Deciphering Hyperammonia-Producing Bacteria (HAB) in the Rumen of Water Buffaloes (Bubalus bubalis) and Their Inhibition through Plant Extracts and Essential Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Predominant HAB in Rumen of Buffalo
2.1.1. Preparation of Enrichment Medium
2.1.2. Enrichment of Hyperammonia-Producing Bacteria (HAB)
2.1.3. Isolation and Characterization of HAB
Preparation of Solid Medium
Anaerobic Dilution Medium
Isolation of HAB Bacteria
Identification of Anaerobic Bacteria
Estimation of Ammonia Production by Colorimetric Method
Estimation of Protein
Estimation of Protease by Azocasein Method
Evaluation of Growth Rate in Liquid Culture
Isolation of Bacterial DNA
Polymerase Chain Reaction (PCR) Amplification of 16S rRNA Gene
Substrate Utilization by Bacterial Isolates
2.2. Evaluation of Additives for Inhibition of HAB
2.3. Amplicon Sequencing and Analysis
2.4. Statistical Analysis
3. Results
3.1. Predominant Hyperammonia-Producing Bacteria in the Rumen of Buffaloes
3.2. Results of Isolation and Characterization of Hyperammonia-Producing Bacteria (HAB)
3.3. Amino Acid Utilization Ability of the Best HAB Isolate
3.4. 16S rRNA Gene Sequence-Based Identification of HAB Isolates
3.5. Evaluation of Plant Bioactive Compounds for Inhibition of HAB
4. Discussion
4.1. Determination of Predominant Hyperammonia-Producing Bacteria (HAB) in the Rumen of Buffaloes
4.2. Isolation and Characterization of Hyperammonia-Producing Bacteria (HAB)
4.3. Evaluation of Plant Bioactive Compounds for Inhibition of HAB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nocek, J.; Russell, J.B. Protein and carbohydrate as an integrated system. Relationship of ruminal availability to microbial contribution and milk production. J. Dairy Sci. 1988, 71, 2070–2107. [Google Scholar] [CrossRef]
- Chen, G.; Russell, J.B. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl. Environ. Microbiol. 1988, 54, 2742–2749. [Google Scholar] [PubMed]
- Flachowsky, G.; Lebzien, P. Possibilities for reduction of nitrogen (N) excretion from ruminants and the need for further research—A review. Landbauforschung Volkenrode 2006, 56, 19–30. [Google Scholar]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef] [PubMed]
- Firkins, J.L.; Yu, Z.; Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 2007, 90 (Suppl. E), E1–E16. [Google Scholar] [CrossRef]
- Tan, P.; Liu, H.; Zhao, J.; Gu, X.; Wei, X.; Zhang, X.; Ma, N.; Johnston, L.J.; Bai, Y.; Zhang, W.; et al. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci. Total Environ. 2021, 800, 149596. [Google Scholar] [CrossRef]
- Wallace, R.J.; Onodera, R.; Cotta, M.A. Metabolism of nitrogen-containing compounds. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Chapman and Hall: New York, NY, USA, 1997; pp. 283–328. [Google Scholar]
- FAO. Livestock’s Long Shadow. Environmental Effects and Option. 2006. Available online: http://www.virtualcentre.org (accessed on 1 August 2007).
- Kohn, R.A.; Dinneen, M.M.; Russek, C.E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Beede, D.K.; Shaver, R.D.; Polan, C.E.; Huber, J.T.; Chandler, P.T. Effects of inclusion of a blended protein product in 35 dairy herds in five regions of the country. J. Dairy Sci. 2000, 83, 1813–1828. [Google Scholar] [CrossRef]
- Yang, C.M.J.; Russell, J.B. The effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen. Appl. Environ. Microbial. 1993, 58, 3355–3359. [Google Scholar] [CrossRef]
- Russell, J.B.; Houlihan, A. Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol. Rev. 2002, 27, 65–74. [Google Scholar] [CrossRef]
- Perera, B.M.A.O. Livestock Production–Current Status in South and South-East Asia, Future Directions and Priority Areas for Research; IAEA: Vienna, Austria, 2014. Available online: https://www.osti.gov/etdeweb/biblio/22190329 (accessed on 22 February 2022).
