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Abstract: Recent research has demonstrated the potential of fecal microbiome analysis using machine
learning (ML) in the diagnosis of inflammatory bowel disease (IBD), mainly Crohn’s disease (CD)
and ulcerative colitis (UC). This study employed the sparse partial least squares discriminant analysis
(sPLS-DA) ML technique to develop a robust prediction model for distinguishing among CD, UC,
and healthy controls (HCs) based on fecal microbiome data. Using data from multicenter cohorts,
we conducted 16S rRNA gene sequencing of fecal samples from patients with CD (n = 671) and
UC (n = 114) while forming an HC cohort of 1462 individuals from the Kangbuk Samsung Hospital
Healthcare Screening Center. A streamlined pipeline based on HmmUFOTU was used. After a series
of filtering steps, 1517 phylotypes and 1846 samples were retained for subsequent analysis. After
100 rounds of downsampling with age, sex, and sample size matching, and division into training and
test sets, we constructed two binary prediction models to distinguish between IBD and HC and CD
and UC using the training set. The binary prediction models exhibited high accuracy and area under
the curve (for differentiating IBD from HC (mean accuracy, 0.950; AUC, 0.992) and CD from UC
(mean accuracy, 0.945; AUC, 0.988)), respectively, in the test set. This study underscores the diagnostic
potential of an ML model based on sPLS-DA, utilizing fecal microbiome analysis, highlighting its
ability to differentiate between IBD and HC and distinguish CD from UC.

Keywords: inflammatory bowel disease; Crohn’s disease; ulcerative colitis; fecal microbiome; sparse
partial least squares discriminant analysis; machine learning
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1. Introduction

Ulcerative colitis (UC) and Crohn’s disease (CD), which constitute inflammatory bowel
disease (IBD), are characterized by chronic inflammation of the intestines [1]. The current
diagnostic approach for IBD involves a comprehensive strategy that involves medical
history, blood and stool analyses, endoscopy with histological findings, and radiological
imaging. However, these methods have inherent limitations as they rely on subjective
interpretations without any gold standards and must rule out diseases that appear as
IBD, leading to inconsistent results [2–5]. Consequently, the complexity of the diagnostic
processes and the absence of specific markers often result in a median time to diagnosis
of 3.7 months for UC and 8.0 months for CD, with diagnosis delays exceeding 6.7 and
15.2 months for UC and CD, respectively [6–8]. Unfortunately, the disease can progress
rapidly and present acute exacerbation, leading to disease-related complications such as
stricturing or penetrating disease, necessitating intestinal surgery [6–8]. Therefore, timely
diagnosis is crucial for the initiation of effective treatment.

Recently, interest in the role of the gut microbiome in IBD pathogenesis has in-
creased [9–11]. Emerging evidence suggests that alterations in the composition and function
of the gut microbiome contribute to the progression and therapeutic response of IBD [12].
This potential link between the gut microbiome and IBD underscores the need for inno-
vative diagnostic tools that utilize fecal microbiome analysis as a noninvasive and easily
accessible approach. These notions have been reinforced by numerous studies that have
identified alterations in microbial diversity and specific bacterial taxa in patients with
IBD compared with those in healthy individuals [13–16]. Distinctions between the fecal
microbiomes of patients with UC and CD have been reported, suggesting the possibility
of a classification based on these differences [13,14]. Furthermore, machine learning (ML)
models have shown promising performance in distinguishing between patients with IBD
and healthy individuals and between UC and CD [14,17–19]. These tools may help differ-
entiate between individuals with IBD and those who are healthy and distinguish between
UC and CD, two subtypes of IBD.

In contrast to ML algorithms utilized in previous studies, such as random forest (RF),
sparse partial least squares discriminant analysis (sPLS-DA) has several advantages. The
primary benefit of sPLS-DA is its ability to select a subset of informative variables to
discriminate between classes. Additionally, choosing a sparse set of features helps manage
many variables that may not contribute meaningfully to the classification task. Moreover,
selecting variables with the most discriminative power can contribute to the creation of an
interpretable model.

No studies have used sPLS-DA to differentiate between patients with IBD and healthy
controls (HCs) or between patients with UC and CD. Therefore, we implemented a predic-
tion model using ML with sPLS-DA to distinguish between both IBD and HC and UC and
CD, demonstrating its performance [20].

