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Abstract: Phelan–McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by
a developmental delay and autism spectrum disorder (ASD)-like behaviors. Emerging research
suggests a link between gut microbiota and neuropsychiatric conditions, including PMS. This study
aimed to investigate the fecal microbiota and immune profiles of children with PMS compared
to healthy controls. Fecal samples were collected from children diagnosed with PMS and age-
matched healthy controls. The bacterial composition was analyzed using 16S rRNA gene sequencing,
while short-chain fatty acids (SCFAs) were quantified through gas chromatography. Immunological
profiling was conducted using a multiplex cytokine assay. Significant differences were observed in
the gut microbiota composition between PMS patients and controls, including a lower abundance of
key bacterial genera such as Faecalibacterium and Agathobacter in PMS patients. SCFA levels were also
reduced in PMS patients. Immunological analysis revealed higher levels of several pro-inflammatory
cytokines in the PMS group, although these differences were not statistically significant. The findings
indicate that children with PMS have distinct gut microbiota and SCFA profiles, which may contribute
to the gastrointestinal and neurodevelopmental symptoms observed in this syndrome. These results
suggest potential avenues for microbiota-targeted therapies in PMS.

Keywords: Phelan–McDermid syndrome; autism spectrum disorder; microbiota; feces; immunoprofiling;
short-chain fatty acids

1. Introduction

Rare diseases include many neurodevelopmental disorders that are usually diagnosed
during infancy [1]. Among them, Phelan–McDermid syndrome (PMS) is a de novo genetic
disorder frequently caused by deletions in the terminal end of chromosome 22 (22q13.3)
or mutations affecting the SHANK3 gene [2,3]. The SHANK3 protein is crucial for neural
communication and development because of its role as a scaffolding protein within the
postsynaptic densities of excitatory glutamatergic synapses [4,5]. As a result, inactivation
of the SHANK3 gene in mouse models leads to reduced postsynaptic densities and dis-
rupted synaptic transmission [6,7]. More recently, it has been found that chromosomal
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rearrangements that do not affect SHANK3 may result in the same general phenotype
(SHANK3-unrelated PMS) [8]. This fact may be explained because of the functional overlap-
ping between SHANK3 and other genes that contribute to PMS in gene functions associated
with neurodevelopment, synaptic formation, and inflammation [9].

The prevalence of PMS seems to be very low, ranging from 2.5 to 10 cases per million
births [10]. A recent survey of large cohorts showed that PMS may have the lowest
prevalence rates among de novo genetic neurodevelopment disorders, together with Fragile
X and Angelman syndromes [11]. However, PMS may be largely underdiagnosed because
of the absence of a genetic diagnosis, the existence of SHANK3-unrelated PMS and the
difficulties in obtaining a proper sequence of the GC-rich SHANK3 gene [12].

PMS may account for about 1–2% of autism spectrum disorder (ASD) cases [13–15]
while most PMS patients also have a diagnosis of ASD. There are some similarities and,
also, some differences between PMS and idiopathic ASD (iASD) [10], including a higher
tendency of PMS patients to have more severe medical complications and intellectual
disability [16]. Although the symptoms and their severity may vary among PMS patients,
the most common ones include global neurodevelopmental delays, hypotonia and absent
or delayed speech.

In addition, gastrointestinal (GI)-related symptoms are common comorbidities of both
ASD and PMS patients, including constipation, diarrhea, fecal incontinence, abdominal
pain, gastroesophageal reflux, vomiting and/or rumination disorder [12,17–20]. GI dys-
function is a major concern for families and caregivers of PMS patients [21,22] and may
arise, at least partly, because of the involvement of SHANK3 and other PMS-associated
genes in the neurological control of digestive functions, in the functionality of enterocytes
and in reinforcing the intestinal barrier [23–25].

It has been described that the risk of suffering from GI symptoms among children
with ASD seems to be linked to alterations in the gut microbiota [26–29], and correlate with
the severity of ASD [30–32]. Recent research has increasingly focused on the role of the
gut microbiota in neurodevelopmental and neuropsychiatric disorders [33–35]. The gut
microbiota comprises a complex community of microorganisms residing in the gastroin-
testinal tract, which significantly influences various bodily functions, including immune
modulation, metabolic processes, and brain development and behavior through the gut–
brain axis [36]. This bidirectional communication network involves multiple pathways,
including the nervous system, the immune system, and metabolic signaling [37,38].