- Kamra, D.N. Rumen microbial ecosystem. Curr. Sci. 2005, 89, 124–135. [Google Scholar]
- Gano, J.M. Amino Acid-Fermenting Bacteria from the Rumen of Dairy Cattle Enrichment, Isolation, Characterization, and Interaction with Entodinium caudatum. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2013. [Google Scholar]
- Whitehead, T.R.; Cotta, M.A. Isolation and identification of hyper-ammonia producing bacteria from swine manure storage pits. Curr. Microbiol. 2004, 48, 20–26. [Google Scholar] [CrossRef]
- Flythe, M.; Andries, K. The effects of monensin on amino acid catabolizing bacteria isolated from the Boer goat rumen. Small Rum. Res. 2009, 81, 178–181. [Google Scholar]
- Flythe, M.; Kagan, I. Antimicrobial effect of red clover (Trifolium pretense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr. Microbiol. 2010, 61, 125–131. [Google Scholar] [PubMed]
- Gershenzon, J.; Croteau, R. Terpenoids. In Herbivores: Their Interactions with Secondary Plant Metabolites; Rosenthal, G.A., Berenbaum, M.R., Eds.; Academic Press: San Diego, CA, USA, 1991; Volume I, pp. 165–219. [Google Scholar]
- Patra, A.K.; Saxena, J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant concentration. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [PubMed]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.; van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Russell, J.B.; Strobel, H.J.; Chen, G. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl. Environ. Microbiol. 1988, 54, 872–877. [Google Scholar]
- Paul, S.; Lal, D. Nutrient Requirements of Buffaloes; Satish Serial Publishing House: New Delhi, India, 2010. [Google Scholar]
- Menke, K.H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar]
- Contreras-Martos, S.; Nguyen, H.H.; Nguyen, P.N.; Hristozova, N.; Macossay-Castillo, M.; Kovacs, D.; Bekesi, A.; Oemig, J.S.; Maes, D.; Pauwels, K.; et al. Quantification of intrinsically disordered proteins: A problem not fully appreciated. Front. Mol. Biosci. 2018, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Cotta, M.A.; Hespell, R.B. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol. 1986, 52, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, D.G.; Saunders, N.A.; Owen, R.J. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Let. Appl. Microbiol. 1989, 8, 151–156. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Wiley: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Singh, R.K.; Dey, A.; Paul, S.S.; Singh, M.; Dahiya, S.S.; Punia, B.S. Associative effects of plant secondary metabolites in modulating in vitro methanogenesis, volatile fatty acids production and fermentation of feed in buffalo (Bubalus bubalis). Agrofor. Syst. 2020, 94, 1555–1566. [Google Scholar] [CrossRef]
- Kittelmann, S.; Seedorf, H.; Walters, W.A.; Clemente, J.C.; Knight, R.; Gordon, J.I.; Janssen, P.H. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and Eukaryotic microorganisms in rumen bacterial communities. PLoS ONE 2013, 8, e47879. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- SPSS. Statistical Packages for Social Sciences, Version 17.0; SPSS Inc.: Chicago, IL, USA, 2008. [Google Scholar]
- Kim, M.; Morrison, M.; Yu, Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. 2011, 76, 49–63. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Nelson, K.E.; Zinder, S.H.; Hance, I. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: Insights into an unexplored niche. Environ. Microbiol. 2003, 5, 1212–1220. [Google Scholar] [PubMed]
