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Abstract: The potential effects of Astragalus polysaccharides (APS) were evaluated in coral trout
(Plectropomus leopardus). Five APS levels (0%, 0.05%, 0.10%, 0.15%, and 0.20%) were added to the diet
of coral trout, and a 56-day growth trial (initial weight 18.62 ± 0.05 g) was conducted. Dietary APS
enhanced growth performance, with the highest improvement observed in fish fed the 0.15% APS
diet. This concentration also enhanced the antioxidant capacity and immunomodulation of the fish
by regulating the expression of genes associated with antioxidant enzymes and immune responses.
Intestinal microbiota analysis revealed that APS supplementation significantly increased the Chao1
index and relative abundance of beneficial bacteria (Firmicutes and Bacillus). A high level of APS
(0.20%) did not provide additional benefits for growth and health compared to a moderate level
(0.15%). These findings indicate that an optimal APS dose promotes growth, enhances antioxidant
activity, supports immune function, and improves intestinal microbiota in coral trout. Based on a
cubic regression analysis of the specific growth rate, the optimal APS level for the maximal growth of
coral trout was determined to be 0.1455%.

Keywords: herbal medicine; dietary supplement; antioxidant status; immunomodulation; intestinal
health; marine fish

1. Introduction

The coral trout, Plectropomus leopardus, is a marine creature with high economic and
ornamental value in China and is prized for its delicious meat and rich nutritional content [1,2].
As high-density intensive farming becomes more common, cultivated coral trout have
become more susceptible to diseases, in contrast to their wild counterparts [3,4]. Although
antibiotics are frequently employed to treat these infections, their excessive use can result in
environmental pollution and the development of antibiotic-resistant bacteria [5]. To address
these concerns, aquaculture is gradually phasing out harmful traditional treatments [6].
Therefore, developing environmentally friendly and nutritionally balanced feed ingredients
with immunomodulatory properties is crucial.

Astragalus polysaccharides (APS) are natural active compounds derived from Astragalus,
a traditional herbal medicine that has been used as an immune enhancer in China for nearly
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2000 years [7,8]. Over the past few decades, dietary supplementation with APS has been
widely reported to improve the nutritional status and physiological conditions of mammals,
livestock, and humans. [7,9–13]. Recent studies have also reported that APS can enhance
the growth performance, antioxidant capacity, and immune function of aquatic species,
such as turbot (Scophthalmus maximus) [14], largemouth bass (Micropterus salmoides) [15],
white shrimp (Litopenaeus vannamei) [16], Furong crucian carp (Furong carp♀× red crucian
carp♂) [17], crucian carp (Carassius auratus) [18], Chinese mitten crab (Eriocheir sinensis) [19],
and pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus) [20].
Supplementation with APS in diets significantly increased growth (weight gain, specific
growth rate (SGR), and feed conversion ratio) and immune (phagocytic activity, respiratory
burst activity, plasma lysozyme (LZ), and bactericidal activity) parameters in Nile tilapia
(Oreochromis niloticus) [21]. Additionally, dietary APS markedly increased the superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities in red
claw crayfish (Cherax quadricarinatus) [22] and northern snakehead (Channa argus) [23],
while reducing the malondialdehyde (MDA) levels. In addition to enhancing growth,
antioxidant capacity, and immunity, APS also influences the digestive systems of aquatic
animals. Studies have reported that dietary APS positively influences the activity of
digestive enzymes and intestinal structure in grass carp (Ctenopharyngodon idellus) [24],
large yellow croaker (Larimichthys crocea) [7], and Nile tilapia [21]. Furthermore, APS can
enhance growth by improving intestinal health and modulating gut microbiota [25].

Previous investigations have primarily focused on the health benefits of APS for fish,
and the potential negative outcomes of its overuse are underexplored [26]. Moreover, its
effects on coral trout growth have not been reported. In this study, we assessed the effects
of APS on growth, antioxidant status, immunological parameters, intestinal morphology,
digestive enzyme activity and flora, liver antioxidant and immune-related enzyme activities,
and gene expression in coral trout. We also determined the optimal APS dosage and
explored the negative consequences of exceeding this amount. These results are expected
to provide a theoretical basis for dietary APS supplementation in coral trout.

