
2.4. Antimicrobial Drug Susceptibility Test
2.5. Data Analysis
3. Results
3.1. Distribution of V. parahaemolyticus
3.2. Drug Susceptibility Test Results
3.3. Drug Resistance Gene Test Results
3.4. Correlation between Drug Resistance Phenotype and Drug Resistance Genotype
3.5. Virulence Gene Test Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, C.Q.; Shen, Q.; Zhang, L.P.; Ren, C.H.; Du, S.B. Present Status and Prospect of the Pacific white shrimp Litopenaeus vannamei culture in China. China/FAO/NACA Workshop on Healthy, Safe and Environmentally Sound Shrimp Farming. Beijing China Soc. Fish. 2004, 2004, 72–82. [Google Scholar]
- Wang, Q.; Cheng, L.; Liu, J.; Li, Z.; Xie, S.; De Silva, S.S. Freshwater aquaculture in PR China: Trends and prospects. Rev. Aquac. 2015, 7, 283–302. [Google Scholar] [CrossRef]
- Wang, L.H.; Ning, X.B. Predictive Model for Effect of Temperature on the Growth of Vibrio parahaemolyticus. J. Food Biotechnol. 2009, 28, 262–266. [Google Scholar]
- Lee, C.T.; Chen, I.T.; Yang, Y.T. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc. Natl. Acad. Sci. USA 2015, 112, 10798–10803. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Roy, S.; Behera, B.K.; Bossier, P.; Das, B.K. Acute Hepatopancreatic Necrosis Disease (AHPND): Virulence, Pathogenesis and Mitigation Strategies in Shrimp Aquaculture. Toxins 2021, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Blanco, A.; Lemos, M.L.; Osorio, C.R. Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments. Antimicrob. Agents Chemother. 2012, 56, 2619–2626. [Google Scholar] [CrossRef]
- Lopatek, M.; Wieczorek, K.; Osek, J. Antimicrobial resistance, virulence factors, and genetic profiles of Vibrio parahaemolyticus from seafood. Appl. Environ. Microbiol. 2018, 84, e00537-18. [Google Scholar] [CrossRef]
- Hu, Q.X.; Chen, L.M. Virulence and antibiotic and heavy metal resistance of Vibrio parahaemolyticus isolated from crustaceans and shellfish in Shanghai, China. J. Food Prot. 2016, 79, 1371–1377. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Yu, F.; Wu, M.; Wang, R.; Zheng, S.; Han, D.; Yang, Q.; Kong, H.; Zhou, F.; et al. Serology, virulence, antimicrobial susceptibility and molecular characteristics of clinical Vibrio parahaemolyticus strains circulating in southeastern China from 2009 to 2013. Clin. Microbiol. Infect. 2016, 22, 258–259. [Google Scholar] [CrossRef]
- Han, H.; Li, F.; Yan, W.; Guo, Y.; Li, N.; Liu, X.; Zhu, J.; Xu, J.; Chen, Y.; Li, X.; et al. Temporal and Spatial Variation in the Abundance of Total and Pathogenic Vibrio parahaemolyticus in Shellfish in China. PLoS ONE 2015, 10, e0130302. [Google Scholar] [CrossRef]
- Zhang, Z.; Lou, Y.; Du, S.; Xiao, L.; Niu, B.; Pan, Y.; Zhao, Y. Prevalence of Vibrio parahaemolyticus in seafood products from hypermarkets in Shanghai. J. Sci. Food Agric. 2017, 97, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Li, C.P.; Zhai, Q.Q.; Wang, X.; Li, J. Isolation and Identification of Vibrio parahaemolyticus from Shrimp Culture Ponds and Analysis of its Drug Resistance and Virulence Genes. Fish. Sci. Prog. 2020, 9, 174–180. [Google Scholar]