2. Materials and Methods
2.1. Research Cohorts and Sample Collection

We enrolled two patient cohorts, one comprising individuals with UC and the other
comprising patients with CD, along with a cohort of healthy controls (HCs). The present
study was undertaken in parallel with a retrospective multicenter study performed by an
IMPACT (identification of the mechanism of CD occurrence and progression through an
integrated analysis of both genetic and environmental factors) [21]. In 2017, the IMPACT
study team was established in Korea and obtained a national grant to organize a retrospec-
tive cohort of patients with CD (aged > 8 years) to identify the mechanisms underlying the
occurrence and progression of CD. A total of 16 university hospitals are currently partici-
pating in this study and collecting clinical data and biological specimens (namely blood,
stool, and tissue specimens) from patients with CD who were newly diagnosed or followed
up at these institutions. Patients with UC were selected from a prospective multicenter
inception cohort study established for UC multi-omics research in Korea in 2020. Fourteen
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university hospitals participated in this study and collected clinical data and biological
specimens, namely blood, stool, tissue, and saliva samples, from patients with UC. Lastly,
the HC group consisted of healthy men and women aged 28–78 years who underwent
regular health checkups, including body mass index, smoking status, alcohol consump-
tion, and basic blood tests, annually or biennially at the Kangbuk Samsung Healthcare
Screening Center from June to September 2014. This cohort comprised individuals who
reported the absence of specific diseases using a self-report questionnaire. Further details
are provided in a previous study [22]. An HC dataset was acquired by communicating
with the authors.

Fecal samples were collected by participants (5 g each) and immediately stored in
a deep freezer at −80 ◦C after submission. The collection time for the UC cohort as an
inception cohort was the date of research registration before the initiation of drug therapy.
Meanwhile, for the CD cohort with a retrospective design, wherein the patients were already
diagnosed and were undergoing treatment, the collection times varied. To minimize these
effects, fecal samples were collected after more than 3 months of discontinuing antibiotics
or probiotics if the patient was taking them.

2.2. Sample Preparation and 16S rRNA Gene Sequencing

Information regarding sample preparation and sequencing can be found in a previous
report [23]. Briefly, the samples were centrifuged at 15,000 rpm for 20 min at 4 ◦C to separate
the cellular pellet from the cell-free supernatant. DNA was extracted from the cellular
pellet using a QIAamp DNA Microbiome Kit (Qiagen, Valencia, CA, USA) in accordance
with the manufacturer’s instructions.

For 16S rRNA amplicon sequencing, we targeted the high-resolution V3-V4 region,
which is identical to the existing HC dataset [22] for comparability. The 16S rRNA gene’s
V3-4 region was amplified with Illumina adapter overhang sequences using 341F (5′-
TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGC WGC
AG-3′) and 805R (5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA
CTA CHV GGG TAT CTA ATC C-3′) primers. PCR-generated amplicons were purified
using a magnetic bead-based system (Agencourt AMPure XP; Beckman Coulter, Brea,
CA, USA). Indexed libraries were prepared by limited-cycle PCR using the Nextera tech-
nology, cleaned, and pooled at equimolar concentrations. Paired-end sequencing was
performed on an Illumina MiSeq platform using a 2 × 300 bp protocol, according to the
manufacturer’s instructions.

2.3. Data Processing and Downstream Analysis

We employed a streamlined pipeline [24] based on HmmUFOtu (version 1.5.1) [25]
to analyze the 16S rRNA amplicon sequencing data, as described below. Quality filtering
of raw sequence data was performed using fastp [26]. Following the recommendations
of fastp (version 0.23.2), sequences with a quality score below 20 and reads with a length
of less than 150 bp were excluded, as described in a previous study [24] for HC sample
processing using fastp. To perform reference-based operational taxonomic unit (OTU)
clustering, each trimmed read was individually aligned to the HmmUFOtu model to
generate a continuously aligned sequence for each pair. Subsequently, the contig sequences
were positioned onto the reference phylogenetic tree (derived from GreenGene version
13.8 and the RDP Classifier Training set version 18) and assigned to the nearest node using
the HmmUFOtu main program. The Biostrings (version 2.54.0) Bioconductor package was
employed to generate consensus sequences by aggregating the amplicons associated with a
shared HmmUFOtu node. We employed Mothur (version 1.48.0) [27] for de novo chimera
checking of the consensus sequences, Kraken2 (version 2.1.2) [28] with default parameters,
and SILVA reference (version 138.1) for taxonomic assignment.
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Microbiome profile data were analyzed using phyloseq (version 1.38.0), a Bioconductor
R package. Non-bacterial sequences and those lacking phylum-level annotations were
excluded from the analysis. In subsequent analyses, we utilized the cut-off that had yielded
significant results in an earlier study [24], excluding samples with fewer than 20,000 read
counts and rarely observed phylotypes. We used the Bioconductor R package microbiome
(version 1.16.0) to compute the alpha diversity indices for the samples. Using Mothur, we
calculated beta diversity indices and conducted permutational multivariate analysis of
variance (PERMANOVA) tests based on distance matrices to examine the differences in
microbiome composition between different phenotypes.