- Sundset, M.A.; Praesteng, K.E.; Cann, I.K.O.; Mathiesen, S.D.; Mackie, R.I. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial Ecol. 2007, 54, 424–438. [Google Scholar]
- Paster, B.J.; Russell, J.B.; Yang, C.M.; Chow, J.M.; Woese, C.R.; Tanner, R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int. J. Syst. Bacteriol. 1993, 43, 107–110. [Google Scholar] [PubMed]
- Krause, D.O.; Russell, J.B. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid degradation. Appl. Environ. Microbiol. 1996, 62, 815–821. [Google Scholar] [PubMed]
- Attwood, G.T.; Klieve, A.V.; Ouwerkerk, D.; Patel, B.K. Ammonia-hyper producing bacteria from New Zealand ruminants. Appl. Environ. Microbiol. 1998, 64, 1794–1804. [Google Scholar]
- McSweeney, C.S.; Palmer, B.; Bunch, R.; Krause, D.O. Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl. Environ. Microbiol. 1999, 65, 3075–3083. [Google Scholar]
- Eschenlauer, S.C.P.; McKain, N.; Walker, N.D.; McEwan, N.R.; Newbold, C.J.; Wallace, R.J. Ammonia concentration by ruminal microorganisms and enumeration, isolation, and characterization of bacteria capable of growth on peptides and amino acids from the sheep rumen. Appl. Environ. Microbiol. 2002, 68, 4925–4931. [Google Scholar] [CrossRef]
- Bladen, H.A.; Bryant, M.P.; Doetsch, R.N. A study of bacterial species from the rumen which produce ammonia from protein hydrolysate. Appl. Microbiol. 1961, 9, 175–180. [Google Scholar]
- Pittman, K.A.; Brayant, M.P. Peptide and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol. 1964, 88, 401–410. [Google Scholar]
- Han, T.W.; Jih, T.H. Optimal protease production condition for Prevotella ruminicola 23 and characterization of its extracellular crude protease. Anaerobe 2005, 11, 155–162. [Google Scholar]
- Russell, J.B.; Strobel, H.J. Microbial energetics. In Quantitative Aspects of Ruminant Digestion and Metabolism; Dijkstra, J., Forbes, J.M., France, J., Eds.; CABI Publishing: Cambridge, MA, USA, 2005; pp. 229–261. [Google Scholar]
- Leng, R.A.; Nolan, J.V. Nitrogen metabolism in the rumen. J. Dairy Sci. 1984, 67, 1072–1089. [Google Scholar] [PubMed]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Kamel, C. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 2006, 89, 761–771. [Google Scholar] [PubMed]
- Singh, R.K.; Dey, A.; Paul, S.S.; Singh, M.; Punia, B.S. Responses of lemongrass (Cymbopogon citratus) essential oils supplementation on in vitro rumen fermentation parameters in buffalo. Indian J. Anim. Nutr. 2018, 35, 174–179. [Google Scholar]
- McEwan, N.; Graham, R.C.; Wallace, J.; Losa, R.; Williams, P.; Newbold, C. Effect of essential oils on ammonia production by rumen microbes. Reprod. Nutr. Dev. 2002, 42, S65. [Google Scholar]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullio, M.C.; Yu, Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim. Feed Sci. Technol. 2016, 215, 25–36. [Google Scholar]
- Hristov, A.; Ropp, J.; Zaman, S.; Melgar, A. Effects of essential oils on in vitro ruminal fermentation and ammonia release. Anim. Feed Sci. Technol. 2008, 144, 55–64. [Google Scholar]
- Sallam, S.; Bueno, I.; Brigide, P.; Godoy, P.; Vitti, D.; Abdalla, A.L. Efficacy of eucalyptus oil on in vitro ruminal fermentation and methane production. Options Mediterr. 2009, 85, 267. [Google Scholar]
- Huang, H.C.; Wu, M.D.; Tsai, W.J.; Liao, S.C.; Liaw, C.C.; Hsu, L.C.; Wu, Y.C.; Kuo, Y.H. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi. Phytochem. 2008, 69, 1609–1616. [Google Scholar]