- Wang, J.; Zhan, Y.; Sun, H.; Fu, X.; Kong, Q.; Zhu, C.; Mou, H. Regulation of Virulence Factors Expression During the Intestinal Colonization of Vibrio parahaemolyticus. Foodborne Pathog. Dis. 2022, 19, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, 122–129. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Tasak, N. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, V.; Yin, W.F.; Lee, L.H.; Chan, K.G. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticu s isolated from retail shrimps in Malaysia. Front. Microbiol. 2015, 6, 33. [Google Scholar] [CrossRef]
- Nunes, O.C.; Manaia, C.M.; Kolvenbach, B.A.; Corvini, P.F. Living with sulfonamides: A diverse range of mechanisms observed in bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 10389–10408. [Google Scholar] [CrossRef]
- Wang, D.; Sui, Q.; Zhao, W.T.; Lv, S.G.; Qiu, Z.F.; Yu, G. Pharmaceutical and personal care products in the surface water of China: A review. Chin. Sci. Bull. 2014, 59, 743–751. [Google Scholar]
- Hu, Y.; Li, F.; Zheng, Y.; Jiao, X.; Guo, L. Isolation, molecular characterization and antibiotic susceptibility pattern of Vibrio parahaemolyticus from aquatic products in the southern Fujian Coast, China. J. Microbiol. Biotechnol. 2020, 30, 856. [Google Scholar] [CrossRef]
- Neetoo, H.; Reega, K.; Manoga, Z.S.; Nazurally, N.; Bhoyroo, V.; Allam, M.; Jaufeerally-Fakim, Y.; Ghoorah, A.W.; Jaumdally, W.; Hossen, A.M.; et al. Prevalence, Genomic Characterization, and Risk Assessment of Human Pathogenic Vibrio Species in Seafood. J. Food Prot. 2022, 85, 1553–1565. [Google Scholar] [CrossRef]
- Bej, A.K.; Patterson, D.P.; Brasher, C.W.; Vickery, M.C.; Jones, D.D.; Kaysner, C.A. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J. Microbiol. Methods 1999, 36, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.K.; Kearney, A.K.; Nadon, C.A.; Peterson, C.L.; Tyler, K.; Bakouche, L.; Clark, C.G.; Hoang, L.; Gilmour, M.W.; Farber, J.M. Phenotypic and genotypic characterization of Canadian clinical isolates of Vibrio parahaemolyticus collected from 2000 to 2009. J. Clin. Microbiol. 2014, 52, 1081–1088. [Google Scholar] [CrossRef]
- Wagley, S.; Koofhethile, K.; Wing, J.B.; Rangdale, R. Comparison of V. parahaemolyticus isolated from seafoods and cases of gastrointestinal disease in the UK. Int. J. Environ. Health Res. 2008, 18, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Nadella, R.K.; Panda, S.K.; Badireddy, M.R.; Kurcheti, P.P.; Raman, R.P.; Mothadaka, M.P. Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment. Environ. Sci. Pollut. Res. Int. 2022, 29, 37527–37542. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, J.; Chen, J.; Zhang, R.; Zhang, H.; Qi, X.; He, Y. Epidemiological characteristics of Vibrio parahaemolyticus outbreaks, Zhejiang, China, 2010–2022. Front. Microbiol. 2023, 14, 1171350. [Google Scholar] [CrossRef]
- Miranda, C.D.; Kehrenberg, C.; Ulep, C.; Schwarz, S.; Roberts, M.C. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob. Agents Chemother. 2003, 47, 883–888. [Google Scholar] [CrossRef]
- Nguyen, F.; Starosta, A.L.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem. 2014, 395, 559–575. [Google Scholar] [CrossRef]
Location | Samples Collected | Months | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
May | June | July | August | September | October | ||||
Fuding | Jiaodang | shrimp | 3 | 0 | 0 | 0 | 7 | 0 | 10 |
water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Tianlou | shrimp | 0 | 0 | 0 | 0 | 10 | 0 | 10 | |
water | 2 | 0 | 0 | 0 | 0 | 0 | 2 | ||
Zhujiabi | shrimp | 7 | 0 | 0 | 0 | 12 | 0 | 19 | |
