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Abstract: Rabbits can efficiently utilize plant fibers that are indigestible to humans, and hence may
contribute to the alleviation of feed–food competition. Therefore, it is economically and ecologically
important to genetically improve the growth performance and feed efficiency of meat rabbits. In this
study, we combined pedigree, genomic, and gut microbiota data to estimate genetic and microbial
parameters for nine growth and feed efficiency traits of 739 New Zealand White rabbits, including
body weight (BW) at 35 (BW35), 70 (BW70), and 84 (BW84) days of age, and average daily gain (ADG),
feed conversion ratio (FCR), and residual feed intake (RFI) within two age intervals of 35–70 days
(ADG70, FCR70, and RFI70) and 35–84 days (ADG84, FCR84, and RFI84). Based on single-step
genomic best linear unbiased prediction, three BW traits and two ADG traits had the high estimates
(±standard error, SE) of heritability, ranging from 0.44 ± 0.13 of BW35 to 0.66 ± 0.08 of BW70.
Moderate heritabilities were observed for RFI70 (0.22 ± 0.07) and RFI84 (0.29 ± 0.07), whereas the
estimates did not significantly deviate from zero for the two FCR traits. There was moderate positive
genetic correlation (±SE) between BW70 and ADG70 (0.579 ± 0.086), but BW70 did not correlate
with RFI70. Based on microbial best linear unbiased prediction, the estimates of microbiability did
not significantly deviate from zero for any trait. Based on the combined use of genomic and gut
microbiota data, the parameters obtained in this study could help us to implement efficient breeding
schemes in meat rabbits.

Keywords: growth; heritability; microbiability; ssGBLUP; MBLUP

1. Introduction

Rabbits (Oryctolagus cuniculus) are one of the most recently domesticated livestock [1],
and have been popularly raised in Asian and European countries for producing meat.
China ranked the highest in production of rabbit meat with 358 thousand tons in 2022 [2].
Among the common meat sources of livestock, rabbit meat is one of the healthiest white
meats [3]. As a prolific small herbivorous livestock, rabbits can efficiently utilize plant
fiber fractions that are indigestible to humans. Therefore, raising rabbits is expected to
greatly contribute to the alleviation of feed–food competition [4]. In this context, it may
be economically and ecologically important to improve the growth performance and feed
efficiency of meat rabbits, especially using genetic selection approaches.

In meat rabbits, individual growth performance is always measured as live weight
at various ages, as well as the derived daily gains. On the whole, these growth-related
traits are moderately heritable in meat rabbits, which means that they can be genetically
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improved efficiently [5]. Besides growth performance, feed efficiency in meat rabbits has
been gaining more and more attention during the past years [6]. However, it is highly time-
consuming and expensive to collect individual feed efficiency phenotype in a large-scale
population study. Genomic information has been widely used into best linear unbiased
prediction (BLUP) and Bayesian models regarding genetic evaluation of economically
important, hard-to-measure, and lowly heritable traits in livestock [7]. In comparison with
other common livestock, however, genomic evaluation in rabbits has not been effectively
implemented yet. Using the simulated genotype, Mancin et al. [8] first proposed that
genomic selection is feasible in rabbits. Recently, low-coverage genome sequencing data
were also used for estimating genomic parameters of wool traits in Angora rabbits [9].