Alterations in the composition of the gut microbiota (dysbiosis) have the potential
to negatively affect gut motility and permeability, the production of metabolites that are
relevant for gut health, such as short chain fatty acids, and immune function, promoting
local and systemic inflammation, which may contribute to the appearance or worsening
of both the gastrointestinal and neurological symptoms observed in neurodevelopmental
disorders [36,39,40]. In other words, alterations in the gut microbiota can potentially
contribute to the pathophysiology of conditions like ASD [41,42] or PMS. Overall, these
observations have spurred interest in exploring how these microbial communities differ in
children with neurodevelopmental disorders compared to healthy controls.

Although the scientific literature regarding potential relationships between PMS and
the gut microbiota is very scarce, it has been suggested that the GI symptoms frequently
exhibited by children with PMS might be linked to their altered gut microbiota [13]. This
potential relationship underscores the need to investigate the gut microbiota composition in
PMS patients and how it correlates with their symptoms. Investigating the gut microbiota
in PMS can provide insights into the extent and nature of this dysbiosis, and whether it
mirrors the patterns observed in ASD. This is crucial for developing targeted interventions,
which have shown promise in modulating the gut microbiota and alleviating symptoms
in ASD [33,43–48]. In this context, the principal aim of this study was to assess the fecal
bacterial microbiota and immune profiles of children with PMS and to compare them with
those of healthy age-paired ones.
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2. Materials and Methods
2.1. Participants

Participants included children with a diagnosis of PMS, confirmed by the Spanish PMS
Association (https://22q13.org.es/, accessed on 5 September 2024), and healthy volunteer
controls selected based on the absence of disease symptoms and lack of chronic medication
use. Lack of use of antibiotics, probiotics, or prebiotics in the four weeks prior to sample
collection was mandatory in both groups. For all the participants, an informed consent
form was signed by their parents or guardians. This study was approved by the Ethics
Committee of the Hospital Gregorio Marañón (Madrid, Spain) (protocol: TPB-PhM/2022;
date of approval: 10 March 2023).

2.2. Sample Collection and DNA Extraction

Fecal samples were collected from all participants and stored at −20 ◦C until analysis.
DNA was extracted from the samples using QIAamp DNA Stool Mini Kit (QIAgen, Hilden,
Germany) according to the manufacturer’s instructions. The concentration and purity of
the extracted DNA were measured using a NanoDrop spectrophotometer.

2.3. Amplification, Sequencing of the 16S rRNA Gene and Bioinformatic Analysis

The hypervariable V3-V4 region of the bacterial 16S rRNA gene was amplified using
PCR. Equimolar concentrations of the universal primers S-D-Bact-0341-b-S-17 and S-D-Bact-
0785-a-A-21 were used. PCR products were pooled in equimolar DNA concentrations and
run on an agarose gel. Bands were extracted and purified using QIAEX II Gel Extraction
Kit (QIAgen) and quantified with PicoGreen (BMG Labtech, Jena, Germany). Aliquots of
the amplicons were sequenced using the paired-end sequencing protocol on the Illumina
MiSeq sequencer (Illumina Inc., San Diego, CA, USA) at the Scientific Park of Madrid,
Spain. Sequences were demultiplexed using Illumina software (version 2.6.2.3) following
the manufacturer’s guidelines.

Bioinformatic analyses were conducted using a combination of QIIME 2 2021.1 and R
software (version 3.5.1, https://www.r-project.org/, accessed on 4 February 2020). The
DADA2 pipeline was used for sequence cleaning and filtering: forward reads were trun-
cated at position 285 with the first 12 nucleotides trimmed, and reverse reads were truncated
at position 240 with the first 9 nucleotides trimmed to discard positions with a mean nu-
cleotide quality below Q20. Taxonomy data were assigned to amplicon sequence variants
(ASVs) using the q2-feature-classifier classify-sklearn naïve Bayes classifier against the
SILVA 138.1 reference database. The Shannon and Simpson diversity indices were calcu-
lated using the R vegan package to estimate alpha diversity, considering both the number
and evenness of microbial species, with the Wilcoxon rank-sum test used to identify statis-
tical differences between groups. Beta diversity was studied using principal coordinates
analysis (PCoA) to visualize patterns through a distance matrix. Quantitative and qualita-
tive analyses were performed using Bray–Curtis and binary Jaccard indices, respectively.
Permutational multivariate analysis of variance (PERMANOVA) with 999 permutations
was employed.

