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Abstract: Human health and the human microbiome are inevitably intertwined, increasing their
relevance in clinical research. However, the collection, transportation and storage of faecal samples
may introduce bias due to methodological differences, especially since postal shipping is a common
practise in large-scale clinical cohort studies. Using four different Omics layer, we determined the
structural (16S rRNA sequencing, cytometric microbiota profiling) and functional integrity (SCFAs,
global metabolome) of the microbiota in relation to different easy-to-handle conditions. These
conditions were storage at −20 ◦C, −20 ◦C as glycerol stock, 4 ◦C and room temperature with and
without oxygen exposure for a maximum of one week. Storage time affected the microbiota on all
Omics levels. However, the magnitude was donor-dependent, highlighting the need for purpose-
optimized sample collection in clinical multi-donor studies. The effects of oxygen exposure were
negligible for all analyses. At ambient temperature, SCFA and compositional profiles were stable
for 24 h and 48 h, respectively, while at 4 ◦C, SCFA profiles were maintained for 48 h. The global
metabolome was highly susceptible, already changing at 24 h in non-frozen conditions. Thus, faecal
microbiota was best preserved on all levels when transported as a native sample frozen within 24 h,
leading to the least biased outcomes in the analysis. We conclude that the immediate freezing of
native stool samples for transportation to the lab is best suited for planned multi-Omics analyses that
include metabolomics to extend standard sequencing approaches.

Keywords: faecal samples; intestinal microbiota; storage conditions; untargeted metabolomics;
short-chain fatty acids; microbiota flow cytometry; 16S rRNA sequencing

1. Introduction

Research focussing on the human microbiota, particularly the intestinal microbiota, has
gained broad interest over the past 20 years. One reason for this is the acknowledgement of
the microbiota as an integral, essential part of the human body. Stool has thus emerged as a
valuable specimen alternative to blood or urine.

Despite compositional differences among individuals, the microbiota have to provide
core functions, e.g., biosynthesis of vitamins, short-chain fatty acids, secondary bile acids
or enzymes involved in digestion, as well as favouring gut homeostasis by maintaining
epithelial integrity, educating and modulating the immune system and protecting against
pathogenic species [1,2]. Mapped at the pathway level, these microbial core functions seem
homogenous across healthy individuals [3].
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The metabolome has widely been recognized as an accurate reflection of the bacterial
phenotype, and metabolites have been shown to mediate host–microbiota interactions in
the gut and extra-intestinal, distant body sites [4,5]. Thus, a functional characterization
of the microbiota may help to better understand how the microbiota differs in health
and disease. The metabolome has recently become a frequent focus in research, aiming
at advancing disease diagnosis and prognosis, as well as unravelling the mechanism
behind pathologies [6,7]. However, one of the key challenges in utilizing stool samples
for such research lies in the stability of the faecal metabolome. Variability in sample
preservation, ongoing biochemical reactions and external factors can significantly impact
metabolite integrity, thereby complicating biomarker discovery and highlighting the need
for optimized sample logistics.

Reflecting the broad interest in understanding microbial dysbiosis on a taxonomic level,
e.g., using 16S rRNA sequencing or shotgun metagenomics, various studies investigated the
impact of stool sample logistics and preservation in the past [8–12]. Changes in microbiota
composition, commonly termed dysbiosis, are associated with a variety of different diseases.
These shifts generally comprise a reduction in microbial diversity [13,14], a bloom of
pathobionts, a loss of beneficial bacteria [15] or changes in microbial functionality [16]. The
latter remains insufficiently investigated [8,17], with a limited number of studies focusing
on microbial metabolomics [18–20]. For metabolomics and sequencing-based methods, the
addition of preservatives does not hinder downstream analysis [18,21,22]. But methods
relying on sample integrity such as metaproteomics, cytomics or culturomics cannot be
applied, suggesting that native stool sample collection is the appropriate procedure in large
clinical cohort studies.

Thus, we aimed to define optimal parameters for sample logistics, which allow for
the preservation of a sample and only marginally impact the microbiota. The simulated
storage conditions utilized in our study were selected for unsupervised home sampling
and transportation at low costs, being the most common in clinical trials and research
studies and being the preferred method by participants [23]. We simulated eight different
conditions in which samples were maintained at different temperatures in the presence
and absence of oxygen for up to one week and compared them to the “gold standard” of
immediate freezing at −80 ◦C [18,24]. Using four different Omics layers, we determined
structural changes by 16S rRNA sequencing and cytometric microbiota profiling. Func-
tional integrity was assessed via SCFA targeted profiling and untargeted metabolomics for
characterizing small molecules originating from both the microbiota and host, as well as
diet and external exposures.

2. Methods
2.1. Simulation of Stool Sample Logistics Under Different Conditions

The stool of six healthy donors (two female and four male donors, aged between 24
and 44) was collected under the approval of the local ethics committee of the Charité Berlin
(reference: EA4/014/20; EA2/113/20), and the donors gave written consent. The donors
had no antibiotic treatment three months prior to this experiment, no chronic disease
and were not on medication. The stool samples were put under anaerobic conditions
(Anaerocult P, Oxoid, Hampshire, UK) directly after defaecation and transported to the
laboratory within 30 min. There, the stool samples were transferred into an anaerobic
chamber (Coy laboratories, Grass Lake, MI, USA) for homogenization. As a fresh reference
sample, 100 mg homogenized stool was directly processed anaerobically for the respective
analysis, i.e., metabolomics, microbiota profiling and 16S rRNA sequencing, and then snap-
frozen in liquid nitrogen for subsequent storage at −80 ◦C. The remaining homogenized
stool was split in two equal parts for (i) anaerobic processing and (ii) aerobic sample
processing and was again homogenized. Each sample was split into four parts to simulate
the respective storage conditions, i.e., 1. native at −20 ◦C, 2. 1:10 diluted −20 ◦C in 12.5%
glycerol in PBS, 3. native at 4 ◦C and 4. native at room temperature (RT). The selected
conditions mirror those of the samples frozen in the absence (1.) or presence (2.) of glycerol
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under faecal microbiota transplantation conditions [25,26], chilled (3.) and unchilled (4.)
storage and subsequent transportation to the laboratory. All anaerobic stool samples were
kept under anaerobic atmosphere and were stored like their aerobic counterparts. The
experimental procedure is visualized in Figure 1.
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Figure 1. The experimental procedure for simulating sample logistics under different conditions.
Samples were collected under anaerobic conditions. The samples were split into two and homoge-
nized in an anaerobic or aerobic atmosphere. From the anaerobic sample, an aliquot was taken for
immediate storage at −80 ◦C as reference. The homogenized samples were then stored at −20 ◦C,
4 ◦C and room temperature (RT) or at −20 ◦C with glycerol as cryoprotectant both under anaerobic
and aerobic conditions for 4 h, 24 h, 48 h and 168 h. After all samples were collected, the samples were
analysed using microbiota flow cytometry and 16S rRNA sequencing targeting different levels of
microbiota composition and using untargeted metabolomics and SCFA profiling to unravel functional
changes. * 102 samples for 16S rRNA sequencing, 198 for other Omics.

After 4 h, 24 h, 48 h and 168 h, 100 mg stool or 1 mL 1:10 diluted stool in 12.5% glycerol
were aliquoted anaerobically or aerobically, respectively. For metabolomics, the stool
samples were snap-frozen in liquid nitrogen and transferred to −80 ◦C prior to metabolite
extraction. Subsequently, 100 mg of each faecal sample was mixed with 500 µL acetonitrile
(ACN)/water (1:1, v/v) and homogenized using a TissueLyser II (30 Hz, 10 min; Retsch
Qiagen, Hilden, Germany). After centrifugation (2 min, 14,000 rpm), 100 µL was used for
untargeted metabolomics, and 38 µL was used for a further derivatization of short-chain
fatty acids. For microbiota flow cytometry and 16S rRNA sequencing, undiluted stool
aliquots (conditions 1., 3. and 4.) were diluted 1:10 in PBS or pre-reduced PBS, respectively.
All diluted stool samples were filtered by 30 µM mesh (MACS SmartStrainer, Miltenyi
Biotech, Bergisch Gladbach, Germany). A total of 10 µL of filtered stool was utilized for
DNA extraction, and the remaining diluted stool samples were prepared for microbiota
flow cytometry.