water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Jiaocheng | Yundan | shrimp | 0 | 4 | 5 | 2 | 4 | 1 | 16 |
water | 0 | 1 | 6 | 1 | 0 | 0 | 8 | ||
Xiapu | Yantian | shrimp | 2 | 10 | 0 | 0 | 8 | 3 | 23 |
water | 0 | 2 | 0 | 0 | 9 | 0 | 11 | ||
Dajing | shrimp | 0 | 0 | 0 | 0 | 1 | 2 | 3 | |
water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Total | 14 | 17 | 11 | 3 | 51 | 6 | 102 |
Antibiotics | Numbers of Resistance Isolates | Antibiotics Resistance Rate (%) | Sensitivity Rate (%) |
---|---|---|---|
Tetracycline (TET) | 15 | 14.7 | 62.7 |
Doxycycline (DOX) | 12 | 11.8 | 77.5 |
Flufenicol (FFC) | 3 | 2.9 | 97.1 |
Chloramphenicol (CHL) | 2 | 2.0 | 94.1 |
Neomycin (NEO) | 15 | 14.7 | 29.4 |
Streptomycin (STR) | 33 | 32.4 | 38.2 |
Gentamicin (GEN) | 3 | 2.9 | 74.5 |
Kanamycin (KAN) | 13 | 12.7 | 42.2 |
Norfloxacin (NOV) | 12 | 11.8 | 42.2 |
Enrofloxacin (ENR) | 10 | 9.8 | 50.0 |
Ciprofloxacin (CLX) | 8 | 7.8 | 76.5 |
Oxofloxacin (OFX) | 8 | 7.8 | 92.2 |
Norfloxacin (NOR) | 9 | 8.8 | 83.3 |
Flumequine (FLU) | 16 | 15.7 | 53.9 |
Sulfamisoxazole (SIZ) | 58 | 56.9 | 22.5 |
Trimethoprim/sulfamethoxazole (SMZ-TMP) | 5 | 4.9 | 86.3 |
Trimethoprim (TMP) | 9 | 8.8 | 80.4 |
Erythromycin (ERY) | 34 | 33.3 | 3.9 |
Rifampin (RFP) | 37 | 36.3 | 21.6 |
Polymyxin B (PMB) | 9 | 8.8 | 47.1 |
Nitrofurantoin (NFT) | 4 | 3.9 | 76.5 |
Furazolidone (FZD) | 22 | 21.6 | 62.7 |
Category | Antibiotics Resistance Genes | Number of Isolates Carry Resistant Genes | Resistance Gene Carrier Rate (%) |
---|---|---|---|
Quinolones | qnrVC136 | 27 | 27.55 |
qnrVC457 | 1 | 1.02 | |
qnrA | 4 | 4.08 | |
Tetracyclines | tetA | 42 | 42.86 |
tetM | 19 | 19.39 | |
tetB | 12 | 12.24 | |
Sulfonamides | sulI | 31 | 31.63 |
sulII | 51 | 52.04 | |
sulIII | 19 | 19.39 | |
Aminoglycosides | strA | 4 | 4.08 |
strB | 3 | 3.06 | |
Macrolide | erm | 4 | 4.08 |
Amphenicols | cat | 90 | 91.84 |
optrA | 26 | 26.53 | |
floR | 6 | 6.12 | |
cfr | 6 | 6.12 | |
Beta-lactams | blaCARB | 18 | 18.37 |
Antibiotics | Antibiotic-Resistance Genes | Compatibility between Resistance Phenotype and Resistance Genes (%) |
---|---|---|
SIZ | sulI | 31.00 |
sulII | 60.34 | |
sulIII | 18.97 | |
SMZ-TMP | sulI | 40.00 |
sulII | 100.00 | |
sulIII | 40.00 | |
DOX | tetA | 83.33 |
tetM | 25.00 | |
TET | tetA | 80.00 |
tetB | 6.60 | |
tetM | 20.00 | |
NEO | strB | 6.67 |
ERY | erm | 2.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, J.; Lin, G.; Chen, X.; Huang, H.; Xu, C.; Chi, H. Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions. Microorganisms 2024, 12, 152. https://doi.org/10.3390/microorganisms12010152
Zhang F, Zhang J, Lin G, Chen X, Huang H, Xu C, Chi H. Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions. Microorganisms. 2024; 12(1):152. https://doi.org/10.3390/microorganisms12010152
Chicago/Turabian StyleZhang, Fangfang, Jie Zhang, Guowen Lin, Xiaoqiang Chen, Huizhen Huang, Chunxia Xu, and Hai Chi. 2024. "Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions" Microorganisms 12, no. 1: 152. https://doi.org/10.3390/microorganisms12010152
APA StyleZhang, F., Zhang, J., Lin, G., Chen, X., Huang, H., Xu, C., & Chi, H. (2024). Antibiotic Resistance and Genetic Profiles of Vibrio parahaemolyticus Isolated from Farmed Pacific White Shrimp (Litopenaeus vannamei) in Ningde Regions. Microorganisms, 12(1), 152. https://doi.org/10.3390/microorganisms12010152