2.4. Short-Chain Fatty Acid (SCFA) Analysis

The quantification of three short-chain fatty acids (acetic, propionic and butyric acids)
in the fecal samples was performed by gas chromatography as previously described [49].
Briefly, 100 µL of a 1:10 dilution of fecal matter (w/v) in phosphate-buffered saline (PBS;
pH 7.4) was supplemented with 100 µL of 2-ethyl butyric acid (Sigma-Aldrich, St. Louis,
MO, USA) as an internal standard (1 mg/mL in methanol) and acidified with 100 µL of
20% formic acid (v/v). The acidic mixture was then extracted with 1 mL of methanol
and centrifuged for 10 min at 15,800× g. The supernatants were stored at −20 ◦C until
analysis using a GC apparatus. The system comprised a 6890 GC injection module (Agilent
Technologies, Santa Clara, CA, USA) with an HP-FFAP (30 m × 0.250 mm × 0.25 µm)
column (Agilent Technologies), operating in split mode with a split ratio of 1:20. The

https://22q13.org.es/
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injection volume was 1 µL, with injector and detector temperatures set at 240 ◦C and 250 ◦C,
respectively. The column oven temperature was initially set at 110 ◦C, then increased at
a rate of 6 ◦C/min to 170 ◦C, and subsequently at 25 ◦C/min to 240 ◦C, resulting in a
total GC run time of 18 min. Helium was used as the carrier gas at a constant flow rate of
1.3 mL/min. The chromatographic system featured a flame ionization detector (FID), and
data acquisition and processing were carried out using ChemStation Agilent software v.
LTS 01.11 (Agilent Technologies).

2.5. Immunological Analysis

To perform the immunological analysis, the fecal samples were processed as described
previously [50]. The concentrations of a wide array of human immune factors (FGF basic,
eotaxin, G-CSF, GM-CSF, IFNγ, IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL10,
IL12 (p70), IL-13, IL-15, IL-17A, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-
α, VEGF) were determined using the Bio-Plex Pro Human Cytokine 27-plex Assay kit
(Bio-Rad, Hercules, CA, USA) in the Bio-Plex 200 instrument (Bio-Rad). Every assay was
run in duplicate and standard curves were performed for each analyte.

2.6. Statistical Analysis

Statistical analyses were conducted using R software. Descriptive statistics summa-
rized the demographic and clinical characteristics of the study population. For normally
distributed data, the mean values were reported, and the 2-tailed Student’s t-test was used
for comparisons, while for non-normally distributed variables, the median values were
reported and the Wilcoxon Mann–Whitney U test was employed for PMS patients and con-
trols. Differences were considered statistically significant at p < 0.05. Alpha diversity was
assessed using both the Shannon and Simpson diversity indices, which accounted for the
abundance and evenness of microbial species. Beta diversity was illustrated using principal
coordinates analysis (PCoA) derived from distance matrices. The Bray–Curtis index was
employed for quantitative analysis, while the binary Jaccard index was used for qualitative
analysis. Statistical differences in beta diversity were evaluated using PERMANOVA with
999 permutations, identifying significant differences at p < 0.05.

3. Results
3.1. Participant Demographics and Clinical Characteristics

A total of 42 children with Phelan–McDermid syndrome (PMS) and 22 healthy controls
were included in the study. The demographic and clinical characteristics of the participants
are summarized in Table 1. The PMS group consisted of 54.8% males, with a median age of
11 years (range: 7–15 years), whereas the healthy control group comprised 50% males, with
a median age of 10 years (range: 6–14 years). Other relevant characteristics, such as BMI
and presence of gastrointestinal (GI) symptoms, are also detailed in Table 1.

Table 1. Demographic and clinical characteristics of study participants.