- Suhagia, B.; Rathod, I.; Sindhu, S. Sapindus mukorossi (Reetha): An overview. Int. J. Pharm. Sci. Res. 2011, 2, 1905. [Google Scholar]
- Makkar, H.P.; Sen, S.; Blümmel, M.; Becker, K. Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria, and Acacia auriculoformis on rumen fermentation. J. Agric. Food Chem. 1998, 46, 4324–4328. [Google Scholar]
- Hristov, A.N.; McAllister, T.A.; Van Herk, F.H.; Cheng, K.J.; Newbold, C.J.; Cheeke, P.R. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J. Anim. Sci. 1999, 77, 2554–2563. [Google Scholar] [PubMed]
- Francis, G.; Kerem, Z.; Makkar, H.P.; Becker, K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002, 88, 587–605. [Google Scholar] [PubMed]
- Dey, A.; Dutta, N.; Sharma, K.; Pattanaik, A. Evaluation of condensed tannins from tropical tree leaves and its impact on in vitro nitrogen degradability of groundnut cake. Anim. Nutr. Feed Technol. 2006, 6, 215–222. [Google Scholar]
- Molan, A.L.; Attwood, G.T.; McNabb, W.C. The impact of condensed tannins from dock (Rumex obtusifolius) on the growth of rumen proteolytic bacteria in vitro. J. Anim. Feed Sci. 2007, 16, 118–123. [Google Scholar]
Reagents | Quantity |
---|---|
Template (Genomic DNA) | 1 μL |
Primers-F | 0.25 μL |
Primers-R | 0.25 μL |
10X PCR buffer | 5 μL |
dNTP’s (100 mM) | 1 μL |
MgCl2 (50 mM) | 1.75 μL |
Nuclease-free water | 39.828 μL |
Taq polymerase (5 U/μL) | 0.25 μL |
BSA (50 mg/mL) | 0.672 μL |
Total prepared master mixture | 50 μL |
Primer Name | Sequence (5′→3′) | Expected Amplicon Size (bp) | Annealing Temperature (°C) | Reference |
---|---|---|---|---|
27F | AGAGTTTGATCMTGGCTCAG | 1465 | 55 | Lane, 1991 [30] |
1492R | TACGGYTACCTTGTTACGACTT |
Domain | Phylum | Class | Order | Family | Genus | % of Total Bacterial Sequences | |||
---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | ||||||
100 | 100 | 100 | 100 | ||||||
Bacteria | Proteobacteria | 61.1 | 68.2 | 67.6 | 61.6 | ||||
,, | ,, | Gammaproteobacteria | 7.3 | 7.7 | 6.9 | 7.3 | |||
,, | ,, | ,, | Unknown | Unknown | Candidatus Carsonella | 2.8 | 4.6 | 4.2 | 3.3 |
,, | ,, | ,, | Enterobacteriales | 1 | 0.23 | 0.14 | 0.14 | ||
,, | ,, | ,, | ,, | Enterobacteriaceae | 1 | 0.23 | 0.14 | 0.14 | |
,, | ,, | ,, | ,, | ,, | Proteus | 0.96 | 0.18 | 0.07 | 0.11 |
,, | ,, | ,, | Unclassified Gammaproteobacteria | 3.5 | 2.9 | 2.6 | 3.7 | ||
,, | ,, | Unclassified Proteobacteria | 53.4 | 60.5 | 60.6 | 54.3 | |||
,, | Bacteroidetes | 1.8 | 0.94 | 1.2 | 2.1 | ||||
,, | ,, | Bacteroidia | 1.1 | 0.75 | 1.2 | 2.1 | |||
,, | ,, | ,, | Bacteroidales | 1.1 | 0.75 | 1.2 | 2.1 | ||
,, | ,, | ,, | ,, | Bacteroidaceae | 0.69 | 0.15 | 0.76 | 1.4 | |
,, | ,, | ,, | ,, | ,, | Bacteroides | 0.69 | 0.15 | 0.76 | 1.4 |
,, | Firmicutes | 6.9 | 2.8 | 4.9 | 6.3 | ||||
,, | ,, | Clostridia | 1.5 | 0.88 | 1.4 | 1.7 | |||
,, | ,, | ,, | Clostridiales | 1.4 | 0.87 | 1.4 | 1.7 | ||
,, | ,, | ,, | ,, | Ruminococcaceae | 0.38 | 0.33 | 0.34 | 0.89 | |
,, | ,, | ,, | ,, | ,, | Oscillibacter | 0.35 | 0.16 | 0.27 | 0.78 |
,, | ,, | Negativicutes | 5.1 | 1.8 | 3.5 | 4.4 | |||
,, | ,, | ,, | Selenomonadales | 5.1 | 1.8 | 3.5 | 0.78 | ||
,, | ,, | ,, | ,, | Veillonellaceae | 0.45 | 0.3 | 0.39 | 0.93 | |
,, | ,, | ,, | ,, | ,, | Allisonella | 0.43 | 0.26 | 0.15 | 0.73 |
,, | ,, | ,, | ,, | Acidaminococcaceae | 4.7 | 1.5 | 3.1 | 3.5 | |
,, | ,, | ,, | ,, | ,, | Acidaminococcus | 4.1 | 1.4 | 2.8 | 2.9 |
,, | ,, | ,, | ,, | ,, | Succiniclasticum | 0.51 | 0.09 | 0.23 | 0.46 |