2.4. Machine Learning for Disease Prediction Model

Given the merging of the datasets sequenced at different time points, we used
ANCOM-BC (version 1.4.0) [29], specifying the covariate as the time point to adjust for
batch effects among the sample groups sequenced at different times before constructing
the ML model. We identified the fractions of taxonomic groups with significantly differ-
ent absolute abundances at each time point. Subsequently, to mitigate variations owing
to differences in sequencing depth among samples, we performed a log transformation
by adding a pseudo-count of one and subtracting this fraction from the log-transformed
abundance obtained from ANCOM-BC.

For subsequent steps, such as principal component analysis (PCA) and prediction
model development, we used the mixOmics R package (version 6.18.1) in Bioconductor. We
utilized sPLS-DA for variable selection, interpretable results, and computational efficiency.

Because our data were somewhat imbalanced, we matched the age, sex, and number
distribution of each class group by downsampling the dataset before training the ML
model. The dataset was then randomly divided into 70% training and 30% test sets while
maintaining the class proportions.

We employed feature selection and parameter optimization, as recommended by
mixOmics. First, we trained the initial sPLS-DA models and assessed their performance
with 50 repeated 5-fold cross-validations (5-CVs) to determine the optimal number of
components by monitoring the overall error rate trend. Subsequently, we performed tuning
processes to select the features for each component. Using these optimal parameters, the
final sPLS-DA model was developed, and its performance was measured.

To avoid bias or loss of information, the entire model development process, including
downsampling, was repeated 100 times with random shuffling of the training and test
splits. Subsequently, the average performance was assessed.

3. Results
3.1. Processing of 16S rRNA Gene Amplicon Sequencing Data

We performed 16S rRNA gene amplicon sequencing of stool samples from 2247 indi-
viduals, constituting three phenotypic groups: 671 with CD, 114 with UC, and 1462 HCs.
The characteristics of each group are presented in Table 1.

During sequencing, we obtained 164,539,577 paired-end reads. After quality con-
trol, 157,961,202 reads remained. Following reference-based OTU clustering, we identified
88,927 OTUs. Taxonomic assignment and phylotyping of the remaining 83,562 OTUs after
chimera removal led to the identification of 2525 phylotypes. In the abundance table filtering
step, we filtered out phylotypes with abundances less than 10, those that did not belong to bac-
terial taxa, or those lacking specific phylum information from the entire dataset. Additionally,
samples with a total abundance of less than 20,000 were excluded, resulting in 1517 phylotypes
and 1846 samples. We used this dataset (CD, n = 670; UC, n = 113; HC, n = 1063) for subsequent
analyses. Detailed information regarding each processing step is presented in Table 2.
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Table 1. Baseline demographic and clinical characteristics of participants.

CD (n = 671) UC (n = 114) HC (n = 1462)

Age (year), mean ± SD 35.9 ± 13.2 39.9 ± 15.9 45.9 ± 9.2
Male, n (%) 483 (71) 84 (73.7) 907 (62)
BMI (kg/m2), mean ± SD 22.1 ± 3.8 23.2 ± 3 23.7 ± 3.1
Smoking status, n (%)
Current 93 (13.9) 14 (12.3)
Former 26 (3.9) 22 (19.3)
Never 454 (67.7) 77 (67.2)
Unknown 98 (14.6) 1 (0.0)
Disease location, n (%) Ileum, 186 (27.7) Proctitis, 48 (42.1)

Colon, 84 (12.5) Distal, 38 (33.3)
Ileocolon, 337 (50.0) Extensive, 27 (23.7)
Ileum + upper GI, 6 (0.9)
Colon + upper GI, 1 (0.0)
Ileocolon + upper GI, 17 (2.5)
Unknown, 40 (6.0) Unknown, 1 (0.0)

Values are expressed as n (%) unless otherwise specified. SD, standard deviation; BMI, body mass index; GI,
gastrointestinal tract.