Characteristic Control Group (n = 22) PMS Group (n = 42)

Gender (male/female) 11/11 (50%/50%) 23/19 (54.8%/45.2%)
Median Age (years, range) 10 (6–14) 11 (7–15)
BMI (kg/m2, mean ± SD) 17.9 ± 2.2 18.2 ± 2.5
Gastrointestinal Symptoms (%) 2 (9.1%) 28 (66.7%)
Speech Delay (%) 0 (0%) 40 (95.2%)
Motor Coordination Issues (%) 0 (0%) 35 (83.3%)
Autistic Traits (%) 0 (0%) 38 (90.5%)

3.2. Metataxonomic Analysis

A total of 62 out of the 64 samples collected in this study were sequenced. Two samples
from PMS children were excluded from sequencing because of the low DNA yield and
the lack of amplification after the first PCR round, respectively. Overall, the remaining
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62 samples yielded a total of 13,671,053 reads. The sequencing depth ranged from a
minimum of 144,265 to a maximum of 415,179 reads per sample. The median number of
reads for the control group was 221,063, with an interquartile range (IQR) of 205,319 to
244,717.75, while for the PMS cases, the median number of reads was 211,182.5, with an
IQR of 196,299 to 228,883. The gut bacterial diversity assessed using the Shannon diversity
index did not reveal significant differences between PMS patients (median [IQR] = 4.25
[4.00–4.48]) and healthy controls (median [IQR] = 4.07 [3.95–4.28]) (p = 0.12). Similarly, the
Simpson index in PMS patients (0.97 [0.96–0.97]) and in controls (0.96 [0.96–0.97]) was very
similar (p = 0.13). In contrast to alpha diversity, the study revealed significant differences
in beta diversity between both groups, being significantly lower in the PMS group. Using
Bray–Curtis distance metrics, the differences in microbial community composition were
highly significant (p < 0.001). Similarly, the Jaccard index, which measures the presence
or absence of species, indicated significant differences between the two groups (p = 0.003)
(Figure 1).
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Figure 1. Metataxonomic profiles of fecal samples of healthy controls (Control; orange), and patients
with Phelan–McDermid syndrome (PMS; pink). (a) Comparison of alpha diversity at the ASV
level calculated using the Shannon index between both groups of patients. (b) Comparison of
alpha diversity at the ASV level calculated using the Simpson index between the groups. Principal
coordinate analysis (PCoA) plots of bacterial profiles at the genus level based on (c) the Bray–Curtis
dissimilarity index in each group and (d) Jaccard’s coefficient for binary data (presence or absence).
The values on each axis label in graphs (c,d) represent the percentage of the total variance explained
by that axis.

Differences in the relative abundance of some bacterial genera were also detected when
comparing PMS children and healthy controls (Table 2). PMS patients had a lower median
relative abundance of Faecalibacterium (PMS patients: 2.13% [IQR: 1.16–7.35], control group:
9.82% [IQR: 4.93–12.36]; p = 0.00037), Bacteroides (PMS patients: 1.51% [IQR: 0.36–4.66],
control group: 4.59% [IQR: 2.57–7.33], p = 0.004), Subdoligranulum (PMS patients: 5.57%
[IQR: 2.97–9.7], control group: 8.24% [IQR: 6.42–15.05]; p = 0.024), Agathobacter (PMS
patients: 1.33% [IQR: 0.43–4.72], control group: 9.58% [IQR: 1.8–12.61]; p = 0.011), Alistipes
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(PMS patients: 0.55% [IQR: 0.16–2.24], control group: 1.41% [IQR: 0.45–3.79]; p = 0.038)
and Roseburia (PMS patients: 0.83% [IQR: 0.37–1.59], control group: 1.59% [IQR: 0.95–3.24];
p = 0.0066). In contrast, the median relative abundance of Bifidobacterium was higher in
PMS patients (1.98% [IQR: 0.98–6.38] than in controls (1.22% [IQR: 0.85–2.53]), although in
this case the differences did not reach statistical significance (p = 0.3).

Table 2. Relative abundance of main bacterial phyla (bold) and genera in fecal samples from healthy
controls and Phelan–McDermid syndrome (PMS) patients.