Besides host genetic background, gut microbiota composition may have significant
impacts on individual growth and feed efficiency in rabbits [10]; and the underlying biolog-
ical mechanisms referred to are mainly gut microbiota-mediated modifications on nutrient
utilization efficiency of diets and host health conditions [11]. In ruminants, gastrointestinal
microbiota have been extensively involved in the digestion of recalcitrant dietary fiber [12],
which can further impact host growth performance and feed efficiency [13,14]. However,
the impacts of gut microbiota on the digestion of dietary fiber, growth, and feed efficiency
have not been thoroughly explored yet in rabbits [10,15]. Similar to the genomic evaluation,
two common methods have been used for dissecting the contribution of microbiota to
individual phenotype variation, including the association analysis, and partitioning of phe-
notypic variance components. Microbiome-wide association studies facilitate the discovery
of specific microbial species that significantly influence the phenotype of interest [16]. In
contrast, partitioning of phenotypic variance attributed to microbiota composition vari-
ation could help us explore their overall contribution to complex traits, which was first
proposed in Holstein cows and termed as microbiability by Difford et al. [17]. In other
words, microbiability is the proportion of phenotypic variance that can be explained by
the microbiota composition variation among individuals. Obviously, the estimation of
microbiability is analogous to that of heritability in terms of theory and methodology.
Due to the technological advances and biologic implications, many studies have been
carried out during recent years on combining genomic with microbiota data for the genetic
evaluation of economically important and hard-to-measure traits [18], such as methane
emission traits in dairy cows [19], fat deposition traits in chickens [20], meat quality and
carcass composition traits in swine [21], feed efficiency traits in Holstein cows [22], and
milk composition traits in sheep [23]. The combined use of genomic and gut microbiota
data may improve estimation accuracy of the related genetic parameters and individual
breeding values, and also help to reveal the possible interactions between host genetic
background and gut microbiota [18,24].

In addition to the impacts of environmental factors, such as diets and living conditions,
on gut microbiota composition [25], it has been found that the relative abundance of some
microbial species could be controlled by host genetic background and herein considered
heritable [26,27]. In this context, Weishaar et al. [28] first proposed a two-step approach
to decompose individual breeding value into two parts, including direct and microbiota-
mediated indirect contributions of host genes on phenotype. Subsequently, Christensen
et al. [29] developed a joint model that can effectively combine two or multiple omics
data into a single-step model. Recently, multi-omics data-based genetic evaluation has
been increasingly reported in livestock, especially to combine genomic and gut microbiota
data for evaluating feed efficiency traits in chickens [30], pigs [31], and Holstein cows [22].
Under the hypothesis that host genetic and/or gut microbiota impact the growth and
feed efficiency in rabbits, therefore, the main objectives of this study are to (1) measure
and compare different growth and feed efficiency traits in meat rabbits for exploring
their phenotypic correlations, and (2) combine host genomic and gut microbiota data for
estimating their contributions to these traits and obtaining the related parameters.
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2. Materials and Methods
2.1. Animals and Phenotype

Phenotypic data were initially collected among 739 New Zealand White rabbits; all of
them were the offspring of 101 multiparous females randomly mated with 72 males. New
Zealand White rabbits were selected as that is an excellent breed of meat rabbits. We did
not have the upward pedigree information regarding these founder individuals that were
randomly selected from a purebred population raised in our research farm. All rabbits were
born in two different batches using the lighting-assisted estrus synchronization technology [32].
Between the weaning at 35 days of age and finishing at 84 days of age, each rabbit was
individually housed per cage and fed ad libitum with either of two commercial pellet diets
(labeled as digestible energy = 10.5 MJ, protein = 15.5%, and crude fiber = 16.5%) that only
differed in the source of mineral supplements. The use of different mineral supplements was
intended to compare the effects on individual growth performances in our other study. The
air conditioning control system was used when indoor temperature was higher than 25 ◦C.
Other management practices had been kept consistent throughout the experimental period.

All rabbits were euthanized using an overdose of anesthesia at 84 days of age. Before
the morning feeding, individual body weight (BW) was measured using same electronic
scale (to an accuracy of 1 g) at 35 (BW35), 70 (BW70), and 84 (BW84) days of age, respec-
tively. The individual average daily gain (ADG) was calculated for the two age intervals of
35–70 days (ADG70) and 35–84 days (ADG84), respectively. Furthermore, the feed in-
take of each rabbit was individually collected at 70 and 84 days of age, and feed conver-
sion ratio (FCR) was therefore derived for the two age intervals as FCR70 (i.e., between
35 and 70 days) and FCR84 (i.e., between 35 and 84 days). Similarly, residual feed in-
take (RFI, g/day) was further calculated for the two age intervals (RFI70 and RFI84) as
FIi = µ + α × midBWi