Once all samples for all modelled storage conditions were collected, we processed the
samples at once and analysed them using microbiota flow cytometry, 16S rRNA sequencing,
untargeted metabolomics and SCFA profiling (n = 198, n = 102 for 16S analysis).

2.2. Untargeted Metabolomics

For the second extraction step, 100 µL of faecal supernatants was mixed with 500 µL
methanol/ACN/water (2:3:1, v/v/v) followed by vortexing and sonication. After cen-
trifugation, 100 µL of the supernatant was dried in a SpeedVacTM vacuum concentrator
(Eppendorf, Hamburg, Germany). The extracts were resuspended in 100 µL 1% ACN and
0.1% formic acid in water. For LC-MS/MS analysis, 10 µL of each sample was injected
onto a UPLC system coupled on-line with a 6546 UHD Accurate-Mass QTOF (both Agilent
Technologies, Santa Clara, CA, USA). Extracts were loaded on a UHPLC guard (ZORBAX
RRHD Eclipse Plus C18, 1.8 µm, 2.1 mm, Waters, Milford, MA, USA), and separation was
achieved on a C18 column (ZORBAX RRHD Eclipse Plus C18, 1.8 µm, 2.1 × 100 mm,
Waters). The flow rate was set constant at 0.3 mL/min using a binary solvent system of A
(0.1% formic acid in water) and B (0.1% formic acid in ACN). The gradient was as follows:
0–5 min 1% B, 5.1–20 min 1–100% B and 20.1–25 min 1% B. Samples were acquired in
negative ionization mode only and run in randomized order. The QTOF was set up in
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centroid mode with a scan range of 50–1000 m/z. Fragmentation was obtained using a
Top2-method. The exclusion time after two same spectra per cycle was 0.2 min.

The obtained raw data (.d-files) were imported into Progenesis QI® software (version
2.1, Waters Corporation, Milford, MA, USA). All samples were processed together in a
generic workflow. The adduct ions involved [M-H], [M-H2O-H] and [M-H+ACN] for the
ionization mode. Chromatograms were aligned in the tR direction based on a reference
chromatogram automatically chosen from the data set. After peak detection, only peaks
with MS and MS/MS information were used for the subsequent database search. Using
the built-in ChemSpider plug-in, the faecal metabolome database (6738 compounds), E.
coli metabolome database (755 compounds) and KEGG database (19,090 compounds) were
used for identification. Precursor and fragment mass tolerance were set to 10 ppm. The
resulting feature matrix was exported, and features without any putative identification
were removed, as well as features having higher peak areas in solvent blank samples
than the mean peak area in the data set. Progenesis and fragment score were set to ≥40
and 5, respectively.

2.3. Short-Chain Fatty Acid Analysis

SCFA derivatization was conducted as previously described in a study by Han
et al. [27]. In brief, samples were mixed with ACN to a final concentration of 50%. Subse-
quently, SCFAs were derivatized using 200 mM 3-nitrophenylhydrazine and 120 mM N-(3-
dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride in pyridine. The derivatized
compounds were then diluted in 10% ACN. Samples were injected onto a RSLC UltiMate
3000® system (Thermo Fisher, Waltham, MA, USA) coupled on-line with a QTRAP 5500®

mass spectrometer (Sciex, Framingham, MA, USA). The chromatographic separation of
SCFAs was achieved using an ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm,
Waters, Milford, MA, USA) with a matching pre-column. LC was run at a constant flow
rate of 0.35 mL/min with a binary solvent system (A: 0.01% formic acid in water and
B: 0.01% formic acid in ACN). A scheduled MRM method with specific transitions for
every SCFA was conducted for identification and quantification. Data acquisition and peak
integration were performed using the Analyst® software (Version 1.7.1), and samples were
measured in randomized order. The absolute quantification of SCFAs was conducted using
external calibration curves for each compound measured in the beginning, middle and
end of the batch.

2.4. DNA Extraction and 16S rRNA Sequencing

As described previously [28], 10 µL 1:10 diluted stool was mixed with 30 volumes of
sterile 10% Chelex (w/v) solution. For cell disruption, samples were incubated at 95 ◦C for
45 min and 1000 rpm shaking (ThermoMixer, Eppendorf, Hamburg, Germany). To remove
cell debris, the suspension was centrifuged for 3 min at 13,000× g. The DNA-containing
supernatant was transferred into a fresh, sterile tube and stored at −20 ◦C. Since it was
already shown that the taxonomic composition, determined by 16S rRNA sequencing
or metagenomics, is relatively robust against sample logistic conditions [10,29], we only
analysed the 24 h and the 168 h samples by 16S rRNA sequencing.

2.4.1. 16S Library Preparation

In brief, the V3–V4 region of the bacterial 16S gene was amplified using barcoded bacterial
primers V3 forward: CCTACGGGNGGCWGCAG and V4 reverse: GACTACHVGGGTATC-
TAATCC [30] according to the Illumina protocol for 16S library preparation. V3–V4 amplifica-
tion was performed using 12.5 µL 2× KAPA HiFi HotStart ReadyMix (Roche Applied Science,
Penzberg, Germany), 2.5 µL genomic DNA adjusted to 5 ng/µL and 5 µL V3 forward and V4
reverse primer at 1 µM concentration. After initial denaturation (3 min, 95 ◦C), 35 cycles of 30 s
95 ◦C denaturation, 55 ◦C annealing and 72 ◦C elongation were performed. Amplicon size
was checked in a 1% agarose gel. Amplicons were cleaned using AMPure XP beads (Beckman
Coulter, Krefeld, Germany) according to the Illumina protocol. Depending on amplicon band
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intensity, a minimum of 5 µL amplicon DNA was used as the template in index PCR. Index
PCR was conducted using the Nextera XT v2 Index kit C (Illumina, San Diego, CA, USA),
together with 5 µL of each index primer and 25 µL 2× KAPA HiFi HotStart ReadyMix in
a total volume of 50 µL, with initial denaturation (3 min, 95 ◦C) during eight cycles of 30 s
at 95 ◦C, 30 s at 55 ◦C and 30 at 72 ◦C. The indexed amplicons were purified with AMPure
XP beads and quality- and size-checked on a Fragment Analyzer 5200 (Agilent Technologies,
Santa Clara, CA, USA). Amplicon concentrations were quantified fluorometrically (Qubit,
Invitrogen, Waltham, MA, USA) and subsequently pooled in equimolar concentrations to
4 nM. A total of 5 pM of the denatured pool was loaded and sequenced on an Illumina MiSeq
instrument ((Illumina, San Diego, CA, USA).

2.4.2. 16S rRNA Sequence Processing

The obtained paired-end reads were filtered and trimmed using Trimmomactic (ver-
sion 0.39) [31]. 5′ bases below a quality threshold of 35 were trimmed, and 3′ bases with
a quality threshold of 5 were trimmed. Reads shorter than 180 bases were filtered out.
The remaining reads were processed using the DADA2 pipeline (version 1.26) in R [32].
Forward and reverse reads were removed when they were shorter than 260 bp or 210 bp,
respectively, and reads with a minimum quality score of 12 were filtered out. Error rate
estimation was performed with the maximum possible number of bases. Denoised forward
and reverse reads were merged with default settings. Taxonomy was assigned using the
Silva database v138.1.

After taxonomic annotation, data were processed using the phyloseq package [33]. For
statistical analyses, samples were rarefied to obtain an equal sample depth of 15,000 reads/
sample (Supplementary Figure S1). To compare the alpha diversity per sample, the Shannon
index [34] and the number of observed amplicon sequence variants (ASVs) were compared.
For further analysis, low abundant ASVs with a prevalence threshold of 5% across samples
were excluded using the phyloseq_filter_prevalence function from the metagMisc package
(version 0.5.0). Taxonomic binning was conducted with the help of the Rhea package [35]
prior to data analysis and statistics.