2. Materials and Methods
2.1. Materials and Experimental Diets

APS, with a purity of 91.5%, was obtained from Beijing Shoutianzhixin Technology
Co., Ltd. (Beijing, China). Following the procedure outlined by Yu et al. [27], five diets were
prepared with APS contents of 0%, 0.05%, 0.10%, 0.15%, and 0.20%; details are provided
in Table S1. Detailed operational procedures are outlined in Supplementary Materials
(Method S1).

2.2. Fish Management

The aquaculture setup was a recirculating aquaculture system (RAS), which included
15 tanks of 1.0 m³ each. Three hundred fish were randomly dispersed across the tanks
after acclimatization, with three replicates used for each diet. For 8 weeks, each experi-
mental diet was hand-administered twice a day (at 8:30 and 16:30) until the fish reached
apparent satiation. Water conditions were maintained at a temperature of 28.00 ± 2.00 ◦C,
pH 7.15 ± 0.15, dissolved oxygen >7.00 mg/L, and ammonia nitrogen <0.05 mg/L.

2.3. Sampling

Fish were fasted 24 h before sampling and anesthetized using eugenol (50 mg/L; Jian
Huashuo Spice Oil Co., Ltd., Jian, China). The total quantity and weight of fish in each
tank were recorded. The weight and length of three fish from each cage were measured to
calculate the morphology indices, and six fish were randomly selected from each replicate
for sampling. Subsequently, liver samples were taken from six fish and preserved at −80 ◦C
for gene expression analysis. The remaining liver tissues were also stored at −80 ◦C for
enzyme activity analysis. The intact intestines of the three fish were removed for gut
microbiome analysis. Midgut samples from three additional fish were obtained and soaked
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in 4% paraformaldehyde solution (Biosharp, Guangzhou, China) for histological tests,
while the remaining intestinal tissues were stored at −80 ◦C for enzyme activity analysis.

2.4. Calculations

The weight gain rate (WGR, %), specific growth rate (SGR, %/day), survival rate (SR,
%), viscerosomatic index (VSI, %), hepatosomatic index (HSI, %), and condition factor (CF,
g/cm3) were determined using the following equations:

WGR = 100 × (final weight (g) − initial weight (g))/(initial weight (g)) (1)

SGR = 100 × (ln (final weight (g)) − ln (initial weight (g)))/(days) (2)

SR = 100 × (final fish number)/(initial fish number) (3)

VSI = 100 × (visceral weight (g))/(body weight (g)) (4)

HSI = 100 × (hepatic weight (g))/(body weight (g)) (5)

CF = 100 × (body weight (g))/(body length (cm))3 (6)

2.5. Proximate Composition

Diet composition was determined as previously described [28]. Moisture content was
determined in the oven (105 ◦C) until constant weight. Crude protein and crude lipid
contents were determined using the Kjeldahl nitrogen and Soxhlet extractions, respectively.
The diets were burned in a muffle furnace (550 ◦C) for the determination of the ash contents.

2.6. Enzyme Activity Analysis

Enzyme activities related to digestion, antioxidant defenses, and immune response
were measured using commercial assay kits (Jiancheng, Ltd., Nanjing, China) according to
the manufacturer’s guidelines and formulas included with the kits. Detailed operational
procedures are outlined in Method S2.

2.7. Real-Time Quantitative PCR Assay

Table S2 lists the specific primers of target genes and the reference gene (GAPDH).
The qPCR reaction was conducted using the SYBR Green Pro Taq HS Premix kit (Accurate
Biotechnology Co., Ltd., Changsha, China). Detailed operational procedures are outlined
in Method S3. Gene expression levels were measured following Livak and Schmittgen’s
approach [29].

2.8. Mid-Gut Histological Observation

Intestinal sections were stained with H&E and photographed. Morphological parame-
ters were determined using CaseViewer 2.4 software, as described by Xie et al. [30].