0.75 + β × ADGi + RFIi, where FIi is the average feed intake (g/day)
and midBWi

0.75 is mid-metabolic BW (g) for animal i; µ, α, and β are the regression coeffi-
cients of mean, metabolic BW, and ADG, respectively [33]. For each of these phenotype
traits, the possible outliers were removed if they were outside the median ± 3.5 × median
absolute deviation [34].

2.2. Host Genotyping and Profiling of Gut Microbiota

At the finishing day, blood samples were collected from 199 rabbits roughly consisting
of one male and one female randomly selected per litter. One µg genomic DNA of each
rabbit was used for high-throughput sequencing of 50 K targeted genomic loci provided
by Compass Biotechnology Inc. (Beijing, China). Raw reads were quality controlled using
fastp software v0.23.3 [35] and aligned against the reference genome using BWA software
v0.7.17 [36]; a total of 48,916 raw single nucleotide polymorphisms (SNPs) were initially
obtained using GATK software v4.0 [37]. SNPs were further removed if they had the calling
rate < 0.9, minor allele frequency < 0.05, or extreme deviation from the Hardy–Weinberg
equilibrium (p < 10−8) using plink software v1.9 [38]. Missing genotypes were further
imputed using Beagle software v5.3 [39], after which a total of 41,359 SNPs remained for
the 199 rabbits.

At 49 days of age, rectal feces samples were successfully collected from 707 rabbits.
Bacterial genomic DNA was extracted using a QIAamp BiOstic Bacteremia DNA Kit
(Qiagen, Shanghai, China) and subjected to amplification of the V3–V4 region of the 16S
rRNA gene using the universal primers and HOTSTAR Taq Plus Master Mix Kit (Qiagen,
Shanghai, China). Libraries were sequenced on the Illumina HiSeq™ 2000 platform for
generating 300 bp paired-end reads. Bioinformatic analyses of sequencing reads were
conducted using QIIME2 v2024.2 [40]. In brief, the paired reads were merged if they
overlapped at least 20 bp in length and no more than 3 bp mismatches using VSEARCH
software v2.26.1 [41]. Low-quality sequences were removed by the sliding window (5 bp)
with an average Qscore < 30, and all sequences were then trimmed to 400 bp after discarding
the first 20 nucleotides at the 5′ end. After discarding artificial and chimera sequences
using Deblur software v1.1.1 [42], amplicon sequence variants (ASVs) were produced
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and randomly rarefied to 17,688 sequences to address different sequencing depths across
samples. The low-abundance of ASVs that were present in less than 20% of samples
were discarded and the constant value of 1 was added to every element for handling the
zero values.

2.3. Statistical Models of Single Traits

There were three categorical fixed effects recorded, including the gender (two lev-
els), birth batch (two levels), and diet group (two levels), which herein were selected for
inclusion into the models based on the backward elimination procedure (p < 0.05) of the
lm function in the R software v4.3.3 [43], separately for each trait. Based on the Akaike
Information Criterion (AIC) and likelihood-ratio testing, we also compared whether the
random maternal permanent environmental effect needs to be further included into the
models or not.

For each trait, genetic analyses were first performed using three statistical models,
including the single-step genomic BLUP (G), microbial BLUP (M), and single-step genomic
plus microbial BLUP (GM). The model G was defined as:

y = Xb + Wp + Z1a + e (G)

where y is the vector of phenotypic records; b is the fixed-effect vector described in Table 1; p
is the vector of maternal permanent environmental effects if included for the trait analyzed,
with p ∼ N