2.5. Microbiota Flow Cytometry

The optical density (OD) of the filtered stool was determined spectroscopically at
620 nm (Multiskan FC, Thermo Fisher Scientific, Waltham, MA, USA). The stool filtrates
were diluted to 1.6 OD/mL in 25% glycerol in LB medium, snap-frozen and transferred
to −80 ◦C. For cytometric analysis, 25 µL of the 1.6 OD/mL glycerol stock (=0.04 OD) as
well as a pool of all samples per donor was washed with 1 mL 0.22 µM sterile-filtered PBS
and centrifuged at 5000× g for 10 min at 4 ◦C. The bacteria were stained in 100 µL 5 µM
Hoechst (Thermo Fisher Scientific, Waltham, MA, USA) for 30 min, and the pooled samples
remained unstained by adding 100 µL PBS. Residual Hoechst solution was removed by
adding 900 µL sterile-filtered PBS followed by centrifugation (5000× g, 10 min, 4 ◦C).
The bacteria pellet was suspended in 1 mL sterile-filtered PBS. Prior to acquisition, 1 µL
Bright Blue calibration beads were added as size reference. Samples were diluted to an
event rate of ~10,000 events/s, and 300,000 Hoechst positive events were acquired using a
BD Influx instrument (BD Biosciences, Franklin Lakes, NJ, USA), resulting in single-cell
resolved microbiota profiles. Cytometric profiles were analysed in the FlowJo (version
10.8.1) software. There, instrument noise and debris were excluded, and intact bacterial
cells were defined. From these, Hoechst-positive events were selected and were gated with
a grid to extract relative gate abundances to compare samples for each donor and across
donors (Supplementary Figure S2).

2.6. Data Analysis and Statistics

The calculation of statistics and visualization of data were conducted in R version
4.1.1 [36]. Differences in community composition (beta diversity) are based on rarefied and
prevalence-filtered genus abundances, absolute and relative SCFA abundances, cytometric
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relative gate abundances and the relative abundance of putatively identified metabolites
(feature matrix). Briefly, Bray–Curtis distances were extracted during non-metric multi-
dimensional scaling (NMDS) using the metaMDS function from the vegan package in R
(version 2.6) [37,38]. When BC similarity was utilized, the similarity was calculated as BC
similarity = 1 − BC distance. Further, intra-individual BC similarity was represented by the
mean BC similarity of all samples per donor to the respective fresh sample. Inter-individual
BC similarity was calculated as the mean BC of all samples to the fresh sample of all
other donors. Differences between groups were calculated using the permutational multi-
variate analysis of variance (PERMANOVA) function from the vegan package in R (version
2.6) [37], and individual group comparisons were calculated using the pairwise.adonis2
function (version 0.4). For the significance testing of individual variables, a Kruskal–Wallis
group test followed by a post hoc pairwise Dunn test from the rstatix package (version
0.7.2) was applied, if not stated differently. Cluster dendrograms were calculated with
heatmap.2 (version 3.1.3.1) and correlations with the stat_cor function from the ggpubr
package (version 0.6.0). Correlations were conducted using the Kendall method to handle
non-normal distributed data. If not stated otherwise, figures were generated using ggplot2
(version 3.5.1) [39].

3. Results

To understand the impact of storage conditions (temperature, glycerol preservation
during freezing) and oxygen exposure over time, we mimicked eight different sample
logistic scenarios. To determine microbial composition, we profiled the structure of the
microbial communities with microbiota flow cytometry (MFC) and the taxonomic composi-
tion by 16S rRNA sequencing. With targeted SCFA and untargeted global metabolomics,
we characterized the effects of sample logistics on the microbial metabolome.

3.1. The High Inter-Donor Variability in Faecal Microbiota Composition and Functionality Masks
the Potential Effects of Sample Logistics

For a general overview, we performed clustering analyses based on compositional
and functional microbiota profiles across all Omics with resolution for donor, time point,
oxygen exposure and storage condition (Figure 2).
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Glycerol-stored samples were excluded from the clustering analysis for untargeted
metabolomics due to severe differences in the base peak chromatograms (Supplementary
Figure S3). Hierarchical clustering revealed donor-specific segregation, with no clustering
by storage, time or oxygen exposure (Figure 2).

We then utilized non-metric dimensional scaling (NMDS) analysis to determine the
clustering of samples due to the individuals (Figure 3).
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Donor-specific clustering was evident in the cytometric microbiota analysis (MFC) and
untargeted metabolomics, indicating a higher donor segregation of microbiota profiles in
MFC and global metabolomics compared to that in 16S rRNA profiling and SCFA analysis,
which showed more cluster overlap between donors.

To confirm the donor individuality observed within the different Omics techniques,
we extracted Bray–Curtis (BC) distances during NMDS calculation and quantified the intra-
and inter-individual similarity of the microbial profiles (Figure 4).

Consistent across all Omics data sets, the intra-individual BC similarity was signif-
icantly higher compared to inter-individual BC similarities (Figure 4A), suggesting that
sample logistics at all conditions tested within this study preserved the individuality of the
microbiota. The difference in inter- and intra-individual BC similarity was higher in analy-
ses with highly individual clustering, i.e., MFC and untargeted metabolomics, compared
to those with more overlapping profiles, i.e., SCFA and genus-level profiles (Figure 4B).
However, BC similarity decreased over time, regardless of storage conditions, indicating
that microbiota composition and function change with time, particularly for untargeted
metabolomics (R = −0.44) and MFC (R = −0.32), while SCFAs (R = −0.2) and 16S rRNA
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(R = −0.17) were less affected (Figure 4C). After 4 h, all profiles had a significantly lower
BC similarity to their corresponding fresh microbiota (Supplementary Figure S4). When
comparing the respective profiles against the 4 h time point (Supplementary Figure S4,
asterisks in brackets), we can confirm that an increased storage time significantly impacts
the global metabolome profile and single-cell resolved microbiota profiles, while SCFAs
and 16S rRNA profiles remain relatively stable.
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(BC) similarity across all Omics. Group comparison with Student’s t-test. (B) Difference between
intra- and inter-individual BC similarities. (C) Correlation of BC similarity and time per Omics data
set using Kendall correlation for non-parametric data.

Due to the very high donor individuality observed in the initial clustering, we analysed
sample logistic-dependent changes on the individual level (Supplementary Figure S5). And
indeed, the impact of sample logistics on the donors’ microbiota varied significantly.

3.2. SCFA Concentrations Increase over Time Under Non-Frozen Conditions, Especially When
Kept Anaerobic

We then performed a detailed analysis of the different conditions to assess their impact
on individual samples and identify suitable logistics preserving microbiota composition
and functionality. SCFAs were identified and quantified by targeted mass spectrometry
(Figure 5).

The BC similarity of each sample kept under different conditions was compared to
that of the fresh sample resolved per donor and as the mean across donors (Figure 5A).
Reflecting the high individuality of the donors, SCFA profiles showed donor-specific
changes (Figure 5A). While BC similarity decreased significantly across all conditions
(Supplementary Table S1), compared to the 4 h time point, only samples stored at RT for
168 h under anaerobic conditions showed significant changes (Supplementary Table S2).
Nevertheless, BC similarity gradually decreased at RT and 4 ◦C, independent of oxygen
exposure, but remained stable at −20 ◦C (Supplementary Table S2).
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Figure 5. Changes in SCFA profiles and concentrations. (A) Heat map visualization of BC similarity
per SCFA profile compared to fresh, resolved for storage conditions and oxygen exposure, plotted
individually per donor and as mean. (B) Heat map of log2-fold changes calculated using SCFA
concentrations [µM]. Pairwise comparisons were calculated using Wilcoxon rank sum test for non-
parametric data compared to 4 h time points in A and compared to fresh sample in B (n = 6). Asterisks
indicate significance.