2.9. Gut Microflora

Based on the analysis of growth performance results, 0.15% APS was identified as the
optimal level for coral trout in this study. Gut microbiota effects were analyzed by selecting
samples from the control group and the groups with the highest SGR and WGR groups.
Amplification of the hypervariable 16S rRNA gene V3-V4 regions was performed using
the specific 341F (CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT)
primers with unique barcodes for each sample. Purified amplification products were linked
to sequencing junctions, and sequencing libraries were created. Sequencing was performed
on an Illumina platform. Raw data underwent splicing, filtering, and chimera removal
to generate the final effective dataset for evaluation of the characteristics of intestinal
microbiota. DNA amplification and sequencing were conducted by Beijing Novogene Co.,
Ltd. (Beijing, China).
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2.10. Statistical Analysis

Data were presented as mean ± standard error (mean ± SE). Statistical significance
was set at p < 0.05. Statistical analysis was performed using SPSS 27.0 software employing
a one-way ANOVA to compare datasets among groups. Duncan’s and LSD multiple
comparison tests were utilized to evaluate significant differences between and within
groups. The cubic regression model was applied to predict the optimal APS level for the
SGR of coral trout, which was identified as the most effective model because of its low
residual sum of squares and high goodness-of-fit (R2) values.

3. Results
3.1. Growth Performance

As APS levels increased from 0.10% to 0.15%, the final body weight (FBW), WGR, and
SGR in coral trout improved compared to the control (p < 0.05) (Table 1). However, the
0.20% APS group exhibited significantly lower FBW, WGR, and SGR than the 0.15% APS
group (p < 0.05). SR, VSI, HSI, and CF were not significantly affected by different levels of
APS supplementation (p > 0.05). The optimal level of dietary APS in the coral trout diet,
based on SGR, was determined to be 0.1455% (Figure 1).

Table 1. Growth performance in coral trout (Plectropomus leopardus) fed different Astragalus polysaccha-
rides (APS) dietary levels.

Parameters Diets (APS %)

0 0.05 0.10 0.15 0.20

IBW (g) 18.61 ± 0.11 18.49 ± 0.17 18.71 ± 0.07 18.50 ± 0.07 18.79 ± 0.13
FBW (g) 30.82 ±0.41 a 32.34 ±0.86 ab 34.12 ± 0.70 bc 35.67 ± 0.73 c 33.38 ± 0.57 b

WGR (%) 65.60 ± 1.50 a 74.95 ± 6.04 ab 82.34 ± 4.41 bc 92.86 ± 4.52 c 77.67 ± 3.85 ab

SGR (%) 0.90 ± 0.02 a 1.00 ± 0.06 ab 1.07 ± 0.04 bc 1.17 ± 0.04 c 1.03 ± 0.04 ab

SR (%) 96.67 ± 1.67 95.00 ± 2.89 100.00 ± 0.00 100.00 ± 0.00 96.67 ± 1.67
VSI (%) 4.87 ± 0.13 4.99 ± 0.11 5.17 ± 0.10 5.21 ± 0.12 5.19 ± 0.18
HSI (%) 1.04 ± 0.04 1.05 ± 0.09 1.08 ± 0.06 1.09 ± 0.04 1.06 ± 0.04
CF (%) 2.17 ± 0.04 2.19 ± 0.06 2.22 ± 0.03 2.24 ± 0.06 2.12 ± 0.03

Values are shown as the mean ± SE (n = 3). IBW, initial body weight; FBW, final body weight; WGR, weight gain
rate; SGR, specific growth rate; SR, survival rate; VSI, visceral somatic index; HSI, hepatic somatic indices; CF,
condition factor. Different letters indicate significant differences between the treatments.
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3.2. Digestive Enzyme Activities

Diets containing 0.10% to 0.15% APS significantly increased α-amylase and lipase
activities compared to other diets (p < 0.05) (Table 2). No effect on chymotrypsin activity
was observed owing to the dietary APS modifications (p > 0.05).

Table 2. Digestive enzyme activities in coral trout (Plectropomus leopardus) fed different Astragalus
polysaccharides (APS) dietary levels.

Parameters Diets (APS %)

0 0.05 0.10 0.15 0.20

α-Amylase (U/mg prot) 0.62 ± 0.05 a 0.70 ± 0.04 ab 0.78 ± 0.04 b 0.85 ± 0.06 b 0.75 ± 0.04 ab

Lipase (U/g prot) 1.34 ± 0.05 a 1.47 ± 0.06 ab 1.57 ± 0.09 b 1.66 ± 0.07 b 1.54 ± 0.04 ab

Chymotrypsin (U/mg prot) 0.92 ± 0.06 0.98 ± 0.07 1.13 ± 0.05 1.16 ± 0.11 1.12 ± 0.09

Values are shown as the mean ± SE (n = 3). Different letters indicate significant differences between the treatments.