,, | Actinobacteria | 1.1 | 0.12 | 0.44 | 0.76 | ||||
,, | ,, | Actinobacteria | 1.1 | 0.12 | 0.44 | 0.76 | |||
,, | ,, | ,, | Coriobacteriales | 1 | 0.12 | 0.43 | 0.75 | ||
,, | ,, | ,, | ,, | Coriobacteriaceae | 1 | 0.12 | 0.43 | 0.75 | |
,, | ,, | ,, | ,, | ,, | Denitrobacterium | 0.73 | 0.03 | 0.12 | 0.00 |
,, | ,, | ,, | ,, | ,, | Paraeggerthella | 0.14 | 0.06 | 0.23 | 0.64 |
,, | Synergistetes | 0.31 | 0.10 | 0.13 | 0.42 | ||||
,, | ,, | Synergistia | 0.31 | 0.10 | 0.13 | 0.42 | |||
,, | ,, | ,, | Synergistales | 0.31 | 0.10 | 0.13 | 0.42 | ||
,, | ,, | ,, | ,, | Synergistaceae | 0.31 | 0.10 | 0.13 | 0.42 | |
,, | ,, | ,, | ,, | ,, | Pyramidobacter | 0.31 | 0.09 | 0.11 | 0.33 |
,, | Fusobacteria | 0.12 | 0.04 | 0.75 | 0.57 | ||||
,, | ,, | Fusobacteriia | 0.12 | 0.04 | 0.75 | 0.57 | |||
,, | ,, | ,, | Fusobacteriales | 0.12 | 0.04 | 0.75 | 0.57 | ||
,, | ,, | ,, | ,, | Fusobacteriaceae | 0.12 | 0.04 | 0.74 | 0.57 | |
,, | ,, | ,, | ,, | ,, | Fusobacterium | 0.11 | 0.03 | 0.67 | 0.52 |
,, | unclassified_Bacteria | 29.1 | 27.6 | 24.8 | 28.1 |
Particular | Ammonia Concentration (mgN/dL) * | |||
---|---|---|---|---|
Isolates | Morphology | 0 h | 6 h | 24 h |
HAB 1 | Cocci, Gram-positive | 0.36 ± 0.12 | 38.0 ± 1.70 | 36.6 ± 3.42 |
HAB 2 | Rod, Gram-positive | 0.70 ± 0.14 | 17.0 ± 4.75 | 80.6 ± 0.46 |
HAB 3 | Cocci, Gram-positive | 0.76 ± 0.37 | 85.1 ± 3.73 | 166.0 ± 0.47 |
HAB 4 | Cocci, Gram-negative | 0.93 ± 0.45 | 35.6 ± 2.71 | 22.4 ± 1.83 |
HAB 5 | Cocci, Gram-positive | 0.53 ± 0.17 | 46.9 ± 3.05 | 30.2 ± 0.68 |
HAB 6 | Rod, Gram-negative | 0.54 ± 0.16 | 58.8 ± 4.07 | 150.2 ± 0.36 |
HAB 7 | Rod, Gram-positive | 0.30 ± 0.13 | 67.5 ± 3.39 | 166.6 ± 0.46 |
HAB 8 | Rod, Gram-positive | 0.13 ± 0.03 | 53.2 ± 2.37 | 148.2 ± 0.47 |
HAB 9 | Rod, Gram-negative | 0.40 ± 0.23 | 29.6 ± 2.37 | 90.2 ± 2.05 |
HAB 10 | Rod, Gram-negative | 0.50 ± 0.20 | 27.4 ± 3.73 | 126.8 ± 0.91 |
HAB 11 | Rod, Gram-negative | 0.90 ± 0.33 | 48.4 ± 3.73 | 161.1 ± 2.06 |
HAB 12 | Rod, Gram-positive | 0.70 ± 0.37 | 60.4 ± 6.78 | 150.8 ± 0.48 |
HAB 13 | Rod, Gram-negative | 0.40 ± 0.25 | 41.0 ± 0.34 | 33.2 ± 0.68 |
HAB 14 | Rod, Gram-positive | 0.93 ± 0.36 | 118.1 ± 2.04 | 167.8 ± 1.60 |
HAB 15 | Rod, Gram-positive | 0.67 ± 0.37 | 5.5 ± 0.36 | 3.3 ± 0.91 |
HAB 16 | Cocci, Gram-positive | 0.10 ± 0.03 | 42.0 ± 0.21 | 6.3 ± 0.74 |
HAB 17 | Cocci, Gram-positive | 0.90 ± 0.27 | 32.4 ± 0.68 | 0.9 ± 0.13 |
HAB 18 | Rod, Gram-negative | 0.27 ± 0.10 | 35.2 ± 0.13 | 3.9 ± 0.23 |
HAB 19 | Rod, Gram-negative | 0.97 ± 0.13 | 39.8 ± 4.07 | 36.4 ± 3.20 |
HAB 20 | Rod, Gram-negative | 0.70 ± 0.33 | 35.7 ± 0.34 | 39.4 ± 4.57 |
Isolates | Ammonia Production Rate (nmol NH3/mg Cell Protein/min) * | |
---|---|---|
6 h | 24 h | |
HAB 1 | 54,834.5 ± 1221.09 | 29,673.7 ± 274.45 |
HAB 2 | 238,859.6 ± 33,251.28 | 36,563.8 ± 207.20 |
HAB 3 | 124,372.8 ± 2724.97 | 50,046.8 ± 137.58 |
HAB 4 | 114,024.6 ± 4341.25 | 58,222.6 ± 746.35 |
HAB 5 | 191,535.2 ± 6233.89 | 45,731.5 ± 1035.94 |
HAB 6 | 69,219.1 ± 2397.11 | 31,508.1 ± 95.72 |
HAB 7 | 172,025.4 ± 4321.22 | 96,707.6 ± 264.94 |
HAB 8 | 64,378.2 ± 1434.78 | 33,584.2 ± 465.35 |
HAB 9 | 75,727.2 ± 3029.65 | 49,350.3 ± 1123.79 |
HAB 10 | 66,186.4 ± 4491.04 | 37,553.5 ± 270.39 |
HAB 11 | 74,130.2 ± 2857.36 | 74,859.5 ± 954.28 |
HAB 12 | 61,872.1 ± 3470.79 | 41,214.1 ± 497.58 |
HAB 13 | 51,450.2 ± 212.517 | 25,178.3 ± 518.78 |
HAB 14 | 120,893.2 ± 1040.85 | 64,702.6 ± 616.07 |
HAB 15 | 33,392.0 ± 1550.98 | 18,491.4 ± 517.98 |
HAB 16 | 245,302.6 ± 10,001.51 | 49,287.5 ± 215.93 |