(
0, Iσ2

p

)
; a is the vector of animal additive genetic effects, with a ∼ N

(
0, Hσ2

a
)
;

e is the vector of random residuals, with e ∼ N
(
0, Iσ2

e
)
. X, W, and Z1 are the design matrix

for b, p, and a, respectively. I is an identity matrix. H is a hybrid relationship matrix that
combines the genomic with pedigree information [44], and the inverse of H used can be
computed as follows [45]:

H−1 = A−1 +

[
0 0
0 G−1 − A−1

22

]
,

where A−1 is the inverse of the pedigree relationship matrix; A−1
22 is the inverse of the

pedigree relationship matrix for these genotyped animals; and G−1 is the inverse of the
genomic relationship matrix (G) that was derived using method of VanRaden [46]:

G =
ZZ′

2∑ pi(1 − pi)
,

where Z is the matrix of genotypes adjusted for the allele frequencies; Z′ is the transpose of
Z; and pi is the allele frequency of marker i.

Using gut microbiota information, the model M could be similarly defined as follows:

y = Xb + Wp + Z2m + e, (M)

where m is the vector of animal gut microbiota effects, with its design matrix of Z2. The
assumed distribution is m ∼ N

(
0, Oσ2

m
)
, and σ2

m is variance of gut microbiota effects.
O is the microbial relationship matrix with a n × n dimension, and was constructed as
O = MM′/m according to the method of Rose et al. [47]. Here, n and m are the number
of animals and ASVs, respectively; M is the log-transformed and normalized abundance
matrix, with its element of mjk computed as follows:

mjk =
logPjk − mean(log P.k)

sd(log P.k)
,
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in which Pjk is the relative abundance of ASV k observed in animal j; P.k is the vector
containing the relative abundance of ASV k among the n animals. The other terms were
defined above.

When further considering host genomic and gut microbiota information together, the
model GM was defined as follows:

y = Xb + Wp + Z1a + Z2m + e, (GM).

Here, these terms were defined above.

Table 1. Descriptive statistics for traits and effects included in the mixed models for each trait.

Traits a
Descriptive Statistics b

Fixed Effects c
Random Effects d

N Mean SD G M GM

BW35 729 843.5 134.4 s a, p m, p a, m, p
BW70 724 2058.8 210.6 s, b, d a m, p a, m
BW84 723 2504.7 244.2 b a m, p a, m

ADG70 725 34.7 4.6 b, d a m, p a, m
ADG84 720 33.9 3.8 b, d a m, p a, m
FCR70 714 3.6 0.4 s, b a, p m, p a, m, p
FCR84 714 4.0 0.4 s, b a, p m, p a, m, p
RFI70 700 −1.3 10.1 b, d a m, p a, m
RFI84 705 −1.4 10.2 b a m, p a, m

a BW35, live body weight at 35 days of age (g); BW70, live body weight at 70 days of age (g); BW84, live body
weight at 84 days of age (g); ADG70, average daily gain between 35 and 70 days of age (g/day); ADG84, average
daily gain between 35 and 84 days of age (g/day); FCR70, feed conversion ratio between 35 and 70 days of age;
FCR84, feed conversion ratio between 35 and 84 days of age; RFI70, residual feed intake between 35 and 70 days
of age (g/day); RFI84, residual feed intake between 35 and 84 days of age (g/day). b N, the number of records;
SD, standard deviation. c s, gender; b, birth batch; d, diet group. d G, model G; M, model M; GM, model GM; a,
animal additive genetic effect; p, maternal permanent environmental effect; m, animal microbiota effect.