3.3. Gut Morphology

Midgut villus length and muscle thickness were significantly increased in groups
receiving 0.10%–0.20% APS (p < 0.05) compared to the control. Additionally, H&E-stained
intestinal sections revealed no significant morphological alterations in the intestinal tissues
of the test fish that received diets containing varying APS concentrations (Figure 2).

3.4. Liver Antioxidant Capacity

Superoxide dismutase (SOD) activity in the 0.10% to 0.15% APS groups and catalase
(CAT) activity in the 0.15% APS group were significantly higher than those in the control
group (p < 0.05) (Table 3). GSH-Px activity and total antioxidant capacity (T-AOC) peaked
in the 0.15% APS group, showing significantly higher levels in the control and 0.20% APS
groups (p < 0.05). Additionally, the MDA levels decreased significantly as the dietary APS
dose increased (p < 0.05).

Table 3. Liver antioxidant ability in coral trout (Plectropomus leopardus) fed different Astragalus
polysaccharides (APS) dietary levels.

Parameters Diets (APS %)

0 0.05 0.10 0.15 0.20

SOD activity (U/mg prot) 41.66 ± 7.72 a 56.84 ± 2.51 ab 64.62 ± 6.81 b 68.79 ± 3.17 b 60.22 ± 8.51 ab

CAT activity (U/mg prot) 7.73 ± 0.45 a 8.12 ± 0.23 ab 8.44 ± 0.57 ab 9.26 ± 0.49 b 8.07 ± 0.39 ab

GSH-Px activity (U/mg prot) 26.80 ± 1.30 a 29.63 ± 1.74 ab 31.98 ± 1.18 b 36.63 ± 1.47 c 28.88 ± 1.03 ab

T-AOC levels (U/mg prot) 0.74 ± 0.02 a 0.78 ± 0.03 ab 0.85 ± 0.02 bc 0.91 ± 0.02 c 0.80 ± 0.03 ab

MDA content (nmol/mg prot) 6.44 ± 0.18 b 5.89 ± 0.17 b 4.94 ± 0.21 a 4.69 ± 0.22 a 4.84 ± 0.20 a

Values are shown as the mean ± SE (n = 3). SOD, superoxide dismutase; CAT, catalase; GSH-Px, glutathione
peroxidase; T-AOC, total antioxidant capacity; MDA, malondialdehyde. Different letters indicate significant
differences between the treatments.

3.5. Liver Immune Function

Table 4 shows that alkaline phosphatase (AKP) activity, complement 4 (C4), and im-
munoglobulin M (IgM) levels were significantly higher in the 0.15% APS group compared
to the control group (p < 0.05). The 0.10% to 0.20% APS groups exhibited higher acid phos-
phatase (ACP) and LZ activities compared to the control group (p < 0.05). The complement
3 (C3) levels were significantly increased in the 0.10% to 0.15% APS groups relative to both
the control and 0.20% APS groups (p < 0.05).
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Figure 2. Intestinal morphology in coral trout (Plectropomus leopardus) fed different Astragalus polysaccha-
rides (APS) dietary levels (long arrow, villus length; short arrow, muscle thickness). (A) 0% APS; (B) 0.05%
APS; (C) 0.10% APS; (D) 0.15% APS; (E) 0.20% APS; (F) villus length; (G) muscle thickness. Scale bar,
200 µm. Values are shown as the mean ± SE (n = 3). Different letters indicate a significant difference.
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Table 4. Liver immune ability in coral trout (Plectropomus leopardus) fed different Astragalus polysac-
charides (APS) dietary levels.

Parameters Diets (APS %)

0 0.05 0.10 0.15 0.20

ACP activity (U/g prot) 441.91 ± 6.67 a 509.27 ± 10.40 b 535.59 ± 20.48 bc 563.56 ± 17.67 c 528.06 ± 9.25 bc

AKP activity (U/g prot) 87.01 ± 2.96 a 98.50 ± 4.57 ab 99.70 ± 5.84 ab 105.81 ± 6.99 b 98.03 ± 3.15 ab

C3 content (µg/mg prot) 142.54 ± 9.26 a 150.56 ± 6.42 a 188.37 ± 6.75 b 191.58 ± 9.57 b 157.58 ± 9.06 a

C4 content (µg/mg prot) 27.21 ± 3.96 a 34.16 ± 1.24 ab 36.35 ± 2.80 ab 39.18 ± 2.76 b 27.70 ± 3.39 a