Control Group PMS Group p-Value *

Phyla/Genera N (%) Median (IQR) N (%) Median (IQR)

Bacillota 22 (100%) 88.28 (76.82–91.84) 40 (100%) 86.53 (80.96–91.70) 0.800
Subdoligranulum 22 (100%) 8.24 (6.42–15.05) 40 (100%) 5.57 (2.97–9.70) 0.024
Faecalibacterium 22 (100%) 9.82 (4.93–12.36) 40 (100%) 2.13 (1.16–7.35) <0.001
Blautia 22 (100%) 5.41 (3.44–6.96) 40 (100%) 4.37 (3.28–7.03) 0.530
Agathobacter 22 (100%) 9.58 (1.80–12.61) 40 (100%) 1.33 (0.43–4.72) 0.011
Dialister 22 (100%) 3.69 (0.24–10.96) 32 (80%) 0.13 (<0.01–4.43) 0.031
Ruminococcus 22 (100%) 1.56 (0.34–4.40) 39 (97.5%) 1.46 (0.25–5.77) 0.910
Ruminococcus_torques_group 22 (100%) 0.64 (0.44–1.05) 40 (100%) 1.03 (0.33–2.28) 0.300
Eubacterium hallii group 22 (100%) 1.11 (0.73–2.29) 40 (100%) 3.00 (0.82–5.54) 0.014
Eubacterium coprostanoligenes group 21 (95.45%) 1.16 (0.57–3.17) 39 (97.5%) 1.83 (1.09–3.16) 0.210
Anaerostipes 22 (100%) 1.36 (0.53–2.24) 40 (100%) 2.06 (1.00–5.16) 0.110
Dorea 22 (100%) 1.78 (0.93–3.37) 38 (95%) 2.76 (1.11–4.15) 0.310
Christensenellaceae R7 group 20 (90.91%) 0.96 (0.57–2.19) 38 (95%) 1.84 (0.61–3.59) 0.130
Coprococcus 22 (100%) 1.52 (1.02–2.78) 39 (97.5%) 1.59 (0.89–1.96) 0.620
Roseburia 22 (100%) 1.59 (0.95–3.24) 39 (97.5%) 0.83 (0.37–1.59) 0.007
Streptococcus 22 (100%) 0.58 (0.35–1.33) 40 (100%) 0.78 (0.19–1.76) 0.940
Bacteroidota 22 (100%) 6.91 (3.22–15.25) 40 (100%) 2.78 (1.05–6.79) 0.014
Bacteroides 22 (100%) 4.59 (2.57–7.33) 40 (100%) 1.51 (0.36–4.66) 0.004
Alistipes 22 (100%) 1.41 (0.45–3.79) 39 (97.5%) 0.55 (0.16–2.24) 0.038
Actinomycetota 22 (100%) 2.31 (1.45–4.27) 40 (100%) 3.92 (2.45–9.71) 0.030
Bifidobacterium 22 (100%) 1.22 (0.85–2.53) 40 (100%) 1.98 (0.98–6.38) 0.300
Pseudomonadota 22 (100%) 0.51 (0.32–0.84) 40 (100%) 0.36 (0.11–0.89) 0.150
Verrucomicrobiota 16 (72.73%) 0.07 (<0.01–0.28) 28 (70%) 0.13 (<0.01–1.12) 0.280
Minor_phyla 22 (100%) 0.07 (0.03–0.25) 40 (100%) 0.18 (0.09–0.41) 0.120
Minor_genera 22 (100%) 13.76 (11.37–17.79) 40 (100%) 20.52 (14.72–25.03) 0.002
Unclassified_genera 22 (100%) 11.74 (8.97–19.11) 40 (100%) 17.27 (12.10–25.35) 0.056

The prevalence is expressed as the number (percentage) of samples in which the bacterial taxa were detected and
the relative abundance of the bacterial taxa as the median and the interquartile range (IQR). * Wilcoxon rank sum
tests, with Bonferroni adjustment, to evaluate differences in the relative abundance of the phylum or genus.

3.3. Short-Chain Fatty Acid (SCFA) Analysis

The concentrations of SCFAs (acetate, propionate and butyrate) were higher in the
feces of the control group than in those of the PMS group (Table 3). The differences between
the PMS and the control samples were statistically significant for all SCFAs (p < 0.001).

Table 3. Concentration (µg/g) of fecal fatty acids (FAs) in the feces of the study participants.