2.4. Bivariate Models

For these heritable traits, pairwise genetic correlations were further estimated based
on bivariate analyses of model G, that were defined as follows:[

y1
y2

]
=

[
X1 0
0 X2

][
b1
b2

]
+

[
W1 0
0 W2

][
p1
p2

]
+

[
Z11 0
0 Z12

][
a1
a2

]
+

[
e1
e2

]
,

where y1 and y2 are vectors of phenotypic records for the two traits analyzed, together
with their fixed effects (b1 and b2), (if included) maternal permanent environmental ef-
fects (p1 and p2), additive genetic effects (a1 and a2), and random residuals (e1 and e2).
The assumptions of additive genetic, maternal environmental, and residual effects are
as follows: [

a1
a2

]
∼ N

(
0, H ⊗

[
σ2

a1
σa1a2

σa1a2 σ2
a2

])
,

[
p1
p2

]
∼ N

(
0, I ⊗

[
σ2

p1
σp1 p2

σp1 p2 σ2
p2

])
, and

[
e1
e2

]
∼ N

(
0, I ⊗

[
σ2

e1
σe1e2

σe1e2 σ2
e2

])
, respectively

where σ2
a1

and σ2
a2

are the additive genetic variances, σ2
p1

and σ2
p2

the maternal environ-
mental effect variances, and σ2

e1
and σ2

e2
the residual variances for the two traits analyzed,

respectively; σa1a2 , σp1 p2 , and σe1e2 are their respective covariances between the two traits.
The other terms were defined above.
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2.5. Estimates of Genetic Parameters

Based on the statistical models described above, we accordingly derived the rele-
vant parameters, including the total heritability with h2 = σ2

a /
(

σ2
a + σ2

p + σ2
e

)
derived

from model G, total microbiability with m2 = σ2
m/
(

σ2
m + σ2

p + σ2
e

)
from model M, di-

rect heritability with h2
d = σ2

ad
/
(

σ2
ad
+ σ2

md
+ σ2

p + σ2
e

)
, and direct microbiability with

m2
d = σ2

md
/
(

σ2
ad
+ σ2

md
+ σ2

p + σ2
e

)
from model GM. According to the bivariate models,

genetic correlations between two traits were calculated as rg = σa1a2 /
√

σ2
a1

σ2
a2

. All vari-
ance components were estimated using the Average-Information Restricted Maximum
Likelihood (AI-REML) method implemented in the AIREMLF90 software v202405 [48,49].

3. Results
3.1. Phenotype and Correlations

Descriptive statistics of the phenotype traits are in Table 1. In total, the used number of
records varied from 700 for RFI70 to 729 for BW35. Means (±standard deviation, SD) of BW35,
BW70, and BW84 were 843.5 ± 134.4 g, 2058.8 ± 210.6 g, 2504.7 ± 244.2 g, respectively. ADG70
(34.7 ± 4.6 g/day) was greater than ADG84 (33.9 ± 3.8 g/day), whereas FCR70 (3.6 ± 0.4)
was lower than FCR84 (4.0 ± 0.4). The estimates of RFI70 and RFI84 were −1.3 ± 10.1 g/day
and −1.4 ± 10.2 g/day, respectively. Phenotypic distributions and pairwise correlations are
in Figure 1. BW35 had significant (p < 0.001) and moderate positive correlations with BW70
(r = 0.638), BW84 (r = 0.610), FCR70 (r = 0.415), and FCR84 (r = 0.403), whereas it did not
correlate with ADG70, ADG84, RFI70, and RFI84. Among the four measures at 70 days of age,
BW70 had a moderate correlation with ADG70 (r = 0.769; p < 0.001), but weak negative and
weak positive correlations with FCR70 (p < 0.01) and RFI70 (p < 0.05), respectively; FCR70
had moderate correlations with ADG70 (r = −0.505; p < 0.001) and RFI70 (r = 0.573; p < 0.001),
whereas only a weak correlation was present between ADG70 and RFI70 (r = 0.115; p < 0.001).
Considerable and significant (p < 0.001) correlations were observed between BW70 and BW84
(r = 0.874), ADG70 and ADG84 (r = 0.807), FCR70 and FCR84 (r = 0.692), and RFI70 and RFI84
(r = 0.685).