HAB 17 | 135,931.1 ± 1420.43 | 6613.4 ± 283.34 |
HAB 18 | 83,671.1 ± 2000.30 | 10,974.7 ± 633.86 |
HAB 19 | 60,071.2 ± 3067.76 | 32,558.5 ± 852.59 |
HAB 20 | 97,212.9 ± 461.71 | 45,866.7 ± 533.85 |
Isolates | Protease Production Rate (mIU/mg Cell Protein/mL) * | |
---|---|---|
6 h | 24 h | |
HAB 1 | 20.9 ± 1.20 | 49.5 ± 0.88 |
HAB 2 | 204.2 ± 4.30 | 27.7 ± 1.01 |
HAB 3 | 21.3 ± 0.90 | 18.5 ± 4.04 |
HAB 4 | 46.4 ± 1.95 | 158.9 ± 4.11 |
HAB 5 | 59.7 ± 1.75 | 92.6 ± 0.98 |
HAB 6 | 17.1 ± 0.85 | 12.7 ± 1.03 |
HAB 7 | 37.2 ± 0.90 | 35.4 ± 2.21 |
HAB 8 | 17.5 ± 0.95 | 13.4 ± 0.53 |
HAB 9 | 37.4 ± 1.40 | 33.5 ± 1.46 |
HAB 10 | 35.3 ± 1.35 | 18.1 ± 0.58 |
HAB 11 | 22.3 ± 0.20 | 28.6 ± 1.46 |
HAB 12 | 14.8 ± 1.10 | 16.7 ± 0.54 |
HAB 13 | 18.2 ± 0.70 | 46.3 ± 0.18 |
HAB 14 | 14.7 ± 0.95 | 23.5 ± 0.57 |
HAB 15 | 88.1 ± 3.75 | 343.4 ± 1.41 |
HAB 16 | 85.5 ± 0.40 | 476.0 ± 5.50 |
HAB 17 | 61.2 ± 2.50 | 431.7 ± 3.20 |
HAB 18 | 34.7 ± 1.90 | 170.4 ± 2.60 |
HAB 19 | 21.9 ± 1.65 | 54.3 ± 0.65 |
HAB 20 | 39.4 ± 3.68 | 70.7 ± 2.45 |
Item | 0 h | 6 h | 12 h | 24 h |
---|---|---|---|---|
HAB 3 | 0.03 ± 0.0015 | 0.14 ± 0.002 | 0.12 ± 0.0005 | 0.19 ± 0.001 |
HAB 6 | 0.03 ± 0.0015 | 0.15 ± 0.001 | 0.12 ± 0.001 | 0.19 ± 0.0015 |
HAB 7 | 0.02 ± 0.002 | 0.14 ± 0.0005 | 0.18 ± 0.0015 | 0.18 ± 0.002 |
HAB 8 | 0.02 ± 0.002 | 0.14 ± 0.002 | 0.13 ± 0.002 | 0.19 ± 0.0005 |
HAB 10 | 0.02 ± 0.001 | 0.10 ± 0.0025 | 0.16 ± 0.0015 | 0.18 ± 0.0015 |
HAB 11 | 0.03 ± 0.0015 | 0.14 ± 0.002 | 0.14 ± 0.0025 | 0.17 ± 0.002 |
HAB 12 | 0.02 ± 0.0005 | 0.15 ± 0.002 | 0.17 ± 0.001 | 0.19 ± 0.0015 |
HAB 14 | 0.03 ± 0.0005 | 0.16 ± 0.001 | 0.18 ± 0.002 | 0.19 ± 0.0015 |
Particular | Ammonia Production Rate (nmolNH3/mg Cell Protein/min) * at 48 h of Incubation | |||
---|---|---|---|---|
First Transfer | Second Transfer | Third Transfer | Fourth Transfer | |
Arg | 2292.5 ± 116.62 | 3879.9 ± 150.47 | 7404.4 ± 19.70 | 5321.5 ± 62.69 |
Thr | 126.9 ± 3.15 | 88.7 ± 1.75 | 614.4 ± 2.10 | 561.0 ± 55.16 |
His | 1.7 ± 0.10 | 139.3 ± 4.50 | 9.8 ± 0.45 | 11.2 ± 4.51 |
Leu | 1664.4 ± 54.11 | 69.7 ± 4.60 | 2066.8 ± 10.90 | 663.7 ± 22.57 |
Val | 20.5 ± 1.15 | 60.3 ± 0.70 | 38.5 ± 1.45 | 34.6 ± 10.03 |
Pro | 42.3 ± 1.90 | 15.0 ± 0.75 | 12.8 ± 0.15 | 584.3 ± 25.58 |
Ile | 85.9 ± 1.85 | 37.6 ± 1.00 | 7.3 ± 0.20 | 536.8 ± 8.02 |
Met | 23.9 ± 1.80 | 30.6 ± 1.00 | 593.4 ± 2.40 | 12.7 ± 10.53 |
Leu | 1176.9 ± 33.46 | 971.8 ± 2.40 | 4175.0 ± 37.51 | 1563.5 ± 306.91 |
Control (casamino acid) | 2678.0 ± 54.51 | 2832.0 ± 36.51 | 2930.0 ± 17.50 | 3342.0 ± 416.24 |
Particular | Protease Production Rate (mIU/mg Cell Protein/mL) * at 48 h of Incubation | |||
---|---|---|---|---|
First Transfer | Second Transfer | Third Transfer | Fourth Transfer | |
Arg | 44.21 ± 1.95 | 89.97 ± 4.74 | 127.76 ± 2.73 | 110.86 ± 1.15 |
Thr | 57.41 ± 3.59 | 115.20 ± 2.59 | 139.34 ± 1.86 | 142.67 ± 1.51 |
His | 42.94 ± 1.35 | 54.08 ± 1.93 | 75.70 ± 2.74 | 69.10 ± 1.94 |
Leu | 997.68 ± 23.73 | 404.36 ± 4.36 | 430.70 ± 2.51 | 256.16 ± 3.30 |
Val | 147.21 ± 3.49 | 351.24 ± 4.50 | 295.50 ± 2.47 | 510.60 ± 1.25 |
Pro | 33.88 ± 1.83 | 174.62 ± 2.53 | 99.04 ± 2.86 | 478.83 ± 4.63 |
Ile | 154.62 ± 4.67 | 220.16 ± 4.72 | 112.27 ± 1.86 | 7918.87 ± 11.61 |
Met | 86.21 ± 3.10 | 357.55 ± 4.00 | 133.28 ± 1.82 | 187.75 ± 4.10 |
Leu | 27.65 ± 1.40 | 51.60 ± 1.33 | 178.84 ± 3.24 | 113.05 ± 2.25 |
Control (casamino acid) | 71.03 ± 1.29 | 112.96 ± 2.30 | 52.81 ± 1.62 | 110.99 ± 1.71 |
Particular | OD600 48 h of Incubation * | |||