To determine changes within the SCFA profiles, we compared the absolute SCFA abun-
dances [µM] as log2-fold changes to “fresh” samples (Figure 5B, Supplementary Table S4).
Many SCFA levels increased over time under anaerobic and non-frozen conditions. At
RT, the concentrations of acetate, butyrate, propionate and valerate increased signifi-
cantly after 24 h, while at 4 ◦C, an increase in acetate, propionate, butyrate, isobutyrate,
2-methylbutyrate and isovalerate was observed after 168 h. Furthermore, glycerol signifi-
cantly altered several SCFAs under both aerobic and anaerobic conditions, in particular
acetate, isobutyrate, 2-methylbutyrate, valerate and isovalerate. SCFA concentrations re-
mained stable for up to 48 h at 4 ◦C and up to 168 h at −20 ◦C without glycerol. Despite the
observed changes in absolute SCFA levels, relative profiles remained similar to the fresh
profiles across conditions and time (Supplementary Figure S6).

In summary, storage at 4 ◦C or freezing at −20 ◦C without glycerol best preserved
SCFA profiles.
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3.3. Global Metabolite Profiles Are Highly Sensitive to Sample Logistics

The global metabolite profiles were significantly altered compared to the fresh samples
already after 4 h, independently of any condition, indicated by the significantly lower BC
similarity (Figure 6, Supplementary Table S1).
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Figure 6. Changes in global metabolite profiles and metabolite abundances. (A) Heat map visualiza-
tion of BC similarity per global metabolite profile compared to fresh, resolved for storage conditions
and oxygen exposure, plotted individually per donor and as mean. (B) Classification of metabolites
(total n = 93) identified in all fresh samples assigned to compound classes. (C) Heat map of log 2-fold
changes calculated on metabolite abundances [AUC]. Pairwise comparisons were calculated using
Wilcoxon rank sum test for non-parametric data compared to 4 h time points in (A) and compared to
fresh sample in C (n = 6). Asterisks indicate significance.

Compared to the 4 h samples, the global metabolome was significantly altered after
48 h or longer at 4 ◦C and RT both in the presence and absence of oxygen (Supplementary
Table S2). Higher temperatures and longer storage times had a greater impact on the
metabolome, reflected in significant alterations at 4 ◦C and RT. At −20 ◦C without glycerol,
the metabolome remained stable. Glycerol dramatically affected the metabolome, especially
for donors D5 and D6 (Figure 6A), leading to the exclusion of glycerol containing samples
from downstream analysis.

We selected 93 metabolites that were detectable in the fresh samples across donors.
These comprised different substance classes covering amino acids, bile acids, SCFAs and
other microbial or dietary metabolites (Figure 6B). We tracked representative intestinal
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metabolites, such as bile acids, proteinogenic amino acids and the TCA cycle to assess the
impact of sample logistics (Figure 6C).

We observed a temperature- and storage-dependent effect, particularly at 4 ◦C and RT.
In particular, the measured aromatic amino acids tryptophan, tyrosine and phenylalanine
increased over time, while malic acid, fumaric acid and succinic acid decreased, regardless
of oxygen exposure. The bile acids isodeoxycholic acid and deoxycholic acid remained
mainly stable under anaerobic conditions with a slight but not significant decrease in
abundance under non-frozen aerobic storage. The same is true for cholic acid, which did
not change significantly at all.

3.4. Sample Logistics Only Slightly Affect Microbiota Composition

Lastly, we determined the effect of all storage conditions on faecal microbiota compo-
sition using MFC and 16S rRNA sequencing. We visualized the BC similarity of microbiota
profiles to the fresh sample (Figure 7).
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Figure 7. Changes in compositional profiles. (A) Heat map of BC similarities per MFC profile
compared to fresh, resolved for storage conditions and oxygen exposure, plotted individually per
donor and as mean. (B) Heat map of BC similarities per 16S rRNA profile (genus level) compared to
fresh, resolved for storage conditions and oxygen exposure, plotted individually per donor and as
mean. Pairwise comparisons were calculated using Wilcoxon rank sum test for non-parametric data
compared to 4 h time points (n = 6). Asterisks indicate significance.
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Donor individuality was already apparent in both cytometric microbiota profiles
of the fresh sample (Supplementary Figure S7A) and species richness, i.e., number of
observed species and Shannon diversity (Supplementary Figure S7B,C). The individuality
was reflected in changes in BC similarity over time for both MFC (Figure 7A) and 16S rRNA
sequencing (Figure 7B). The mean BC similarity of the first sampling time point across
donors was significantly reduced compared to the fresh sample, i.e., 4 h for MFC and 24 h
for 16S rRNA sequencing, respectively (Supplementary Table S1), suggesting a correlation
of MFC and 16S rRNA-based taxonomic fingerprinting [28]. No significant changes in BC
similarity or differential abundant genera were observed when comparing the fresh sample
to the 4 h time point (Figure 7B, Supplementary Figure S8A), though individual microbiota
profiles varied slightly (Supplementary Figure S8B). Species richness slightly increased
after 168 h of aerobic storage at −20 ◦C with the related Shannon diversity failing to reach
statistical significance (Supplementary Table S7).

With MFC, we only observed a significant change in BC similarity when comparing
168 h of aerobic and anaerobic storage at RT to the 4 h samples (Supplementary Table S2).
Our data show that microbial composition generally remained stable under all conditions.

4. Discussion

To date, microbiome research has focused on sequencing-based methods, for which
the impact of preservatives in the long- and short-term storage of faecal samples has al-
ready been investigated [9,10,24,29,40]. However, not only is the preservation of samples
of interest for analysing microbiota composition, but the usability of samples for cultur-
omics [41] or analyses of their metabolic capacity is also of increasing interest. Metabolites
largely mediate host–microbiota interactions in health and disease [4]. Further, metabolites
are subject to a comparably quick turn-over [42], rendering them especially susceptible
to changes when transported or stored under sub-optimal conditions. Patients favour
at-home sampling when enrolled in clinical studies [23] and may neglect using the home
freezer/fridge for in between storage.

In this study, we aimed to allow for simple unsupervised home sampling and iden-
tify suitable logistics conditions that closely maintain the initial communities’ metabolite
profiles alongside composition and taxonomy. We tested different storage temperatures,
i.e., RT, 4 ◦C and −20 ◦C, over time (4 h, 24 h, 48 h and 168 h), both under aerobic and
anaerobic conditions. These conditions were compared to samples immediately frozen
and stored at −80 ◦C, neither affecting microbiota [43,44] nor metabolite composition [45].
Lately, the storage of faecal samples at −20 ◦C was demonstrated to be equally well suited
to maintain the taxonomic composition while being energy- and cost-saving [40].

Cluster analysis highlights a very high donor-to-donor variability that dominated the
effect of sample logistics, both in terms of microbiota functionality and composition. For
microbial composition, this was expected, since a high donor individuality was already
observed in the Human Microbiome Project (HMP) [46] and was proven in various later
studies [10,47–49]. Although 16S rRNA sequencing and MFC were shown to correlate
well [50–53], donor-specific clustering was more prominent in the cytometric profiles. For
standard 16S rRNA sequencing, a defined sequence of the 16S rRNA gene is amplified,
which allows for reliable taxonomic annotation to the genus level only. Thereby, the highly
individual species- and strain-level information is lost. In contrast, MFC resolves the
microbiota to the single-cell level [54], thereby preserving donor individuality. In terms
of metabolites, we found the untargeted and SCFA metabolite profiles to also be highly
donor-specific. Although in line with other metabolome studies [55,56], our findings are in
contrast to the rather homogenous functionality predicted by [56]. Discrepancies may arise
from the chosen level of functional analyses. Metagenomics and metabolomics analyses
both identify microbial signatures in disease [55,57], thereby proving a considerable overlap
between both analyses.