3.2. Model Comparisons

For the nine traits, the included fixed effects and comparison results of three statistical
models are in Tables 1 and 2. Individual gender had significant effects on BW35, BW70,
FCR70, and FCR84, while diet group had significant effects on BW70, ADG70, ADG84, and
RFI70. There were significant effects of birth batch on all traits, with an exception of BW35.
Based on AIC values and likelihood-ratio testing (p < 0.01), the candidate random effect of
maternal permanent environments was included for BW35, FCR70, and FCR84 in model G,
for all nine traits in model M, and for BW35, FCR70, and FCR84 in model GM, respectively.

3.3. Estimates of Heritability, Microbiability, and Genetic Correlations

Based on the best fit model selected for each trait, estimates of heritability and mi-
crobiability are in Table 3. For the model G, the three BW traits and two ADG traits had
high estimates of heritability (±SE), ranging from 0.44 ± 0.13 of BW35 to 0.66 ± 0.08 of
BW70. Moderate heritabilities were estimated for RFI70 (0.22 ± 0.07) and RFI84 (0.29 ± 0.07),
whereas the estimates of heritability did not deviate from zero with 0.11 ± 0.12 of FCR70 and
0.07 ± 0.12 of FCR84. Based on model M, there was no detectable microbiability for any of the
nine traits, whose estimates ranged from 0.01 ± 0.02 for ADG70 and RFI84 to 0.08 ± 0.04 for
ADG84. Therefore, the estimates of heritability based on model GM did not obviously change
in comparison with that in model G.
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and 70 days of age; FCR84, feed conversion ratio between 35 and 84 days of age; RFI70, residual feed 
intake between 35 and 70 days of age (g/day); RFI84, residual feed intake between 35 and 84 days of 
age (g/day). (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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Table 2. Comparisons to include maternal permanent environmental effect into different models. 

Traits a 
Model G Model M Model GM 

AIC1 b AIC2 p AIC1 AIC2 p AIC1 AIC2 p 
BW35 8877.08 8844.91 2.53 × 10−9 * 8785.24 8525.86 4.30 × 10−59 * 8874.32 8840.77 1.25 × 10−9 * 
BW70 9552.74 9550.90 2.50 × 10−2 9284.30 9198.09 2.95 × 10−21 * 9551.21 9549.59 2.86 × 10−2 
BW84 9852.78 9852.65 7.22 × 10−2 9565.13 9487.66 2.45 × 10−19 * 9850.87 9851.06 8.94 × 10−2 

ADG70 4065.08 4064.55 5.59 × 10−2 3973.15 3915.19 4.85 × 10−15 * 4066.04 4065.44 5.37 × 10−2 

Figure 1. Phenotypic correlations among the growth and feed efficiency traits. BW35, live body
weight at 35 days of age (g); BW70, live body weight at 70 days of age (g); BW84, live body weight
at 84 days of age (g); ADG70, average daily gain between 35 and 70 days of age (g/day); ADG84,
average daily gain between 35 and 84 days of age (g/day); FCR70, feed conversion ratio between 35
and 70 days of age; FCR84, feed conversion ratio between 35 and 84 days of age; RFI70, residual feed
intake between 35 and 70 days of age (g/day); RFI84, residual feed intake between 35 and 84 days of
age (g/day). (* p < 0.05, ** p < 0.01, *** p < 0.001).

Table 2. Comparisons to include maternal permanent environmental effect into different models.

Traits a
Model G Model M Model GM

AIC1 b AIC2 p AIC1 AIC2 p AIC1 AIC2 p

BW35 8877.08 8844.91 2.53 × 10−9 * 8785.24 8525.86 4.30 × 10−59 * 8874.32 8840.77 1.25 × 10−9 *
BW70 9552.74 9550.90 2.50 × 10−2 9284.30 9198.09 2.95 × 10−21 * 9551.21 9549.59 2.86 × 10−2