IgM content (µg/mg prot) 49.03 ± 1.12 ab 45.02 ± 1.67 a 55.73 ± 3.42 bc 60.40 ± 2.33 c 45.43 ± 3.34 a

LZ activity (µg/mg prot) 143.92 ± 5.47 a 148.98 ± 3.70 ab 164.79 ± 2.43 c 165.55 ± 4.69 c 161.48 ± 2.86 bc

Values are shown as the mean ± SE (n = 3). ACP, acid phosphatase; AKP, alkaline phosphatase; C3, complement
3; C4, complement 4; IgM, immunoglobulin M; LZ, lysozyme. Different letters indicate significant differences
between the treatments.

3.6. Relative mRNA Expression in the Liver

Figure 3 shows the antioxidant and immune-related gene expression in coral trout
across the different APS groups. The highest relative expression levels of SOD-2, GSH-Px1a,
and ACP6 were observed in the APS-treated groups, with significant differences from the
control (p < 0.05). The 0.15% APS group exhibited significantly higher expression levels of
these genes, along with AKP, C3, C4-b, and LZ-c, compared to the control and 0.20% APS
groups (p < 0.05). Moreover, the expression levels of SOD-2, GSH-Px1a, ACP6, AKP, C4-b,
and LZ-c were significantly increased in the 0.10% and 0.15% APS groups compared to the
control (p < 0.05).

3.7. Gut Microbiota
3.7.1. Intestine Microbial Diversity

Figure 4A shows the alpha-diversity indices, including Chao 1, Shannon, and Simpson.
The Chao1 index of the 0.15% APS group was considerably higher compared to the control
group (p < 0.05). No significant differences in the Shannon and Simpson indices were
observed (p > 0.05). The rarefaction curves of species in the intestines of the two groups
indicated that the sequencing depth was sufficient (Figure 4B). A principal co-ordinates
analysis (PCoA) plot based on a weighted UniFrac distance matrix was executed to show a
clear separation between intestinal microbial communities in coral trout fed with APS and
control diets, indicating significant compositional differences (Figure 4C).
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(Plectropomus leopardus) fed different Astragalus polysaccharides (APS) dietary levels. Values are shown
as the mean ± SE (n = 3). The full names of the PCR target genes (SOD-1, SOD-2, CAT, GSH-Px1a,
ACP6, AKP, C3, C4-b, IgM, LZ-c, and GAPDH) are provided in Table S2. Different letters indicate a
significant difference.
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Figure 4. Alpha-diversity and beta-diversity of the gut bacterial community in coral trout (Plectropo-
mus leopardus) fed different Astragalus polysaccharides (APS) dietary levels. (A) Chao1, Shannon, and
Simpson index. Values are shown as the mean ± SE (n = 3) via the student’s two-tailed t-test. Different
symbols (*, p < 0.05; ns, not significant) indicate significant differences (p < 0.05). (B) Rarefaction curve
of the intestines in coral trout fed different APS dietary levels. (C) PCoA (Principal Co-ordinates
Analysis) of the intestines in coral trout fed different APS dietary levels based on weighted UniFrac
distances. Control, 0% APS group; APS, 0.15% APS group.

3.7.2. Intestine Microbial Composition

Figure 5 presents the relative abundance of intestinal flora, providing an overview of
the microbial composition at both the phylum and genus levels. According to the taxonomic
results at the phylum level (Figure 5A,B, top 10), in the control group, Proteobacteria was the
most abundant, followed by Spirochaetota, Firmicutes, and Actinobacteriota, at 58.95%, 27.96%,
3.50%, and 2.92%, respectively. Conversely, in the 0.15% APS group, Firmicutes was the
predominant phylum, followed by Proteobacteria, Actinobacteriota, and Cyanobacteria (46.58%,
42.04%, 3.51%, and 2.46%, respectively). Based on the taxonomic results at the genus level
(Figure 5C,D, top 10), Brevinema and Motiliproteus (33.11% and 29.35%, respectively) were
more dominant in the control group, whereas Photobacterium, Bacillus, and Fictibacillus
(31.67%, 17.18%, and 15.95%, respectively) were more abundant in the 0.15% APS group.
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4. Discussion