In our study, we quantified nine SCFAs and measured the global metabolome in
an untargeted approach. Since SCFA biosynthesis represents an essential core function
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derived from dietary fibre fermentation [58], these compounds are omnipresent in the
human gut. However, SCFAs only make up a minor part of the faecal metabolome. On
the contrary, the global metabolome mirrors the enzymatic activity of the microbiota and
further captures small molecules in an untargeted approach that originate from the host
and diet [59], explaining the higher donor individuality. To circumvent donor individuality
in our analyses, we determined the Bray–Curtis (BC) similarity of each donor’s microbiota
to its fresh counterpart. Across all Omics and donors, the BC similarity was negatively
correlated with time, indicating changes in composition and functionality. The strength
of correlation was again individual, which was also reported by others [60,61]. Overall,
the global metabolome was the most susceptible to increased temperatures and prolonged
storage times, followed by the SCFA profiles and the cytometric microbiota profile, while
the 16S rRNA profile remained largely unaffected. The high stability of native stool samples
at RT and 4 ◦C for up to 72 h in sequencing-based analyses was described [9,24].

Contradicting findings exist regarding short-term sample stabilization. On the one
hand, stabilization was shown to impact microbial taxonomy more than the transport
of the native faecal sample [9], while on the other hand, the stabilization of faecal sam-
ples primarily in OMNIgene GUT was reported to be suitable for preserving microbial
taxonomy [24]. In accordance with our results, the latter study showed a reduced effect
on microbial taxonomy at 4 ◦C compared to RT. Across several studies, OMNIgene GUT
stabilization proved to be the most suitable for sequencing-based analyses [8,29,62], while
suitability for metabolomics remains contradicting [11,19]. We did not include a stabilizer
in our study since sample stabilization may impact microbial viability as well as protein
integrity and thus culture- or cell-based downstream analysis [17,63].

Oxygen exposure had only a marginal impact on all modalities. In line with our
findings, it was reported that oxygen exposure does not alter microbial 16S rRNA profiles
or high-nucleic acid cytometric profiles within 6 h. However, oxygen exposure significantly
increased membrane permeability, indicating cell death in cytometric analysis [61]. Aerobic
sample logistics and processing were shown to reduce obligate anaerobic microbes and
beneficial butyrate producers numerically [60,64–66]. In the anaerobic environment, we
observed more prominent effects on the SCFA profiles compared to those in the aerobic
conditions. This may reflect the continued metabolic activity of anaerobic microbiota post-
sampling when maintained at anaerobic conditions. Thus, depending on the planned usage
of faecal microbiota samples, the maintenance of viable obligate anaerobes by continuing
anaerobicity will have to be weighed against the accurate profiling of SCFA.

Before this study, limited data existed regarding the effects of temperature and time
on faecal metabolites. In contrast to composition, microbial functionality was already
affected during short-term sample logistics. The addition of glycerol influenced both
the SCFA and global metabolite profiles, raising concerns about the advisability of using
cryoprotectants when the research focus lies on the metabolome. In line with our results,
faecal metabolites from feline microbiota were changed after only 6 h of storage at ambient
temperature [67]. Gratton et al. observed metabolic shifts after 24 h at 4 ◦C, even earlier
than our observed changes after 48 h [68]. While they focused on different metabolites
using a 1H NMR spectroscopic analysis, they identified a similar trend of an overall change
in the metabolome fingerprint and different stabilities for faecal metabolites in general.

Regarding SCFAs, Cunningham et al. reported a significant accumulation of SCFAs
(acetate, butyrate and propionate) at RT within 24 h, which is consistent with our results.
The maintenance of the samples at 4 ◦C reduced the accumulation of these SCFAs, but it did
not prevent it [69]. Thus, for short-term storage and transportation, freezing at −20 ◦C is a
suitable option. However, long-term storage (>4 weeks) at this temperature was generally
questioned by De Spiegeleer et al. (2020), although different conditions may apply for the
polar and nonpolar metabolome [20]. Our study was limited mainly to polar metabolites,
which seems to be more sensitive to logistic-dependent alterations than nonpolar lipids [20].
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5. Conclusions

The human faecal metabolome proved to be the most susceptible to sample logistics,
especially when samples were stored chilled or at ambient temperatures (Table 1).

Table 1. Feasible sample logistic parameters for all Omics layer. ✓—no change observed, X—change
observed after given time point.

Omics Layer −20 ◦C −20 ◦C Glycerol 4 ◦C RT

16S ✓ ✓ ✓ ✓
MFC ✓ ✓ ✓ X (>48 h)
SCFA ✓ X X (>48 h) X (>4 h)

Untargeted ✓ X X (>24 h) X (>24 h)

Storage at −20 ◦C resulted in the least change across all Omics, stabilizing both
microbial composition and function, and thus may represent the most optimal condition
for descriptive microbiota profiling. Sample logistics at ambient temperature for more
than 24 h should be avoided. Thus, depending on the downstream analyses, sample
logistics and storage should be adapted and carefully planned, especially in costly clinical
or multi-donor studies.
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per conditions—all Omics versus 4 h. Table S3: Wilxocon rank sum test—Bray Curtis similarities of
taxonomic profiles (16S) versus 24 h, Table S4: Pairwise comparison of absolute SCFA abundances
versus fresh per SCFA, Table S5: Pairwise comparison of relative SCFA abundances versus fresh per
SCFA, Table S6: Pairwise comparison of identified metabolite abundances versus fresh metabolite,
Table S7: Pairwise comparison of diversity indices versus fresh per index

Author Contributions: J.L.K. and B.E. conceptualized this study and wrote the manuscript’s first
draft. J.L.K. and D.J.D.L. performed the experiments. While B.E. and U.R.-K. were responsible
for untargeted metabolomics and SCFA measurement and related data analysis, J.L.K. and D.J.D.L.
conducted the microbiota flow cytometric and 16S sequencing analysis. H.-D.C. and M.v.B. provided
helpful discussions and revised the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: We thank the Technical University Berlin for the support of Jannike Lea Krause with
internal boost funding (2021-2-07-029). Beatrice Engelmann is grateful for funding from the Novo
Nordisk Foundation (grant NNF21OC0066551). Hyun-Dong Chang is supported by the Dr. Rolf
Schwiete Foundation, the DFG Project-ID 375876048 (TRR 241), the EFRE project 1.6./01 (BacFlow)
and the Innovative Medicines Initiative 2 Joint Undertaking (grant 831434). Martin von Bergen also
acknowledges funding from Novo Nordisk Foundation (grant NNF21OC0066551) and the DFG
Project ID 403224013 (SFB1382).

Institutional Review Board Statement: The animal study protocol was approved by the Institutional
Review Board of the approval of the local ethics committee of the Charité Berlin (protocol code
EA4/014/20 and date of approval 21 August 2020).

Data Availability Statement: The cytometric data that support the findings of this study are openly
available in FLOW Repository under reference number FR-FCM-Z74S. 16S amplicon data are available
on Sequence Read Archive (SRA) submission SUB14164451 with the project ID PRJNA1068571. SCFA
data are available at the NIH Common Fund’s National Metabolomics Data Repository (NMDR)
website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org (accessed on 15

https://www.mdpi.com/article/10.3390/microorganisms12101998/s1
https://www.mdpi.com/article/10.3390/microorganisms12101998/s1
https://www.metabolomicsworkbench.org


Microorganisms 2024, 12, 1998 15 of 17

August 2024), where they were assigned Study ID ST003301 (SCFA). The data can be accessed directly
via their Project DOI: https://dx.doi.org/10.21228/M8H521 (accessed on 15 August 2024) (SCFA).