BW84 9852.78 9852.65 7.22 × 10−2 9565.13 9487.66 2.45 × 10−19 * 9850.87 9851.06 8.94 × 10−2

ADG70 4065.08 4064.55 5.59 × 10−2 3973.15 3915.19 4.85 × 10−15 * 4066.04 4065.44 5.37 × 10−2

ADG84 3830.83 3829.54 3.49 × 10−2 3740.36 3681.21 2.65 × 10−15 * 3831.52 3830.21 3.44 × 10−2

FCR70 775.99 770.93 3.96 × 10−3 * 771.42 732.82 9.35 × 10−11 * 768.73 762.80 2.42 × 10−3 *
FCR84 640.19 634.61 2.95 × 10−3 * 670.75 617.27 4.72 × 10−14 * 639.27 633.58 2.78 × 10−3 *
RFI70 5180.47 5182.05 2.58 × 10−1 4988.73 4982.32 1.87 × 10−3 * 5179.31 5180.84 2.46 × 10−1

RFI84 5188.97 5190.02 1.64 × 10−1 5015.79 4993.02 3.23 × 10−3 * 5190.12 5191.08 1.54 × 10−1

a BW35, live body weight at 35 days of age (g); BW70, live body weight at 70 days of age (g); BW84, live body
weight at 84 days of age (g); ADG70, average daily gain between 35 and 70 days of age (g/day); ADG84, average
daily gain between 35 and 84 days of age (g/day); FCR70, feed conversion ratio between 35 and 70 days of age;
FCR84, feed conversion ratio between 35 and 84 days of age; RFI70, residual feed intake between 35 and 70 days
of age (g/day); RFI84, residual feed intake between 35 and 84 days of age (g/day). b AIC1 and AIC2 are the
Akaike Information Criterion values for the model including maternal permanent environmental effect or not,
respectively; and the p values correspond to the likelihood-ratio testing (* p < 0.01).
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Table 3. Estimates (±SE) of variance components, heritability, and microbiability for the growth and
feed efficiency traits.

Traits a Models b Variance Components Heritability Microbiability
Genetic (σ2

a) Microbiota (σ2
m) Maternal (σ2

p) Residual (σ2
e )