Table 2. Information for each processing step.

OTUs/
Phylotypes Samples Total Reads (% of the Raw)

Raw 2255 164,539,577
fastp 2255 157,961,202 (0.96)
HmmUFOtu clustering 88,927 2255 157,865,293 (0.9594)
Chimera removal 83,562 2255 150,585,336 (0.9152)
Taxonomic assignments 67,283 2255 150,549,827 (0.915)
Phylotyping 2525 2255 150,549,827 (0.915)
Abundance table filtering process
Abundance > 20 k or counts > 10 1526 1853 145,380,866 (0.8836)
Non-bacterial phylotypes 1518 1853 145,353,664 (0.8834)
Domain only 1517 1853 140,691,441 (0.8551)
Abundance > 20 k 1517 1846 140,552,068 (0.8542)

OTU, operational taxonomic unit.

3.2. Diversity Analysis

The results of the alpha diversity analysis showed that the stool microbiome in HC
individuals was significantly richer than that in CD (p < 1 × 10−2) and UC (p < 1 × 10−4)
patients (Figure 1a,b); however, between CD and UC, the alpha diversity indices were not
significantly different.

Beta diversity principal coordinate analysis (PCoA) plots based on Jaccard and thetaYC
dissimilarity indices (Figure 1c,d) showed a distinct separation between the IBD and HC
samples along the PCoA1 axis, although there were some overlaps. In contrast, the CD and
UC samples remained indistinguishable based on components 1 and 2 in both plots.
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Figure 1. Violin plots displaying α−diversity indices (Shannon (a), and Pielou evenness (b)) of stool
microbiome in the three disease groups. Significance in α−diversity variation between phenotypes
was assessed using the Wilcoxon test (*, **, ****, and ns represent p < 0.05, p < 0.01, p < 0.0001, and
non−significance respectively). The PCoA plots based on β−diversity indices: Jaccard dissimilarity
(c) and thetaYC dissimilarity (d). F- and p-values were calculated by a PERMANOVA test with
1000 permutations.

3.3. Multiclass Disease Prediction Model

Before model development, we conducted a log transformation and bias correction of
the stool microbiome profile data using ANCOM-BC. To correct for the bias introduced
by different sequencing time points in the profile data, we specified the input covariate of
ANCOM-BC as the time-point information (seven time points). Taxonomic groups with
significantly different absolute abundances at each time point were identified. Subsequently,
we added a pseudo-count of one to the profile data, performed a log transformation, and
subtracted the fraction obtained from the ANCOM-BC results.

Initially, we employed the sPLS-DA algorithm to create a multiclass ML model. The
entire dataset (CD: n = 670, UC: n = 113, HC: n = 1063) was downsampled to match the
age, sex distribution, and class counts (CD: n = 113, UC: n = 113, HC: n = 113) and then
split into training and test sets with equal class balance. We allocated 70% of the samples to
the training set (CD, n = 79; UC, n = 79; HC, n = 79), and 30% were assigned to the test set
(CD, n = 34; UC, n = 34; HC, n = 34). This process was repeated 100 times to demonstrate
the robustness of the model. In each repetition, the sPLS-DA model of the training set
was initialized to identify the optimal components by monitoring the overall error rate.
Subsequently, the tuning process selected the best features for each component. We defined



Microorganisms 2024, 12, 36 7 of 14

the final sPLS-DA model for each run using these optimal components and phylotypes,
and we evaluated the performance of each model using the corresponding test set.

Overall, these multiclass models showed suboptimal performances in classifying CD
and UC, although the HC group was distinctly identified (Table 3 and Figure 2).

Table 3. Evaluation metrics from prediction using multiclass models.

Accuray CD Sens. CD Prec. UC Sens. UC Prec. HC Sens. HC Prec. AUC

Min. 0.539 0.177 0.292 0.235 0.353 0.677 0.566 0.539
1st Qu. 0.608 0.324 0.443 0.441 0.486 0.934 0.756 0.608
Median 0.637 0.412 0.5 0.544 0.551 0.971 0.823 0.637
Mean 0.638 0.434 0.505 0.53 0.545 0.952 0.814 0.638

3rd Qu. 0.667 0.529 0.559 0.618 0.591 1 0.95 0.667
Max. 0.755 0.824 0.793 0.765 0.735 1 0.944 0.755

Sens, sensitivity; Prec, precision.
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Figure 2. A PLS projection in the subspace defined by the sPLS−DA model’s first two components,
developed for multiclass prediction.