Fatty Acids (µg/g, Mean ± SD) Control Group PMS Group p-Value *

Acetic acid 3259.77 ± 84.85 2964.60 ± 105.16 >0.001
Propionic 1122.14 ± 90.53 861.67 ± 73.53 >0.001
Butyric 871.36 ± 54.10 668.52 ± 46.03 >0.001

* The p-values indicate the statistical significance of the differences between the two groups, as determined by
Student’s t-tests.

3.4. Immunological Analysis

PDGF-bb, IL-12 (p70) and RANTES were the immune factors with the highest detection
frequency (>90% in the samples from both groups), followed by IL-1ra and IL-17 (>70%),
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and Il-6, IL-10 and IFN-γ (>50%). On the contrary, VEGF, MIP-1b, MCP-1, FGF basic,
eotaxin, IL-8 and IL-4 showed a very low frequency of detection in this study (<10%)
(Table 4).

Table 4. Frequencies of detection and concentrations of the immune factors in the fecal samples
analyzed in this work. All the concentrations are expressed as ng/L.

Control Group PMS Group p-Value *

n (%) Mean (sd) n (%) Mean (sd)

IL-1β 8 (36.36%) 1.04 (2.01) 14 (33.33%) 2.71 (4.92) 0.44
IL-1ra 17 (77.27%) 831.60 (1495.05) 37 (88.10%) 993.68 (1589.26) 0.69
IL-4 2 (9.09%) 0.21 (0.37) 2 (4.76%) 0.29 (0.74) 0.62
IL-6 11 (50%) 0.88 (1.13) 23 (54.76%) 0.78 (1.03) 0.73
IL-8 1 (4.55%) 0.91 (0.001) 0 (0%) 0.95 (0.19) 0.32
IL-9 4 (18.18%) 1.86 (4.15) 1 (2.38%) 3.20 (5.08) 0.29
IL-10 16 (72.73%) 2.90 (5.07) 23 (54.76%) 4.09 (7.68) 0.52
IL-12 (p70) 20 (90.91%) 20.09 (13.67) 41 (97.62%) 20.10 (19.72) 0.99
IL-13 8 (36.36%) 1.21 (1.60) 13 (30.95%) 1.27 (1.19) 0.86
IL-17 17 (77.27%) 3.62 (6.18) 31 (73.81%) 6.04 (9.19) 0.28
Eotaxin 2 (9.09%) 0.18 (0.19) 4 (9.52%) 0.18 (0.15) 0.88
FGF basic 1 (4.55%) 18.36 (17.85) 3 (7.14%) 19.09 (19.55) 0.88
G-CSF 3 (13.64%) 14.79 (29.64) 3 (7.14%) 20.13 (44.23) 0.61
GM-CSF 1 (4.55%) 2.22 (2.19) 6 (14.29%) 1.95 (1.87) 0.61
IFN-γ 17 (77.27%) 11.70 (13.76) 27 (64.28%) 13.59 (11.56) 0.57
IP-10 5 (22.73%) 12.42 (7.58) 6 (14.29%) 13.98 (8.32) 0.47
MCP-1 (MCAF) 1 (4.55%) 3.889 (0.59) 1 (2.38%) 4.68 (4.18) 0.38
MIP-1a 7 (31.82%) 0.54 (0.49) 5 (11.90%) 0.81 (0.74) 0.13
PDGF-bb 21 (95.45%) 92.77 (75.49) 40 (95.24%) 97.45 (45.27) 0.76
MIP-1b 3 (13.64%) 1.17 (3.51) 4 (9.52%) 1.28 (3.55) 0.91
RANTES 21 (95.45%) 91.86 (21.42) 41 (97.62%) 95.14 (22.47) 0.58
TNF-α 7 (31.82%) 14.26 (57.12) 12 (28.57%) 28.97 (72.42) 0.41
VEGF 1 (4.55%) 835.78 (0.001) 0 (0%) 873.77 (178.19) 0.33

* The p-values indicate the statistical significance of the differences between the two groups, as determined by
Student’s t-tests.

In relation to the concentration of those immune factors detected in at least 30% of the
samples of both groups, the means in the PMS group were higher than in the control group
for IL-1β (2.7 ng/L versus 1.0 ng/L), IL-1ra (994 ng/L versus 832 ng/L), IL-10 (4.1 ng/L
versus 2.9 ng/L), IL-17 (6.0 ng/L versus 3.6 ng/L), and TNF-α (29 ng/L versus 14 ng/L).
However, the interindividual variability in the values for these immune compounds was
high, and consequently, such differences did not reach statistical significance (p > 0.05). The
mean values for the rest of the immune factors detected in at least 30% of the samples of
both groups were very similar in the two study groups.