---|---|---|---|---|
First Transfer | Second Transfer | Third Transfer | Fourth Transfer | |
Arg | 0.25 ± 0.003 | 0.15 ± 0.001 | 0.16 ± 0.009 | 0.12 ± 0.008 |
Thr | 0.19 ± 0.002 | 0.08 ± 0.0008 | 0.06 ± 0.0005 | 0.07 ± 0.0004 |
His | 0.18 ± 0.002 | 0.13 ± 0.001 | 0.08 ± 0.0002 | 0.02 ± 0.0001 |
Leu | 0.08 ± 0.001 | 0.04 ± 0.0009 | 0.03 ± 0.0001 | 0.03 ± 0.0002 |
Val | 0.11 ± 0.003 | 0.05 ± 0.0008 | 0.05 ± 0.0001 | 0.04 ± 0.0001 |
Pro | 0.14 ± 0.001 | 0.06 ± 0.0005 | 0.04 ± 0.0002 | 0.05 ± 0.0005 |
Ile | 0.11 ± 0.002 | 0.05 ± 0.0003 | 0.03 ± 0.0002 | 0.03 ± 0.0002 |
Met | 0.12 ± 0.004 | 0.04 ± 0.0001 | 0.04 ± 0.0003 | 0.02 ± 0.0001 |
Leu | 0.19 ± 0.006 | 0.09 ± 0.0002 | 0.05 ± 0.0002 | 0.06 ± 0.0004 |
Control (casamino acid) | 0.15 ± 0.003 | 0.38 ± 0.007 | 0.38 ± 0.003 | 0.20 ± 0.007 |
Isolates | Accession Number | Taxonomy Assigned Using RDP Classifier | Nearest Taxon in Genbank (Isolates) | % Identity | Bit Score | E-Value | |
---|---|---|---|---|---|---|---|
Accession Number | Taxonomy | ||||||
HAB 2 | PQ099813 | Eggerthellaceae | KP 944195.1 | Paraeggerthella hongkongensis | 93 | 551 bits(610) | 7e-153 |
HAB 3 | PQ099814 | Enterobacteriaceae | AB604196.1 | Escherichia coli O124:H | 99 | 880 bits(476) | 0.0 |
HAB 4 | PQ099815 | Clostridiaceae | GU237022.1 | Escherichia coli O111:H | 99 | 870 bits(471) | 0.0 |
HAB 5 | PQ099816 | Enterobacteriaceae | AB604196.1 | Escherichia coli O124:H | 99 | 880 bits(476) | 0.0 |
HAB 7 | PQ099817 | Enterobacteriaceae | EF051572.1 | Clostridium botulinum strain CDC 1656 | 97 | 401 bits(217) | 3e-108 |
HAB 14 | PQ099818 | Enterobacteriaceae | GU237022.1 | Escherichia coli O111:H- | 95 | 741 bits(401) | 0.0 |
HAB 18 | PQ099819 | Morganellaceae | KC210851.1 | Morganella morganii strain LTC1 | 95 | 662 bits(358) | 0.0 |
HAB 20 | PQ099820 | Streptococcus | LC269367.1 | Streptococcus sp. JCM 7891 | 99 | 793 bits(429) | 0.0 |
Treatment | NH3-N Concentration (mgN/dL) | Protease Concentration (mIU/mL) | ||
---|---|---|---|---|
12 h | 24 h | 12 h | 24 h | |
Eucalyptus oil-1 | 82.3 ± 0.76 d | 85.3 ± 0.21 e | 23.2 ± 0.21 a | 34.5 ± 0.07 de |
Eucalyptus oil-2 | 80.0 ± 2.2 d | 85.4 ± 0.21 e | 23.4 ± 0.12 ab | 34.2 ± 0.23 bc |
Eucalyptus oil-3 | 81.7 ± 0.56 d | 85.1 ± 0.37 e | 23.5 ± 0.12 abc | 34.7 ± 0.07 ef |
Lemon grass oil-1 | 67.0 ± 10.5 bc | 84.1 ± 1.8 e | 23.6 ± 0.12 abcd | 34.8 ± 0.01 ef |
Lemon grass oil-2 | 51.5 ± 10.7 bc | 78.3 ± 0.42 e | 23.6 ±0.12 abcd | 34.3 ± 0.07 cd |
Lemon grass oil-3 | 42.1 ± 4.2 b | 59.3 ± 1.2 c | 23.8 ± 0.12 d | 34.9 ± 0.07 f |
Clove oil-1 | 56.6 ± 2.1 bc | 67.8 ± 2.7 d | 23.4 ± 0.36 abc | 34.1 ±0.07 bc |
Clove oil-2 | 41.219 ± 5.5 b | 37.0 ± 6.0 b | 23.6 ± 0.21 cd | 33.9 ± 0.02 b |
Clove oil-3 | 23.3 ± 8.9 a | 13.42 ± 1.3 a | 23.9 ± 0.12 d | 33.7 ± 0.07 a |
Non-supplemented Control | 81.0 ± 0.21 d | 83.4 ± 0.92 e | 23.7 ± 0.12 bcd | 34.2 ± 0.01 bc |
Standard error of mean (SEM) | 6.96 | 7.39 | 0.102 | 0.125 |
p-value | <0.001 | <0.001 | 0.011 | <0.001 |
Treatment | Growth Rate | |
---|---|---|
12 h | 24 h | |
Eucalyptus oil-1 | 0.17 ± 0.009 cd | 0.17 ± 0.008 d |
Eucalyptus oil-2 | 0.17 ± 0.007 cd | 0.17 ± 0.001 d |
Eucalyptus oil-3 | 0.18 ± 0.003 d | 0.17 ± 0.001 d |
Lemon grass oil-1 | 0.17 ± 0.001 cd | 0.17 ± 0.002 d |
Lemon grass oil-2 | 0.17 ± 0.001 cd | 0.17 ± 0.001 d |
Lemon grass oil-3 | 0.16 ± 0.001 cd | 0.16 ± 0.001 cd |
Clove oil-1 | 0.15 ± 0.001 c | 0.15 ± 0.01 c |
Clove oil-2 | 0.12 ± 0.006 b | 0.13 ± 0.005 b |
Clove oil-3 | 0.08± 0.02 a | 0.08 ± 0.007 a |