3.4. Hierarchical Disease Prediction Model

We chose to create two binary prediction models by observing the suboptimal per-
formance of the multiclass model. The first distinguished IBD from HC samples, and the
second classified IBD samples as CD or UC. This hierarchical approach enabled accurate
classification of the three phenotypes.

3.4.1. Creating a Predictive Model for Distinguishing between IBD and HC

The entire dataset (CD, n = 670; UC, n = 113; HC, n = 1063) was transformed into a
binary classification dataset to distinguish between IBD and HC samples. Initially, 113 CD
and 226 HC samples were selected and matched for age and sex with the UC samples.
Subsequently, the dataset was divided to yield a 70% training set (CD, n = 79; UC, n = 79;
HC, n = 158) and a 30% test set (CD, n = 34; UC, n = 34; HC, n = 68). The CD and UC
samples in both sets were merged into the IBD class to form training (IBD, n = 158; HC,
n = 158) and test sets (IBD, n = 68; HC, n = 68). This process was iterated 100 times using
the same ML procedure applied to each split. The model performance was subsequently
averaged across splits to provide a comprehensive evaluation.

As shown in Figure 3a, a representative final model produced a plot with a clear
distinction between IBD and HC samples. The performance of each model was evaluated
by predicting the disease class of individuals in the corresponding test sets. The IBD
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versus HC prediction achieved a mean accuracy of 0.950 (0.890–0.993), sensitivity of 0.918
(0.809–0.985), specificity of 0.985 (0.918–1), and precision of 0.984 (0.910–1) (Table 4).
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Figure 3. (a) A PLS projection in the subspace defined by the sPLS−DA model’s first two components,
developed for discriminating between IBD and HC. (b) A heatmap representing the abundance of
high−contributing phylotype features for predicting the IBD and HC groups in the test set.

Table 4. Evaluation metrics from prediction using IBD vs. HC models.

Accuracy Sensitivity Specificity Precision AUC

Min. 0.89 0.809 0.918 0.91 0.972
1st Qu. 0.941 0.897 0.971 0.97 0.989
Median 0.949 0.919 0.985 0.984 0.993
Mean 0.95 0.918 0.982 0.981 0.992

3rd Qu. 0.963 0.941 1 1 0.996
Max. 0.993 0.985 1 1 1

AUC, area under the curve.

We assessed the abundance of the top 10 phylotypes (Table S1) that played key roles
in predicting both the IBD and HC groups in the test set using a heatmap. Except for a few
samples, we noticed that there was distinct clustering based on class using the 10 phylotype
abundance criteria (Figure 3b).

3.4.2. Creating a Predictive Model for Distinguishing between CD and UC

In the original 100 splits mentioned in Section 3.4.1, we exclusively selected CD and
UC samples to establish training sets (CD, n = 79; UC, n = 79) and test sets (CD, n = 34; UC,
n = 34) to develop models aimed at distinguishing between CD and UC. These datasets
were utilized for model development and evaluation, following an earlier procedure.

A representative split sample plot showed a clear separation between the CD and
UC samples (Figure 4a), indicating effective differentiation using stool microbiome data.
We conducted a performance evaluation of the trained sPLS-DA models by predicting the
disease phenotypes of individuals in the test sets. Across the 100 test sets, the classification
results displayed a mean accuracy of 0.956, sensitivity of 0.941, specificity of 0.949, precision
of 0.950, and AUC of 0.923 (Table 5). These results indicated that the fecal microbiome-based
model could distinguish between CD and UC with excellent performance.
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Figure 4. (a) A PLS projection in the subspace defined by the sPLS−DA models’ first two components,
developed for discriminating between CD and UC. (b) A heatmap representing the abundance of
high−contributing phylotype features for predicting the CD and UC groups in the test set.

Table 5. Evaluation metrics from prediction using CD vs. UC models.