Acknowledgments: We thank Olivia Pleßow and Nicole Bock for their excellent technical assistance
during metabolite extraction and measurement, as well as the DRFZ laboratory managers for general
support and Katrin Lehmann for technical assistance with MiSeq.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jandhyala, S.M. Role of the Normal Gut Microbiota. WJG 2015, 21, 8787. [CrossRef] [PubMed]
2. Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients

and Other Food Components. Eur. J. Nutr. 2018, 57, 1–24. [CrossRef] [PubMed]
3. Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.;

Fulton, R.S.; et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [CrossRef]
4. Schroeder, B.O.; Bäckhed, F. Signals from the Gut Microbiota to Distant Organs in Physiology and Disease. Nat. Med. 2016, 22,

1079–1089. [CrossRef] [PubMed]
5. Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic Phenotyping in Health and Disease. Cell 2008, 134, 714–717. [CrossRef]
6. Schnackenberg, L.K.; Beger, R.D. Metabolomic Biomarkers: Their Role in the Critical Path. Drug Discov. Today Technol. 2007, 4,

13–16. [CrossRef]
7. Babu, M.; Snyder, M. Multi-Omics Profiling for Health. Mol. Cell. Proteom. 2023, 22, 100561. [CrossRef]
8. Plauzolles, A.; Toumi, E.; Bonnet, M.; Pénaranda, G.; Bidaut, G.; Chiche, L.; Allardet-Servent, J.; Retornaz, F.; Goutorbe, B.; Halfon,

P. Human Stool Preservation Impacts Taxonomic Profiles in 16S Metagenomics Studies. Front. Cell. Infect. Microbiol. 2022, 12,
722886. [CrossRef]

9. Carruthers, L.V.; Moses, A.; Adriko, M.; Faust, C.L.; Tukahebwa, E.M.; Hall, L.J.; Ranford-Cartwright, L.C.; Lamberton, P.H.L. The
Impact of Storage Conditions on Human Stool 16S rRNA Microbiome Composition and Diversity. PeerJ 2019, 7, e8133. [CrossRef]

10. Holzhausen, E.A.; Nikodemova, M.; Deblois, C.L.; Barnet, J.H.; Peppard, P.E.; Suen, G.; Malecki, K.M. Assessing the Impact of
Storage Time on the Stability of Stool Microbiota Richness, Diversity, and Composition. Gut Pathog. 2021, 13, 75. [CrossRef]

11. Guan, H.; Pu, Y.; Liu, C.; Lou, T.; Tan, S.; Kong, M.; Sun, Z.; Mei, Z.; Qi, Q.; Quan, Z.; et al. Comparison of Fecal Collection
Methods on Variation in Gut Metagenomics and Untargeted Metabolomics. mSphere 2021, 6, e00636-21. [CrossRef]

12. Thomas, V.; Clark, J.; Doré, J. Fecal Microbiota Analysis: An Overview of Sample Collection Methods and Sequencing Strategies.
Future Microbiol. 2015, 10, 1485–1504. [CrossRef]

13. Mosca, A.; Leclerc, M.; Hugot, J.P. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our
Ecosystem? Front. Microbiol. 2016, 7, 455. [CrossRef] [PubMed]

14. Kriss, M.; Hazleton, K.Z.; Nusbacher, N.M.; Martin, C.G.; Lozupone, C.A. Low Diversity Gut Microbiota Dysbiosis: Drivers,
Functional Implications and Recovery. Curr. Opin. Microbiol. 2018, 44, 34–40. [CrossRef]

15. Shanahan, F.; Ghosh, T.S.; O’Toole, P.W. The Healthy Microbiome—What Is the Definition of a Healthy Gut Microbiome?
Gastroenterology 2021, 160, 483–494. [CrossRef] [PubMed]

16. Hooks, K.B.; O’Malley, M.A. Dysbiosis and Its Discontents. mBio 2017, 8, e01492-17. [CrossRef] [PubMed]
17. Vandeputte, D.; Tito, R.Y.; Vanleeuwen, R.; Falony, G.; Raes, J. Practical Considerations for Large-Scale Gut Microbiome Studies.

FEMS Microbiol. Rev. 2017, 41, S154–S167. [CrossRef] [PubMed]
18. Wang, Z.; Zolnik, C.P.; Qiu, Y.; Usyk, M.; Wang, T.; Strickler, H.D.; Isasi, C.R.; Kaplan, R.C.; Kurland, I.J.; Qi, Q.; et al. Comparison

of Fecal Collection Methods for Microbiome and Metabolomics Studies. Front. Cell. Infect. Microbiol. 2018, 8, 301. [CrossRef]
19. Lim, M.Y.; Hong, S.; Kim, B.-M.; Ahn, Y.; Kim, H.-J.; Nam, Y.-D. Changes in Microbiome and Metabolomic Profiles of Fecal

Samples Stored with Stabilizing Solution at Room Temperature: A Pilot Study. Sci. Rep. 2020, 10, 1789. [CrossRef]
20. De Spiegeleer, M.; De Graeve, M.; Huysman, S.; Vanderbeke, A.; Van Meulebroek, L.; Vanhaecke, L. Impact of Storage Conditions

on the Human Stool Metabolome and Lipidome: Preserving the Most Accurate Fingerprint. Anal. Chim. Acta 2020, 1108, 79–88.
[CrossRef]

21. Song, Z.-Y.; Yuan, D.; Zhang, S.-X. Role of the Microbiome and Its Metabolites in Ankylosing Spondylitis. Front. Immunol. 2022,
13, 1010572. [CrossRef] [PubMed]

22. Jones, J.; Reinke, S.N.; Ali, A.; Palmer, D.J.; Christophersen, C.T. Fecal Sample Collection Methods and Time of Day Impact
Microbiome Composition and Short Chain Fatty Acid Concentrations. Sci. Rep. 2021, 11, 13964. [CrossRef] [PubMed]

23. Schultze, A.; Akmatov, M.K.; Andrzejak, M.; Karras, N.; Kemmling, Y.; Maulhardt, A.; Wieghold, S.; Ahrens, W.; Günther,
K.; Schlenz, H.; et al. Comparison of Stool Collection on Site versus at Home in a Population-Based Study: Feasibility and
Participants’ Preference in Pretest 2 of the German National Cohort. Bundesgesundheitsblatt 2014, 57, 1264–1269. [CrossRef]
[PubMed]

24. Choo, J.M.; Leong, L.E.; Rogers, G.B. Sample Storage Conditions Significantly Influence Faecal Microbiome Profiles. Sci. Rep.
2015, 5, 16350. [CrossRef] [PubMed]

25. Bokoliya, S.C.; Dorsett, Y.; Panier, H.; Zhou, Y. Procedures for Fecal Microbiota Transplantation in Murine Microbiome Studies.
Front. Cell. Infect. Microbiol. 2021, 11, 711055. [CrossRef]

https://dx.doi.org/10.21228/M8H521
https://doi.org/10.3748/wjg.v21.i29.8787
https://www.ncbi.nlm.nih.gov/pubmed/26269668
https://doi.org/10.1007/s00394-017-1445-8
https://www.ncbi.nlm.nih.gov/pubmed/28393285
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nm.4185
https://www.ncbi.nlm.nih.gov/pubmed/27711063
https://doi.org/10.1016/j.cell.2008.08.026
https://doi.org/10.1016/j.ddtec.2007.10.012
https://doi.org/10.1016/j.mcpro.2023.100561
https://doi.org/10.3389/fcimb.2022.722886
https://doi.org/10.7717/peerj.8133
https://doi.org/10.1186/s13099-021-00470-0
https://doi.org/10.1128/mSphere.00636-21
https://doi.org/10.2217/fmb.15.87
https://doi.org/10.3389/fmicb.2016.00455
https://www.ncbi.nlm.nih.gov/pubmed/27065999
https://doi.org/10.1016/j.mib.2018.07.003
https://doi.org/10.1053/j.gastro.2020.09.057
https://www.ncbi.nlm.nih.gov/pubmed/33253682
https://doi.org/10.1128/mBio.01492-17
https://www.ncbi.nlm.nih.gov/pubmed/29018121
https://doi.org/10.1093/femsre/fux027
https://www.ncbi.nlm.nih.gov/pubmed/28830090
https://doi.org/10.3389/fcimb.2018.00301
https://doi.org/10.1038/s41598-020-58719-8
https://doi.org/10.1016/j.aca.2020.02.046
https://doi.org/10.3389/fimmu.2022.1010572
https://www.ncbi.nlm.nih.gov/pubmed/36311749
https://doi.org/10.1038/s41598-021-93031-z
https://www.ncbi.nlm.nih.gov/pubmed/34234185
https://doi.org/10.1007/s00103-014-2051-z
https://www.ncbi.nlm.nih.gov/pubmed/25293889
https://doi.org/10.1038/srep16350
https://www.ncbi.nlm.nih.gov/pubmed/26572876
https://doi.org/10.3389/fcimb.2021.711055


