Vector Competence of Aedes aegypti from São Tomé and Príncipe for West Nile Virus Transmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Virus Production and Quantification
2.3. Mosquito Collection and Rearing
2.4. Mosquito Infection
2.5. RNA Isolation and qRT-PCR
2.6. Data Analysis
- Infection rate (IR): proportion of mosquitoes with WNV-positive bodies out of the total number tested.
- Dissemination rate (DR): proportion of mosquitoes with WNV-positive heads + thoraxes out of the total number of infected mosquitoes.
- Transmission rate (TR): proportion of mosquitoes with WNV-positive saliva out of the total number of mosquitoes with disseminated infection.
- Transmission efficiency (TE): proportion mosquitoes with WNV-positive saliva out of the total number of mosquitoes tested.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, L.; Zhang, F.; Munnink, B.B.O.; Munger, E.; Sikkema, R.S.; Pappa, S.; Tsioka, K.; Sinigaglia, A.; Dal Molin, E.; Shih, B.B.; et al. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog. 2024, 20, e1011880. [Google Scholar] [CrossRef] [PubMed]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti vector competence studies: A review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Kamgang, B.; Acântara, J.; Tedjou, A.; Keumeni, C.; Yougang, A.; Ancia, A.; Bigirimana, F.; Clarke, S.E.; Gil, V.S.; Wondji, C. Entomological surveys and insecticide susceptibility profile of Aedes aegypti during the dengue outbreak in Sao Tome and Principe in 2022. PLoS Negl. Trop. Dis. 2024, 18, e0011903. [Google Scholar] [CrossRef] [PubMed]
- Turell, M.J.; O’Guinn, M.L.; Dohm, D.J.; Jones, J.W. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J. Med. Entomol. 2001, 38, 130–134. [Google Scholar] [CrossRef]
- Palermo, P.M.; Aguilar, P.V.; Sanchez, J.F.; Zorrilla, V.; Flores-Mendoza, C.; Huayanay, A.; Guevara, C.; Lescano, A.G.; Halsey, E.S. Identification of blood meals from potential arbovirus mosquito vectors in the Peruvian Amazon Basin. Am. J. Trop. Med. Hyg. 2016, 95, 1026–1031. [Google Scholar] [CrossRef]
- Sene, N.M.; Diouf, B.; Gaye, A.; Ndiaye, E.H.; Ngom, E.H.M.; Gueye, A.; Seck, F.; Diagne, C.T.; Dia, I.; Diallo, D.; et al. Blood-feeding patterns of Aedes aegypti populations in Senegal. Am. J. Trop. Med. Hyg. 2022, 106, 1402–1405. [Google Scholar] [CrossRef]
- Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 2002, 33, 330–342. [Google Scholar] [CrossRef]
- Rosenberg, R.; Beard, C.B. Vector-borne infections. Emerg. Infect. Dis. 2011, 17, 769–770. [Google Scholar] [CrossRef]
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Pape, W.J. Predicting human West Nile virus infections with mosquito surveillance data. Am. J. Epidemiol. 2013, 178, 829–835. [Google Scholar] [CrossRef]
- Weger-Lucarelli, J.; Rückert, C.; Chotiwan, N.; Nguyen, C.; Garcia Luna, S.M.; Fauver, J.R.; Foy, B.D.; Perera, R.; Black, W.C.; Kading, R.C.; et al. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl. Trop. Dis. 2016, 10, e0005101. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.; Almeida, A.P.G.; Galão, R.P.; Parreira, R.; Piedade, J.; Rodrigues, J.C.; Sousa, C.A.; Novo, M.T. West Nile virus in Southern Portugal, 2004. Vector-Borne Zoonotic Dis. 2005, 5, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kerst, A.J.; Nasci, R.S.; Godsey, M.S.; Mitchell, C.J.; Savage, H.M.; Komar, N.; Panella, N.A.; Allen, B.C.; Volpe, K.E.; et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J. Clin. Microbiol. 2000, 38, 4066–4071. [Google Scholar] [CrossRef] [PubMed]