4. Discussion

In recent years, several studies have addressed the microbiomes among individuals
diagnosed with ASD [51–54]. However, very few of them have been focused on patients
with PMS, a condition that includes ASD-like behaviors and that is mainly caused by
deletions in 22q13, the genetic region containing SHANK3 and other genes [17,55,56]. In
this study, the fecal metataxonomic, SCFA and immunological profiles of a cohort of PMS
patients were assessed and compared with those of a control population.

In relation to the fecal metataxonomic analysis, the main significant differences in
PMS samples compared to controls were, overall, a lower β-diversity and a lower rela-
tive abundance of the phylum Bacteroidota and the genera Faecalibacterium, Agathobacter,
Alistipes and Roseburia, and a higher relative abundance of the phylum Actinomycetota
and the genus Bifidobacterium. Previously, two studies dealing with Shank3 knock-out (KO)
mice displaying ASD-associated behaviors revealed an altered gastrointestinal morphol-
ogy, which was accompanied by a dysbiosis state [25,57]. Both studies described that
the abundance of Actinomycetota was significantly higher in feces from Shank3αβ KO
mice than in those from controls. More specifically, Sauer et al. [25] found that the genus
Bifidobacterium was one of the drivers of such increase, while Morton et al. [58] described
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the existence of ASD-associated amino acid, carbohydrate and lipid profiles predominantly
encoded by microbial species in the genera Bifidobacterium. Such results agree with the
higher abundance of the phylum Actinomycetota and the genus Bifidobacterium observed
in our study. Interestingly, a significant increase in the phylum Actinomycetota has also
been reported in the feces of human patients with ASD [52].

In addition, we found a decrease in the abundance of the genus Bacteroides in the feces
of PMS patients. This genus is also characterized by its high ability to produce SCFAs
(especially propionate), to downregulate the systemic levels of pro-inflammatory cytokines,
such as IL-6, TNF-α or IL-1β [59], and to protect against systemic inflammation induced by
lipopolysaccharide (LPS) [60,61]. However, metataxonomic studies comparing ASD cases
and controls have provided conflicting results regarding the phylum Bacteroidota and
the genus Bacteroides. Some of them have reported an increase in the relative abundance
of this phylum in ASD patients [51,52,62,63]; in the same direction, it has been described
that the treatment of newborn mice with Bacteroides fragilis led to increased repetitive
behaviors and social dysfunction in males but not in females [64]. In contrast, but in
agreement with our results, other works found the contrary [54], including the observation
that the administration of B. fragilis to pregnant C57BL/6N mice attenuated abnormal
communicative and repetitive behaviors among the offspring [33], and that there was a
decreased abundance of this genus in samples of duodenal mucosa collected from ASD
subjects [65].

Such inconsistencies among the bacterial taxa alterations found in different studies
targeting subjects with ASD are widespread, affecting different genera [66]. In relation to
Faecalibacterium, the decreased abundance in PMS samples agrees with the data provided
on ASD subjects by three previous studies [51,53,67] but is in disagreement with those
reported by other researchers [27,51,52,54,68,69]. Another study found that a reduced
abundance of Faecalibacterium and Agathobacter (formerly, Eubacterium) was associated
with sleep disorders in children with ASD [70]. Decreases in the abundance of Agathobacter,
Alistipes, Roseburia and Subdoligranulum have also been reported in other works [71–74].
Thus, while almost all these studies have identified alterations in the composition of the
microbiome in ASD patients, they have failed in finding a minimal consensus regarding
the specific bacterial genera that are commonly affected. The situation is even worse when
dealing with PMS individuals because of the low number of studies specifically focused on
this population.