Microorganisms 2024, 12, 1998 16 of 17

26. Allegretti, J.R.; Elliott, R.J.; Ladha, A.; Njenga, M.; Warren, K.; O’Brien, K.; Budree, S.; Osman, M.; Fischer, M.; Kelly, C.R.; et al.
Stool Processing Speed and Storage Duration Do Not Impact the Clinical Effectiveness of Fecal Microbiota Transplantation. Gut
Microbes 2020, 11, 1806–1808. [CrossRef]

27. Han, J.; Lin, K.; Sequeira, C.; Borchers, C.H. An Isotope-Labeled Chemical Derivatization Method for the Quantitation of
Short-Chain Fatty Acids in Human Feces by Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chim. Acta 2015, 854,
86–94. [CrossRef]

28. Krause, J.L.; Schaepe, S.S.; Fritz-Wallace, K.; Engelmann, B.; Rolle-Kampczyk, U.; Kleinsteuber, S.; Schattenberg, F.; Liu, Z.;
Mueller, S.; Jehmlich, N.; et al. Following the Community Development of SIHUMIx–a New Intestinal in Vitro Model for
Bioreactor Use. Gut Microbes 2020, 1–14, 1116–1129. [CrossRef]

29. Marotz, C.; Cavagnero, K.J.; Song, S.J.; McDonald, D.; Wandro, S.; Humphrey, G.; Bryant, M.; Ackermann, G.; Diaz, E.; Knight, R.
Evaluation of the Effect of Storage Methods on Fecal, Saliva, and Skin Microbiome Composition. mSystems 2021, 6, e01329-20.
[CrossRef]

30. Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA
gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [CrossRef]

31. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30,
2114–2120. [CrossRef] [PubMed]

32. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference
from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [CrossRef] [PubMed]

33. McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census
Data. PLoS ONE 2013, 8, e61217. [CrossRef] [PubMed]

34. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
35. Lagkouvardos, I.; Fischer, S.; Kumar, N.; Clavel, T. Rhea: A Transparent and Modular R Pipeline for Microbial Profiling Based on

16S rRNA Gene Amplicons. PeerJ 2017, 5, e2836. [CrossRef]
36. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2017.
37. Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos,

P.; et al. Vegan: Community Ecology Package. 2020. Available online: https://www.researchgate.net/publication/346579465_
vegan_community_ecology_package_version_25-7_November_2020 (accessed on 15 August 2024).

38. Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [CrossRef]
39. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, YN, USA, 2016; ISBN 978-3-319-24277-4.
40. Gavriliuc, S.; Stothart, M.R.; Henry, A.; Poissant, J. Long-Term Storage of Feces at −80 ◦C versus −20 ◦C Is Negligible for 16S

rRNA Amplicon Profiling of the Equine Bacterial Microbiome. PeerJ 2021, 9, e10837. [CrossRef]
41. Chang, Y.; Hou, F.; Pan, Z.; Huang, Z.; Han, N.; Bin, L.; Deng, H.; Li, Z.; Ding, L.; Gao, H.; et al. Optimization of Culturomics

Strategy in Human Fecal Samples. Front. Microbiol. 2019, 10, 2891. [CrossRef]
42. Heijnen, J.J. Impact of Thermodynamic Principles in Systems Biology. In Biosystems Engineering II; Wittmann, C., Krull, R., Eds.;

Springer: Berlin, Heidelberg, 2010; pp. 139–162. ISBN 978-3-642-13865-2.
43. Tang, J. Microbial Metabolomics. Curr. Genom. 2011, 12, 391–403. [CrossRef]
44. Fouhy, F.; Deane, J.; Rea, M.C.; O’Sullivan, Ó.; Ross, R.P.; O’Callaghan, G.; Plant, B.J.; Stanton, C. The Effects of Freezing on Faecal

Microbiota as Determined Using MiSeq Sequencing and Culture-Based Investigations. PLoS ONE 2015, 10, e0119355. [CrossRef]
45. Wandro, S.; Carmody, L.; Gallagher, T.; LiPuma, J.J.; Whiteson, K. Making It Last: Storage Time and Temperature Have Differential

Impacts on Metabolite Profiles of Airway Samples from Cystic Fibrosis Patients. mSystems 2017, 2, e00100-17. [CrossRef] [PubMed]
46. Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007,

449, 804–810. [CrossRef] [PubMed]
47. Heisel, T.; Johnson, A.J.; Gonia, S.; Dillon, A.; Skalla, E.; Haapala, J.; Jacobs, K.M.; Nagel, E.; Pierce, S.; Fields, D.; et al. Bacterial,

Fungal, and Interkingdom Microbiome Features of Exclusively Breastfeeding Dyads Are Associated with Infant Age, Antibiotic
Exposure, and Birth Mode. Front. Microbiol. 2022, 13, 1050574. [CrossRef] [PubMed]

48. Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.;
Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359,
97–103. [CrossRef] [PubMed]

49. Katsimichas, T.; Ohtani, T.; Motooka, D.; Tsukamoto, Y.; Kioka, H.; Nakamoto, K.; Konishi, S.; Chimura, M.; Sengoku, K.;
Miyawaki, H.; et al. Non-Ischemic Heart Failure with Reduced Ejection Fraction Is Associated with Altered Intestinal Microbiota.
Circ. J. 2018, 82, 1640–1650. [CrossRef]

50. Schmiester, M.; Maier, R.; Riedel, R.; Durek, P.; Frentsch, M.; Kolling, S.; Mashreghi, M.-F.; Jenq, R.; Zhang, L.; Peterson, C.B.; et al.
Flow Cytometry Can Reliably Capture Gut Microbial Composition in Healthy Adults as Well as Dysbiosis Dynamics in Patients
with Aggressive B-Cell Non-Hodgkin Lymphoma. Gut Microbes 2022, 14, 2081475. [CrossRef]

51. Kupschus, J.; Janssen, S.; Hoek, A.; Kuska, J.; Rathjens, J.; Sonntag, C.; Ickstadt, K.; Budzinski, L.; Chang, H.; Rossi, A.; et al. Rapid
Detection and Online Analysis of Microbial Changes through Flow Cytometry. Cytom. Part A 2023, 103, 419–428. [CrossRef]

52. Rubbens, P.; Props, R.; Kerckhof, F.-M.; Boon, N.; Waegeman, W. Cytometric Fingerprints of Gut Microbiota Predict Crohn’s
Disease State. ISME J. 2021, 15, 354–358. [CrossRef]

https://doi.org/10.1080/19490976.2020.1768777
https://doi.org/10.1016/j.aca.2014.11.015
https://doi.org/10.1080/19490976.2019.1702431
https://doi.org/10.1128/msystems.01329-20
https://doi.org/10.1093/nar/gks808
https://doi.org/10.1093/bioinformatics/btu170
https://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1038/nmeth.3869
https://www.ncbi.nlm.nih.gov/pubmed/27214047
https://doi.org/10.1371/journal.pone.0061217
https://www.ncbi.nlm.nih.gov/pubmed/23630581
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.7717/peerj.2836
https://www.researchgate.net/publication/346579465_vegan_community_ecology_package_version_25-7_November_2020
https://www.researchgate.net/publication/346579465_vegan_community_ecology_package_version_25-7_November_2020
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.7717/peerj.10837
https://doi.org/10.3389/fmicb.2019.02891
https://doi.org/10.2174/138920211797248619
https://doi.org/10.1371/journal.pone.0119355
https://doi.org/10.1128/mSystems.00100-17
https://www.ncbi.nlm.nih.gov/pubmed/29202048
https://doi.org/10.1038/nature06244
https://www.ncbi.nlm.nih.gov/pubmed/17943116
https://doi.org/10.3389/fmicb.2022.1050574
https://www.ncbi.nlm.nih.gov/pubmed/36466688
https://doi.org/10.1126/science.aan4236
https://www.ncbi.nlm.nih.gov/pubmed/29097493
https://doi.org/10.1253/circj.CJ-17-1285
https://doi.org/10.1080/19490976.2022.2081475
https://doi.org/10.1002/cyto.a.24704
https://doi.org/10.1038/s41396-020-00762-4