- Bonica, M.B.; Goenaga, S.; Martin, M.L.; Feroci, M.; Luppo, V.; Muttis, E.; Fabbri, C.; Morales, M.A.; Enria, D.; Micieli, M.V.; et al. Vector competence of Aedes aegypti for different strains of Zika virus in Argentina. PLoS Negl. Trop. Dis. 2019, 13, e0007433. [Google Scholar] [CrossRef]
- Vega-Rúa, A.; Marconcini, M.; Madec, Y.; Manni, M.; Carraretto, D.; Gomulski, L.M.; Gasperi, G.; Failloux, A.B.; Malacrida, A.R. Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun. Biol. 2020, 3, 326. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Q.; Li, L.; He, J.; Guo, J.; Wang, Z.; Huang, Y.; Xi, Z.; Yuan, F.; Li, Y.; et al. The effect of temperature on dengue virus transmission by Aedes mosquitoes. Front. Cell. Infect. Microbiol. 2023, 13, 1242173. [Google Scholar] [CrossRef]
- Rückert, C.; Weger-Lucarelli, J.; Garcia-Luna, S.M.; Young, M.C.; Byas, A.D.; Murrieta, R.A.; Fauver, J.R.; Ebel, G.D. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat. Commun. 2017, 8, 15412. [Google Scholar] [CrossRef]
- Ciota, A.T.; Kramer, L.D. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 2013, 5, 3021–3047. [Google Scholar] [CrossRef]
- Franz, A.W.E.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef]
- Sanchez-Vargas, I.; Olson, K.E.; Black, W.C., IV. The genetic basis for salivary gland barriers to arboviral transmission. Insects 2021, 12, 73. [Google Scholar] [CrossRef]
- Lewis, J.; Gallichotte, E.N.; Randall, J.; Glass, A.; Foy, B.D.; Ebel, G.D.; Kading, R.C. Intrinsic factors driving mosquito vector competence and viral evolution: A review. Front. Cell. Infect. Microbiol. 2023, 13, 1330600. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, Y.; Cheng, J.; Wang, Y.; Lan, C.; Shen, Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasites Vectors 2024, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Tesh, R.B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 2015, 15, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Agboli, E.; Safronetz, D.; Lindsay, L.R.; Wallace, D. The role of insect-specific viruses in mosquito-borne arbovirus transmission. Front. Microbiol. 2019, 10, 2237. [Google Scholar] [CrossRef]
- Newman, C.M.; Cerutti, F.; Anderson, T.K.; Hamer, G.L.; Walker, E.D.; Kitron, U.D.; Ruiz, M.O.; Brawn, J.D.; Goldberg, T.L. Culex flavivirus and West Nile virus mosquito co-infection and positive ecological association in Chicago, United States. Vector-Borne Zoonotic Dis. 2011, 11, 1099–1105. [Google Scholar] [CrossRef]
- Goenaga, S.; Kenney, J.L.; Duggal, N.K.; Delorey, M.; Ebel, G.D.; Zhang, B.; Levis, S.C.; Enria, D.A.; Brault, A.C. Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses 2015, 7, 5801–5812. [Google Scholar] [CrossRef]
- Goddard, L.B.; Roth, A.E.; Reisen, W.K.; Scott, T.W. Vector competence of California mosquitoes for West Nile virus. Emerg. Infect. Dis. 2002, 8, 1385–1391. [Google Scholar] [CrossRef]
- Rückert, C.; Ebel, G.D. How Do Virus-Mosquito Interactions Lead to Viral Emergence? Trends Parasitol. 2018, 34, 310–321. [Google Scholar] [CrossRef]
- Ciota, A.T.; Matacchiero, A.C.; Kilpatrick, A.M.; Kramer, L.D. The effect of temperature on life history traits of Culex pipiens and Cx. restuans (Diptera: Culicidae) vectors of West Nile virus. J. Med. Entomol. 2012, 49, 1157–1163. [Google Scholar]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M.; Fall, G.; Faye, O.; Diallo, M.; Faye, O.; et al. Epidemiology of West Nile virus in Africa: An underestimated threat. PLoS Negl. Trop. Dis. 2022, 16, e0010075. [Google Scholar] [CrossRef]
- Mencattelli, G.; Ndione, M.H.D.; Silverj, A.; Diagne, M.M.; Curini, V.; Teodori, L.; Di Domenico, M.; Mbaye, R.; Leone, A.; Marcacci, M.; et al. Spatial and temporal dynamics of West Nile virus between Africa and Europe. Nat. Commun. 2023, 14, 6440. [Google Scholar] [CrossRef]