The current study demonstrates that dietary supplementation with 0.15% APS resulted
in the highest WGR and SGR in coral trout, suggesting that APS positively influences coral
trout growth. These findings align with previous research on Nile tilapia [21] and large
yellow croaker [7]. The growth-promoting effects of APS on coral trout can be attributed to
two key factors. First, the appropriate APS dosage stimulated increased α-amylase and
lipase activities in coral trout. Digestive enzyme activity is often considered an indirect indi-
cator of fish growth [31]. In the present study, we identified a positive correlation between
digestive enzyme activity and growth markers (WGR and SGR), potentially explaining
the growth-promoting effects of APS on coral trout. Similarly, studies on largemouth bass
(Micropterus salmoides) [32], large yellow croaker [7], crucian carp [18], giant freshwater
prawn (Macrobrachium rosenbergii) [33], and spotted sea bass (Lateolabrax maculatus) [34]
demonstrated that dietary APS supplementation significantly enhanced digestive enzyme
activities. Additionally, intestinal morphological characteristics are essential for evaluating
the digestive capacity and intestinal health of fish [35]. Supplementation with 0.1% to
0.15% APS has been shown to increase intestinal villus length and muscle thickness, which
could also explain the accelerated growth of coral trout. This result is consistent with
the findings of Liu et al. [7] and Duan et al. [32], who observed similar effects in large
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yellow croaker and largemouth bass, respectively. However, a high dose of APS (0.20%)
did not further improve WGR and SGR compared to a moderate dose (0.15%), indicating
potential immunosuppressive effects at higher doses, which may suppress growth perfor-
mance [18,26]. In this study, the optimal APS dosage (0.1455%) was established according
to the SGR of coral trout. Studies with similar results have indicated that the growth of
aquatic animals initially increases with enhanced APS supplementation but eventually
plateaus and declines [7,17,19]. Despite these findings, the role of APS in enhancing the
growth of aquatic animals is not fully understood. Previous studies have shown that
feeding APS to sea cucumbers (Apostichopus japonicus) [9] and red claw crayfish [22] did
not enhance their growth. These studies demonstrate that the growth impact of APS in
aquatic animals was contingent on the species, dosage, and experimental conditions. Thus,
cultivation strategies that are carefully adapted to the needs of each fish species should be
developed to enhance growth performance.

APS is also considered a potent antioxidant, potentially effective in boosting antioxi-
dant enzyme activity and reducing oxidative stress in aquatic species [26,36]. MDA is a
major and most extensively studied biomarker of lipid peroxidation [7,37]. In this study,
the antioxidant capacity of coral trout was notably improved with APS supplementation, as
evidenced by increased activities of SOD, CAT, GSH-Px, and T-AOC, along with a decrease
in MDA levels, particularly in the 0.15% APS group. Earlier research has demonstrated
similar outcomes, demonstrating that APS supplementation could boost SOD, CAT, and
T-AOC activities in large yellow croaker [7] and largemouth bass [32], and significantly
reducing MDA content. Yu et al. [26] also observed that adding APS to the diet of Asian
seabass (Lates calcarifer) significantly enhanced SOD, CAT, and GSH-Px activities, increased
T-AOC levels, and reduced MDA contents, though the maximum dose of 0.20% APS did
not yield the highest total antioxidant capacity. In line with their findings, our study found
that when the APS dose was increased to 0.2%, the GSH-Px activity and T-AOC contents in
the liver were significantly lower than those observed in the 0.15% group, suggesting that
higher levels of APS may not provide additional antioxidant benefits for coral trout.

ACP and AKP are crucial for enhancing fish resistance to microbial pathogens [38].
Previous research by Zhang et al. [39] on large yellow croaker (Larimichthys crocea) and
by Song et al. [9] on sea cucumber demonstrated that APS could enhance the activities
of non-specific immune enzymes, such as ACP and AKP. C3, C4, IgM, and LZ serve as
key indicators of fish immunity [40]. APS significantly enhanced the aforementioned
immunological parameters in C. argus [23] and L. calcarifer [26]. Consistent with these
findings, the present study found that APS significantly boosted ACP, AKP, and LZ activity
along with C3, C4, and IgM levels in coral trout, showing the highest levels in the 0.15%
APS group. However, when the APS dose was increased to 0.2%, the C3, C4, and IgM
levels significantly dropped compared with those observed in the 0.15% group. Similarly,
Pu et al. [16] and Wu [18] found that high levels of Astragalus membranaceus polysaccharide
(AMP) did not further enhance the innate immune response in white shrimp and crucian
carp compared to moderate AMP levels. These results indicated that coral trout do not
require higher APS levels.