Accuracy Sensitivity Specificity Precision AUC

Min. 0.853 0.794 0.824 0.846 0.947
1st Qu. 0.927 0.912 0.934 0.93 0.984
Median 0.956 0.941 0.971 0.967 0.991
Mean 0.945 0.941 0.949 0.95 0.988

3rd Qu. 0.971 0.971 0.971 0.971 0.997
Max. 1 1 1 1 1

AUC, area under the curve.

Using a heat map, we examined the abundance of the top 10 phylotypes (Table S2)
that were crucial for predicting both the CD and UC groups in the test set. We observed
a distinct clustering based on class using the abundance criteria for the ten phylotypes,
except for a few samples (Figure 4b).

3.4.3. Performance Evaluation of Models in Hierarchical Manner

In the previous step, we noted the effectiveness of the fecal microbiome-based binary
classification model in distinguishing IBD from HC, CD, and UC. We evaluated the perfor-
mance of a hierarchical approach that integrates the two models to predict unknown class
labels in the input samples. First, the samples were classified as either IBD or HC; then,
among those categorized as IBD, further classification into CD or UC was performed. This
hierarchical model was evaluated using test sets to assess its effectiveness. Table 6 presents
the results obtained from 100 test sets, showing a mean accuracy of 0.936. It also reveals
specific values for CD sensitivity of 0.888, CD precision of 0.965, UC sensitivity of 0.933,
UC precision of 0.964, HC sensitivity of 0.956, and HC precision of 0.891.

Table 6. Evaluation metrics calculated in hierarchical manner.

Accuracy CD Sens. CD Prec. UC Sens. UC Prec. HC Sens. HC Prec. AUC

Min. 0.873 0.706 0.953 0.912 0.824 0.912 0.773 0.873
1st Qu. 0.922 0.853 0.941 0.924 0.941 0.971 0.85 0.922
Median 0.931 0.882 0.969 0.941 0.97 1 0.895 0.931
Mean 0.936 0.888 0.965 0.933 0.964 0.956 0.891 0.936

3rd Qu. 0.951 0.941 1 0.971 1 1 0.919 0.951
Max. 0.99 1 1 1 1 1 1 0.99

Sens, sensitivity; Prec, precision.



Microorganisms 2024, 12, 36 10 of 14

4. Discussion

This study demonstrated the effectiveness of an ML model based on sPLS-DA, utilizing
fecal microbiome data, in distinguishing between individuals with IBD and HC, as well
as in differentiating between CD and UC. First, we constructed a multiclass ML model
to differentiate among CD, UC, and HC. It performed well in distinguishing HC from
IBD (CD or UC) with a mean sensitivity and precision of 0.952 and 0.814, respectively.
However, it performed poorly in differentiating between CD and UC, with a sensitivity
and precision <0.5. To overcome this limitation, we restructured two binary classification
models in the next step: one to distinguish IBD from HC and the other to distinguish CD
from UC. Using binary classification models, the AUC for distinguishing IBD from HC and
CD from UC were outstanding, with values of 0.992 and 0.988, respectively. These findings
have substantial implications as they demonstrate robust predictive capabilities.

The strength of this study lies in the pioneering use of sPLS-DA to construct a predic-
tion model for distinguishing between IBD and HC, as well as between UC and CD. The
sPLS-DA method employed in this study offers several advantages over conventional ML
approaches for analyzing fecal microbiome data. It effectively addresses challenges related
to high-dimensional data and multicollinearity, while providing interpretability [19]. We
implemented the ML model based on the training sets and initially confirmed its efficacy
in distinguishing IBD from HC and UC from CD. Subsequently, we validate its robustness
using separate test sets. This study contributes to the growing body of evidence supporting
fecal microbiome analysis for diagnosing and distinguishing IBD [13–16].

Consistent with previous reports, this study found that CD and UC exhibited lower
alpha diversity than that of HC [30–32]. Beta diversity analysis revealed relatively distinct
differences in phylotype distribution using the Jaccard dissimilarity metric, although some
overlap was observed with the thetaYC dissimilarity metric. The Jaccard dissimilarity
metric focuses on the presence or absence of taxa across samples, and it does not consider
their abundance or relative abundance. In contrast, the thetaYC dissimilarity metric
considers both the presence and absence of taxa and their relative abundances. In summary,
both patients with CD and UC exhibited distinct bacterial taxa that differentiated them
from HC. Previous research has also reported differences in taxa between UC and CD
compared to HC, although the extent of these differences varies [30,33].