Further functional studies (e.g., metabolomic) involving larger and well-defined
populations are necessary to reach a minimum consensus regarding specific microbiota-
associated functional shifts in iASD and PMS hosts, and to elucidate if there may be
microbial signatures that differentiate these two types of neurodevelopmental disorders.
In this context, a decrease in the levels of SCFAs or in the abundance of genes linked to
the production of SCFAs has been consistently found in ASD metagenomes [70,72,75], a
relevant finding since these bacterial products enhance the integrity of both the gut epithe-
lium and the blood–brain barrier [76]. In the study by Liu et al. [75], both the ASD and the
control group had similar dietary sources of butyrate, and therefore, the authors concluded
that the primary drivers of SCFA changes were the differences in microbial taxa.

In this work, we detected significant differences in the levels of three SCFAs (butyrate,
acetate and propionate) when PMS samples were compared to those provided by healthy
individuals. This is a relevant finding since these bacterial products are relevant for several
key biological processes. At the intestinal level, they enhance the integrity of the gut epithe-
lium, controlling the entry of inflammatory compounds to the bloodstream [76]. Intestinal
SCFAs obtain systemic access [77], crossing the blood–brain barrier while enhancing its
integrity [76,78]. Furthermore, SCFAs are recognized as key mediators in the interaction be-
tween the gut microbiota and the immune system, helping to regulate the balance between
anti-inflammatory and pro-inflammatory responses and to maintain immune homeosta-
sis [79]. This immunomodulatory function takes place not only in the gut, but also in other
host locations, including the central nervous system [80]. In fact, SCFAs are crucial in
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the regulation of the gut–brain axis, influencing central nervous system functions such
as cell-to-cell communication, neurotransmitter production and release, microglia activa-
tion, mitochondrial activity, gene expression and early neural system development [81,82].
More specifically, butyrate has been shown to consolidate long-term memory [83], and to
stimulate neurogenesis, neural proliferation and expression of brain-derived neurotrophic
factor in murine models [84–86]. Propionate contributes to the healthy development of
the brain and healthy behavior [33,87], and its levels are altered in ASD cases [77]; finally,
supplementing with acetate improves social deficits and modifies transcriptional regulation
in the prefrontal cortex of mice lacking SHANK3 [88].

Previous studies have shown an increase in inflammatory markers, particularly in
IL-6, in ASD patients and in ASD animal models [89–94]. IL-6 immunofluorescence was not
higher in the neural tissue of Shank3αβ KO mice compared to controls but was significantly
increased in blood vessels [62]. In our study, the fecal levels of some ASD-associated
cytokines, such as IL-1β, IFN-γ and TNF-α, were higher in the PMS samples than in the
controls, but no statistically significant difference between both groups was detected, most
probably because of the high interindividual variability. High levels of IL-1β and TNF-
α may induce detrimental immune responses in the brain through binding to the brain
endothelial cells [95]. In contrast, the mean values for IL-6 were similar in the two groups.
Our results may also have been influenced by the type of biological sample (feces) or the
host species, and therefore might not be comparable with those obtained from blood or in
mice. Regardless, all of these facts indicate that reduced levels of SCFA-producing bacteria
and/or SCFAs in the gut ecosystem may contribute to the development or worsening of
the gastrointestinal and neurodevelopmental symptoms that characterize PMS patients
because of their profound impact on the gut microbiota–neuroimmune crosstalk [96].

This study has several limitations that should be considered when interpreting the
results, including the relatively small sample size, its cross-sectional design and the lack of
a functional analysis of the gut microbiota. The small sample size is reflective of the rarity of
PMS; nevertheless, the sample includes a high proportion of the Spanish PMS population,
where the first study carried out to evaluate the prevalence of this disorder provided
a rate (4 × 10−4/10,000 inhabitants) [97] that was much lower than those previously
reported in other countries (2.5 to 10 cases per million births) [10]. Thus, this fact limits
the generalizability of our findings and may reduce the statistical power to detect subtle
differences between groups. Additionally, the cross-sectional design precludes us from
drawing conclusions about causality or the temporal relationship between microbiota
alterations and symptom progression in PMS. Finally, the lack of a functional analysis
of the gut microbiota prevents us from discussing its actual role in the health or disease
outcomes of PMS. However, this study has allowed the establishment of a solid Spanish
PMS cohort, opening up the possibility of increasing our very limited knowledge about
this disorder. In fact, ongoing work aims, first, to further elucidate the differential roles that
the microbiota may play in PMS patients compared to controls, through omics approaches
and data mining, and, secondly, to develop microbiota-based strategies that could improve
the health and well-being of children with PMS.
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