- Barreto-Vieira, D.F.; Jácome, F.C.; Silva, M.A.N.; Caldas, G.C.; de Filippis, A.M.B.; de Sequeira, P.C.; de Souza, E.M.; Andrade, A.A.; Manso, P.P.A.; Trindade, G.F.; et al. Structural investigation of C6/36 and Vero cell cultures infected with a Brazilian Zika virus. PLoS ONE 2017, 12, e0184397. [Google Scholar] [CrossRef] [PubMed]
- Baldon, L.; de Mendonça, S.; Santos, E.; Marçal, B.; de Freitas, A.C.; Rezende, F.; Moreira, R.; Sousa, V.; Comini, S.; Lima, M.; et al. Suitable Mouse Model to Study Dynamics of West Nile Virus Infection in Culex quinquefasciatus Mosquitoes. Trop. Med. Infect. Dis. 2024, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, X.; Jiang, S.; Li, C.; Xing, D.; Zhang, H.; Dong, Y.; Zhao, T. The potential vector competence and overwintering of West Nile Virus in vector Aedes albopictus in China. Front. Microbiol. 2022, 13, 888751. [Google Scholar] [CrossRef] [PubMed]
- Martinet, J.P.; Bohers, C.; Vazeille, M.; Ferté, H.; Mousson, L.; Mathieu, B.; Depaquit, J.; Failloux, A.B. Assessing vector competence of mosquitoes from northeastern France to West Nile virus and Usutu virus. PLoS Negl. Trop. Dis. 2023, 17, e0011144. [Google Scholar] [CrossRef] [PubMed]
- Bohers, C.; Vazeille, M.; Bernaoui, L.; Pascalin, L.; Meignan, K.; Mousson, L.; Jakerian, G.; Karch, A.; de Lamballerie, X.; Failloux, A.-B. Aedes albopictus is a competent vector of five arboviruses affecting human health, greater Paris, France, 2023. Eurosurveillance 2024, 29, 2400271. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Kramer, L.D.; Campbell, S.R.; Alleyne, E.O.; Dobson, A.P.; Daszak, P. West Nile virus risk assessment and the bridge vector paradigm. Emerg. Infect. Dis. 2005, 11, 425–429. [Google Scholar] [CrossRef]
- Loiseau, C.; Gutiérrez-López, R.; Mathieu, B.; Makanga, B.K.; Paupy, C.; Rahola, N.; Cornel, A.J. Diversity and distribution of the arthropod vectors of the Gulf of Guinea oceanic islands. In Biodiversity of the Gulf of Guinea Oceanic Islands; Ceríaco, L.M.P., de Lima, R.F., Melo, M., Bell, R.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 383–407. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef]
Days Post Infection | ||||
---|---|---|---|---|
IR % (n) | DR % (n) | TR % (n) | TE % (n) | |
7 | 5 (20) | 0 (1) | 0 (0) | 0 (20) |
14 | 20 (20) | 100 (4) | 25 (4) | 5 (20) |
21 | 35 (20) | 43 (7) | 67 (3) | 10 (20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marmé, R.; Tomaz, F.; Sousa, C.A.; Pinto, J.; Lanzaro, G.C.; Parreira, R.; Seixas, G. Vector Competence of Aedes aegypti from São Tomé and Príncipe for West Nile Virus Transmission. Microorganisms 2024, 12, 2038. https://doi.org/10.3390/microorganisms12102038
Marmé R, Tomaz F, Sousa CA, Pinto J, Lanzaro GC, Parreira R, Seixas G. Vector Competence of Aedes aegypti from São Tomé and Príncipe for West Nile Virus Transmission. Microorganisms. 2024; 12(10):2038. https://doi.org/10.3390/microorganisms12102038
Chicago/Turabian StyleMarmé, Rafael, Filipe Tomaz, Carla A. Sousa, João Pinto, Gregory C. Lanzaro, Ricardo Parreira, and Gonçalo Seixas. 2024. "Vector Competence of Aedes aegypti from São Tomé and Príncipe for West Nile Virus Transmission" Microorganisms 12, no. 10: 2038. https://doi.org/10.3390/microorganisms12102038
APA StyleMarmé, R., Tomaz, F., Sousa, C. A., Pinto, J., Lanzaro, G. C., Parreira, R., & Seixas, G. (2024). Vector Competence of Aedes aegypti from São Tomé and Príncipe for West Nile Virus Transmission. Microorganisms, 12(10), 2038. https://doi.org/10.3390/microorganisms12102038