To better understand the effects of APS supplementation on coral trout, we analyzed
mRNA levels in the liver and found that diets containing 0.15% APS significantly upreg-
ulated the expression of SOD-1, SOD-2, CAT, GSH-Px1a, ACP6, AKP, LZ-c, IgM, C3, and
C4-b. While increased mRNA levels partially elevated enzyme activity, the changes in
enzyme activity did not always align with mRNA expression [41]. Our study on coral trout
revealed that only the liver levels of CAT, GSH-Px, ACP, LZ, C3, and C4 were consistent
with the trends in mRNA expression. In groups fed 0.2% APS, the expression levels of
SOD-2, GSH-Px1a, ACP6, AKP, C3, C4-b, and LZ-c were notably lower than those in groups
fed with 0.15% APS. This alteration corresponded to the trend observed in enzyme activity
changes in the liver, implying that an excess of APS reduced its effectiveness.

Intestinal microbes are crucial for nutrient digestion, absorption, and the overall health
of fish [42]. Research has shown that herbal medicines can stimulate appetite and influence



Microorganisms 2024, 12, 1980 12 of 15

microbial communities within animals, with greater diversity in the intestinal microbiota
leading to higher functional stability [8,43,44]. We found that the APS-fed groups had
higher diversity indices (Chao1, Shannon, and Simpson) than the control group, suggesting
that APS supplementation supports intestinal homeostasis. Additionally, PCoA analysis
with weighted UniFrac distances and differences in intestinal bacterial composition in the
control and APS groups indicated that dietary APS modified the intestinal microbiota in
coral trout. Therefore, a certain amount of APS enhances intestinal health.

APS can benefit gut microbial communities by enhancing the growth of beneficial
bacteria while reducing the risk of bacterial and viral infections [19,24]. At the phylum level,
most species within Proteobacteria and Spirochaetota act as conditional pathogens [44,45].
The study results indicated that the relative abundances of Proteobacteria and Spirochaetota
in the APS group were lower than those in the control group, suggesting that dietary APS
supplementation reduces the risk of intestinal diseases in fish. Conversely, the abundance
of Firmicutes, which play a critical role in the hydrolysis of maltose and trehalose, increased
under the APS diet [46]. Firmicutes species are linked to butyrate production, which is
crucial for gut microbiota-immune system communication, prevents intestinal infections
by inhibiting pathogen adhesion to aquatic surfaces, and stimulates the innate immune
response [47–49]. The observed increase in Firmicutes and the decrease in Proteobacteria
and Spirochaetota abundance suggest that APS supplementation can potentially enhance
intestinal health by mitigating the risk of intestinal diseases in fish. The Bacillus genus
is widely used as a probiotic in aquaculture due to its ability to promote gut health and
inhibit pathogenic bacteria [43,50,51]. Brevinema, a potential pathogen in the Spirochaetota
phylum, was found to decrease in abundance in pompano (Trachinotus ovatus) as glycerol
monolaurate levels increased [52], consistent with our findings. At the genus level, APS
supplementation boosted beneficial bacteria such as Bacillus in the intestines of coral trout
while suppressing harmful bacteria such as Brevinema, thereby optimizing the gut microbial
composition and structure. These results suggest that APS supplementation may have a
favorable effect on the intestinal health of coral trout. However, there is a limitation in
the present study in that the gut microbiome of slow-growing fish has not been analyzed.
Studying both high-growth and slow-growing fish could reveal how APS impacts the gut
microbiome across different growth rates. Future research should investigate how APS
may influence the gut microbiome at varying growth rates.

5. Conclusions

This study demonstrates that adding 0.15% APS can improve the growth, antioxidant
capacity, immune function, and intestinal health of coral trout. However, compared with a
moderate level of APS (0.15%), a high level of APS (0.20%) did not improve the efficiency
of APS on the growth and health of coral trout. Therefore, 0.15% APS was optimal for
coral trout growth. Furthermore, cubic regression analysis determined that the optimal
APS level for maximum coral trout growth was 0.1455%. The study findings offer fresh
perspectives on the underlying mechanisms of APS use in coral trout feed.
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