In patients with IBD, the predominant characteristics included an increase in the
Proteobacteria phylum, Fusobacterium species, and Escherichia coli [31,33–36], while there
was a decrease in protective taxa such as Faecalibacterium prausnitzii and Bifidobacterium
species [32,33,37–40]. However, information regarding taxonomic differences between IBD
and HC varies among the studies conducted thus far, necessitating further clarification
regarding the distinctions between UC and CD. Differences among studies, such as sample
type, age, sex, dietary habits, disease extent, disease activity, and concomitant therapies,
are likely to influence microbial community structure and diversity [30,31,40,41]. Therefore,
the application of enumerative information as a diagnostic tool may be limited. This study
has clinical value in overcoming these limitations and leveraging the advantages of the
sPLS-DA algorithm based on differences in phylotypes to construct an ML model and
demonstrate its performance. This study also examined the top 10 genera in HC, IBD, CD,
and UC. Notably, we observed differences in the major microbiota between CD and UC,
which can provide additional information beyond what was previously reported.

Recent advancements in ML models that leverage fecal microbiome data have shown
promising results in IBD diagnosis. For example, using OTUs, the RF algorithm achieved
notable performance, with an area under the curve (AUC) of 0.80 and an accuracy of 0.72
for distinguishing IBD from non-IBD groups. Additionally, it attained an AUC of 0.92
and an accuracy of 0.83 for distinguishing between UC and CD [14]. In another study,
various feature selection techniques were employed to construct an RF model, which
demonstrated acceptable discrimination in external validation, yielding AUCs of 0.74 and
0.76 for diagnosing UC and CD, respectively [18]. Furthermore, a different study developed
an RF model using taxonomic profiles at the species level, achieving an AUC of 0.93 and
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an accuracy of 0.86 for UC diagnosis and an AUC of 0.93 and an accuracy of 0.83 for CD
diagnosis [19]. However, the limitations of previous studies include the use of a global data
platform, which leads to heterogeneity in disease activity, sample collection, and analysis
methods [14,18]. Matching was not conducted to minimize bias in the selection of the
non-IBD group [14,18,19]. Additionally, the last study, which employed a multiclass model
for various diseases, may have been inappropriate for distinguishing IBD from chronic
IBDs [19]. Finally, some studies lacked external validation [14,19]. In our study, the sPLA-
DA model exhibited exceptional performance in diagnosing IBD, with a mean accuracy of
0.950. Additionally, it distinguished between UC and CD with a mean accuracy of 0.945,
surpassing the performances of previous studies. These advancements in harnessing fecal
microbiome data to develop ML models hold great promise for enhancing the diagnosis of
IBD diagnosis.

This study had several limitations. First, confounding factors, such as age, sex, diet,
and medication, were not fully controlled. Furthermore, when examining the top genera
each for IBD, UC, and CD, no clear commonalities were found compared with the significant
microbiota increases reported in previous studies [33]. Second, the UC and CD cohorts
differed in their characteristics. Patients with UC comprised an inception cohort with fecal
samples collected post-diagnosis and pre-treatment, whereas fecal samples of patients with
CD were collected at various stages of treatment. To address possible modifiable aspects,
we took measures such as discontinuing the use of antibiotics or probiotics before collecting
fecal samples. Future studies should consider these factors to enhance our understanding
of the microbial diversity in CD and UC. Third, this study lacked external validation, which
limited its generalizability. However, during the division of the training and test sets, efforts
were made to downsample 100 times with matching age, sex, and sample size. Finally, this
study focused on Korean patients diagnosed with IBDs (CD or UC). Microbial communities
can vary across geographical regions [42], and the findings of this study may not be directly
applicable to other populations.

5. Conclusions

In summary, this study successfully developed a prediction model using the sPLS-DA
algorithm for diagnosing IBD and differentiating between CD and UC compared with HC,
demonstrating good performance. We are optimistic that the ML model developed using
fecal microbiome data can contribute to the early diagnoses of CD and UC, facilitating
prompt and effective treatments guided by its predictions. However, further external
validations across different geographical regions are required to confirm the applicability
of the developed model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12010036/s1, Table S1: The top 10 genera chosen
with high frequency in the sPLS-DA models for distinguishing between IBD and HC. Table S2: Top 10
genera chosen with high frequency in the sPLS-DA models for distinguishing between CD and UC.
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