Microorganisms 2024, 12, 1998 17 of 17

53. Heyse, J.; Schattenberg, F.; Rubbens, P.; Müller, S.; Waegeman, W.; Boon, N.; Props, R. Predicting the Presence and Abundance of
Bacterial Taxa in Environmental Communities through Flow Cytometric Fingerprinting. mSystems 2021, 6, e00551-21. [CrossRef]

54. Müller, S. Modes of Cytometric Bacterial DNA Pattern: A Tool for Pursuing Growth. Cell Prolif. 2007, 40, 621–639. [CrossRef]
55. Xu, X.; Ocansey, D.K.W.; Hang, S.; Wang, B.; Amoah, S.; Yi, C.; Zhang, X.; Liu, L.; Mao, F. The Gut Metagenomics and Metabolomics

Signature in Patients with Inflammatory Bowel Disease. Gut Pathog. 2022, 14, 26. [CrossRef] [PubMed]
56. Wu, H.; Zheng, X.; Pan, T.; Yang, X.; Chen, X.; Zhang, B.; Peng, L.; Xie, C. Dynamic Microbiome and Metabolome Analyses Reveal

the Interaction between Gut Microbiota and anti-PD-1 Based Immunotherapy in Hepatocellular Carcinoma. Int. J. Cancer 2022,
151, 1321–1334. [CrossRef] [PubMed]

57. Dong, S.; Wu, C.; He, W.; Zhong, R.; Deng, J.; Tao, Y.; Zha, F.; Liao, Z.; Fang, X.; Wei, H. Metagenomic and Metabolomic Analyses
Show Correlations between Intestinal Microbiome Diversity and Microbiome Metabolites in Ob/Ob and ApoE−/− Mice. Front.
Nutr. 2022, 9, 934294. [CrossRef] [PubMed]

58. Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as
Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [CrossRef] [PubMed]

59. Gibney, M.J.; Walsh, M.; Brennan, L.; Roche, H.M.; German, B.; Van Ommen, B. Metabolomics in Human Nutrition: Opportunities
and Challenges. Am. J. Clin. Nutr. 2005, 82, 497–503. [CrossRef]

60. Papanicolas, L.E.; Choo, J.M.; Wang, Y.; Leong, L.E.X.; Costello, S.P.; Gordon, D.L.; Wesselingh, S.L.; Rogers, G.B. Bacterial
Viability in Faecal Transplants: Which Bacteria Survive? EBioMedicine 2019, 41, 509–516. [CrossRef]

61. Taguer, M.; Quillier, O.; Maurice, C.F. Effects of Oxygen Exposure on Relative Nucleic Acid Content and Membrane Integrity in
the Human Gut Microbiota. PeerJ 2021, 9, e10602. [CrossRef]

62. Pribyl, A.L.; Parks, D.H.; Angel, N.Z.; Boyd, J.A.; Hasson, A.G.; Fang, L.; MacDonald, S.L.; Wills, B.A.; Wood, D.L.A.; Krause, L.;
et al. Critical Evaluation of Faecal Microbiome Preservation Using Metagenomic Analysis. ISME Commun. 2021, 1, 14. [CrossRef]

63. Vandeputte, D.; Kathagen, G.; D’hoe, K.; Vieira-Silva, S.; Valles-Colomer, M.; Sabino, J.; Wang, J.; Tito, R.Y.; De Commer, L.;
Darzi, Y.; et al. Quantitative Microbiome Profiling Links Gut Community Variation to Microbial Load. Nature 2017, 551, 507–511.
[CrossRef]

64. Bénard, M.V.; Arretxe, I.; Wortelboer, K.; Harmsen, H.J.M.; Davids, M.; De Bruijn, C.M.A.; Benninga, M.A.; Hugenholtz, F.;
Herrema, H.; Ponsioen, C.Y. Anaerobic Feces Processing for Fecal Microbiota Transplantation Improves Viability of Obligate
Anaerobes. Microorganisms 2023, 11, 2238. [CrossRef]

65. Shimizu, H.; Arai, K.; Asahara, T.; Takahashi, T.; Tsuji, H.; Matsumoto, S.; Takeuchi, I.; Kyodo, R.; Yamashiro, Y. Stool Preparation
under Anaerobic Conditions Contributes to Retention of Obligate Anaerobes: Potential Improvement for Fecal Microbiota
Transplantation. BMC Microbiol. 2021, 21, 275. [CrossRef] [PubMed]

66. Chu, N.D.; Smith, M.B.; Perrotta, A.R.; Kassam, Z.; Alm, E.J. Profiling Living Bacteria Informs Preparation of Fecal Microbiota
Transplantations. PLoS ONE 2017, 12, e0170922. [CrossRef] [PubMed]

67. Chiu, O.; Tal, M.; Sanmugam, A.; Hesta, M.; Gomez, D.E.; Weese, J.S.; Verbrugghe, A. The Effects of Ambient Temperature
Exposure on Feline Fecal Metabolome. Front. Vet. Sci. 2023, 10, 1141881. [CrossRef] [PubMed]

68. Gratton, J.; Phetcharaburanin, J.; Mullish, B.H.; Williams, H.R.T.; Thursz, M.; Nicholson, J.K.; Holmes, E.; Marchesi, J.R.; Li, J.V.
Optimized Sample Handling Strategy for Metabolic Profiling of Human Feces. Anal. Chem. 2016, 88, 4661–4668. [CrossRef]

69. Cunningham, J.L.; Bramstång, L.; Singh, A.; Jayarathna, S.; Rasmusson, A.J.; Moazzami, A.; Müller, B. Impact of Time and
Temperature on Gut Microbiota and SCFA Composition in Stool Samples. PLoS ONE 2020, 15, e0236944. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1128/msystems.00551-21
https://doi.org/10.1111/j.1365-2184.2007.00465.x
https://doi.org/10.1186/s13099-022-00499-9
https://www.ncbi.nlm.nih.gov/pubmed/35729658
https://doi.org/10.1002/ijc.34118
https://www.ncbi.nlm.nih.gov/pubmed/35579980
https://doi.org/10.3389/fnut.2022.934294
https://www.ncbi.nlm.nih.gov/pubmed/36337626
https://doi.org/10.1016/j.cell.2016.05.041
https://www.ncbi.nlm.nih.gov/pubmed/27259147
https://doi.org/10.1093/ajcn/82.3.497
https://doi.org/10.1016/j.ebiom.2019.02.023
https://doi.org/10.7717/peerj.10602
https://doi.org/10.1038/s43705-021-00014-2
https://doi.org/10.1038/nature24460
https://doi.org/10.3390/microorganisms11092238
https://doi.org/10.1186/s12866-021-02325-9
https://www.ncbi.nlm.nih.gov/pubmed/34627158
https://doi.org/10.1371/journal.pone.0170922
https://www.ncbi.nlm.nih.gov/pubmed/28125667
https://doi.org/10.3389/fvets.2023.1141881
https://www.ncbi.nlm.nih.gov/pubmed/37303717
https://doi.org/10.1021/acs.analchem.5b04159
https://doi.org/10.1371/journal.pone.0236944

	Introduction 
	Methods 
	Simulation of Stool Sample Logistics Under Different Conditions 
	Untargeted Metabolomics 
	Short-Chain Fatty Acid Analysis 
	DNA Extraction and 16S rRNA Sequencing 
	16S Library Preparation 
	16S rRNA Sequence Processing 

	Microbiota Flow Cytometry 
	Data Analysis and Statistics 

	Results 
	The High Inter-Donor Variability in Faecal Microbiota Composition and Functionality Masks the Potential Effects of Sample Logistics 
	SCFA Concentrations Increase over Time Under Non-Frozen Conditions, Especially When Kept Anaerobic 
	Global Metabolite Profiles Are Highly Sensitive to Sample Logistics 
	Sample Logistics Only Slightly Affect Microbiota Composition 

	Discussion 
	Conclusions 
	References