Non-supplemented Control | 0.17 ± 0.001 cd | 0.17 ± 0.001 d |
SEM | 0.0103 | 0.009 |
p-value | <0.001 | <0.001 |
Treatment | NH3-N Concentration (mgN/dL) | Protease Concentration (mIU/mL) | ||
---|---|---|---|---|
12 h | 24 h | 12 h | 24 h | |
SME-1 | 177.5 ± 4.3 g | 125.3 ± 0.23 a | 65.1± 0.44 c | 44.4 ± 0.07 a |
SME-2 | 169.0 ± 0.56 ef | 124.9 ± 0.19 a | 65.9 ± 0.00 c | 44.3 ± 0.07 a |
SME-3 | 173.5 ± 1.8 fg | 123.9 ± 0.74 a | 65.5 ± 0.00 c | 43.9 ± 0.24 a |
SMA-1 | 142.4 ± 2.3 a | 187.1± 4.0 b | 47.1 ± 0.18 ab | 61.9 ± 0.67 d |
SMA-2 | 151.1 ± 3.1 b | 187.5 ± 3.0 b | 47.5 ± 0.14 b | 60.2 ± 0.70 cd |
SMA-3 | 147.3 ± 1.8 ab | 188.2 ± 3.0 b | 47.4 ± 0.01 b | 60.9 ± 0.01 cd |
FBAC-1 | 161.7 ± 0.45 d | 202.2 ± 0.96 de | 46.2 ± 0.92 a | 60.3 ± 0.44 cd |
FBAC-2 | 154.2 ± 2.5 bc | 197.5 ± 1.8 cd | 46.9 ± 0.31 ab | 60.6 ± 0.25 cd |
FBAC-3 | 148.9 ± 1.2 ab | 191.8 ± 6.1 bc | 47.5 ± 0.07 b | 61.2 ± 0.07 d |
FBA-1 | 159.1 ± 1.8 cd | 193.9 ± 3.0 bcd | 47.4 ± 0.12 b | 56.8 ± 1.5 b |
FBA-2 | 159.1 ± 1.5 cd | 200.9 ± 3.2 d | 47.3 ± 0.07 b | 59.0 ± 1.3 c |
FBA-3 | 161.6 ± 3.0 d | 201.6 ± 0.37 d | 47.6 ± 0.07 b | 61.3 ±0.00 d |
Control-A | 164.2 ± 2.2 de | 210.1± 0.86 e | 47.7 ± 0.14 b | 60.9 ± 0.07 cd |
Control-E | 163.56 ± 2.8 de | 208.23 ± 0.92 e | 47.2 ± 0.11 b | 60.2 ± 0.06 cd |
Control-AC | 162.47 ± 3.2 de | 209.79 ± 0.76 e | 46.9 ± 0.08 b | 59.9 ± 0.02 cd |
SEM | 2.95 | 8.70 | 2.17 | 1.95 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Treatment | Growth Rate | |
---|---|---|
12 h | 24 h | |
SME-1 | 0.26 ± 0.00 a | 0.27 ± 0.001 a |
SME-2 | 0.26 ± 0.00 a | 0.26 ± 0.001 a |
SME-3 | 0.26 ± 0.001 c | 0.27 ± 0.001 a |
SMA-1 | 0.27 ± 0.001 c | 0.33 ± 0.004 cd |
SMA-2 | 0.27 ± 0.001 c | 0.32 ± 0.002 cd |
SMA-3 | 0.27 ± 0.00 d | 0.33 ± 0.003 cd |
FBAC-1 | 0.27 ± 0.001 c | 0.33 ± 0.001 cd |
FBAC-2 | 0.26 ± 0.00 b | 0.33 ± 0.002 cd |
FBAC-3 | 0.26 ± 0.001 b | 0.31 ± 0.003 b |
FBA-1 | 0.28 ± 0.00 e | 0.32 ± 0.001 cd |
FBA-2 | 0.27 ± 0.001 e | 0.34 ± 0.003 cd |
FBA-3 | 0.28 ± 0.001 e | 0.33 ± 0.002 cd |
Control-A | 0.28 ± 0.001 e | 0.33 ± 0.007 cd |
Control-E | 0.28 ± 0.001 e | 0.32 ± 0.002 cd |
Control-AC | 0.27 ± 0.001 e | 0.32 ± 0.003 cd |
SEM | 0.002 | 0.008 |
p-value | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanu, Y.M.; Paul, S.S.; Dey, A.; Andonissamy, J. Deciphering Hyperammonia-Producing Bacteria (HAB) in the Rumen of Water Buffaloes (Bubalus bubalis) and Their Inhibition through Plant Extracts and Essential Oils. Microorganisms 2024, 12, 2040. https://doi.org/10.3390/microorganisms12102040
Chanu YM, Paul SS, Dey A, Andonissamy J. Deciphering Hyperammonia-Producing Bacteria (HAB) in the Rumen of Water Buffaloes (Bubalus bubalis) and Their Inhibition through Plant Extracts and Essential Oils. Microorganisms. 2024; 12(10):2040. https://doi.org/10.3390/microorganisms12102040
Chicago/Turabian StyleChanu, Yendrembam Mery, Shyam Sundar Paul, Avijit Dey, and Jerome Andonissamy. 2024. "Deciphering Hyperammonia-Producing Bacteria (HAB) in the Rumen of Water Buffaloes (Bubalus bubalis) and Their Inhibition through Plant Extracts and Essential Oils" Microorganisms 12, no. 10: 2040. https://doi.org/10.3390/microorganisms12102040
APA StyleChanu, Y. M., Paul, S. S., Dey, A., & Andonissamy, J. (2024). Deciphering Hyperammonia-Producing Bacteria (HAB) in the Rumen of Water Buffaloes (Bubalus bubalis) and Their Inhibition through Plant Extracts and Essential Oils. Microorganisms, 12(10), 2040. https://doi.org/10.3390/microorganisms12102040