BW35
G 8827 / 7161 3895 0.44 ± 0.13 /
M / 588 10,232 7828 / 0.03 ± 0.02

GM 8566 334 7306 3450 0.44 ± 0.13 0.02 ± 0.01

BW70
G 27,765 / / 14,491 0.66 ± 0.08 /
M / 1178 12,472 26,794 / 0.03 ± 0.03

GM 27,380 516 / 13,735 0.66 ± 0.08 0.01 ± 0.01

BW84
G 38,656 / / 22,117 0.64 ± 0.08 /
M / 3723 16,470 36,952 / 0.07 ± 0.04

GM 37,286 2092 / 19,672 0.63 ± 0.08 0.04 ± 0.03

ADG70
G 8.68 / / 9.51 0.48 ± 0.08 /
M / 0.23 3.92 13.47 / 0.01 ± 0.02

GM 8.59 0.06 / 9.44 0.47 ± 0.08 0.00 ± 0.01

ADG84
G 6.96 / / 6.83 0.50 ± 0.08 /
M / 0.98 3.04 8.89 / 0.08 ± 0.04

GM 6.30 0.76 / 6.18 0.48 ± 0.09 0.06 ± 0.04

FCR70
G 0.02 / 0.03 0.14 0.11 ± 0.12 /
M / 0.01 0.04 0.13 / 0.06 ± 0.04

GM 0.01 0.00 0.03 0.13 0.06 ± 0.11 0.00 ± 0.03

FCR84
G 0.01 / 0.03 0.11 0.07 ± 0.12 /
M / 0.01 0.03 0.11 / 0.07 ± 0.03

GM 0.01 0.01 0.03 0.10 0.07 ± 0.03 0.07 ± 0.12

RFI70
G 22.58 / / 78.16 0.22 ± 0.07 /
M / 3.55 8.50 85.06 / 0.04 ± 0.03

GM 19.31 2.69 / 76.00 0.20 ± 0.07 0.03 ± 0.03

RFI84
G 28.80 / / 68.85 0.29 ± 0.07 /
M / 3.04 13.93 79.06 / 0.03 ± 0.03

GM 27.62 1.18 / 67.60 0.29 ± 0.07 0.01 ± 0.02
a BW35, live body weight at 35 days of age (g); BW70, live body weight at 70 days of age (g); BW84, live body
weight at 84 days of age (g); ADG70, average daily gain between 35 and 70 days of age (g/day); ADG84, average
daily gain between 35 and 84 days of age (g/day); FCR70, feed conversion ratio between 35 and 70 days of age;
FCR84, feed conversion ratio between 35 and 84 days of age; RFI70, residual feed intake between 35 and 70 days
of age (g/day); RFI84, residual feed intake between 35 and 84 days of age (g/day). b G, model G; M, model M;
GM, model GM.

Pairwise genetic correlations are in Table 4 among the seven BW, ADG, and RFI traits
that showed the relatively high or moderate heritabilities. BW35 had strong positive genetic
correlations (±SE) with BW70 (0.762 ± 0.049) and BW84 (0.708 ± 0.054), whereas it did not
show genetic correlations with ADG70 (−0.092 ± −0.095), ADG84 (0.023 ± 0.106), RFI70
(−0.150 ± 0.169), and RFI84 (−0.061 ± 0.134). There were moderate positive genetic corre-
lations between BW70 and ADG70 (0.579 ± 0.086), and BW84 and ADG84 (0.720 ± 0.059),
whereas BW70 did not correlate with RFI70 (−0.113 ± 0.197). Furthermore, we observed the
nearly complete genetic correlations between BW70 and BW84 (1.000 ± 0.001), ADG70 and
ADG84 (1.000 ± 0.002), and RFI70 and RFI84 (0.937 ± 0.076).

Table 4. Genetic correlations (below diagonal) and standard errors (above diagonal) among the seven
heritable traits.

BW35 BW70 BW84 ADG70 ADG84 RFI70 RFI84
BW35 0.049 0.054 −0.095 0.106 0.169 0.134
BW70 0.762 0.001 0.086 0.096 0.197 0.166
BW84 0.708 1.000 0.106 0.059 0.199 0.166

ADG70 −0.092 0.579 0.527 0.002 0.221 0.181
ADG84 0.023 0.532 0.720 1.000 0.208 0.179
RFI70 −0.150 −0.113 −0.067 0.200 0.159 0.076
RFI84 −0.061 0.131 0.159 0.192 0.166 0.937

BW35, live body weight at 35 days of age (g); BW70, live body weight at 70 days of age (g); BW84, live body
weight at 84 days of age (g); ADG70, average daily gain between 35 and 70 days of age (g/day); ADG84, average
daily gain between 35 and 84 days of age (g/day); RFI70, residual feed intake between 35 and 70 days of age
(g/day); RFI84, residual feed intake between 35 and 84 days of age (g/day).
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4. Discussion

Growth performance is economically important in meat rabbits and has been inten-
sively subjected to genetic selection and improvement [5]. Finishing BW and post-weaning
ADG are two main types of traits for measuring individual growth of rabbits, as well
as for other meat livestock. In China, meat rabbits are usually finished at either 70 or
84 days of age, depending on the breed-specific growth rate and market demands. To better
address the challenges of global food security and carbon emissions, attention has been
increasingly paid during past years to evaluating and improving feed efficiency traits in
various livestock [50,51]. FCR is the most extensively used trait measuring feed efficiency
in the literature, which is calculated as the ratio of individual feed intake to weight gain
during a specific time interval [52]. Another common trait measuring feed efficiency is
the RFI, which properly adjusts individual metabolic BW and ADG [53]. In this study, we
compared nine growth and feed efficiency traits in meat rabbits; and the results suggested
that these rabbits finished at 70 days of age may have greater ADG and lower FCR and RFI
than those finished at 84 days. Liao et al. [54] fitted individual growth curves in a crossbred
population of meat rabbits and similarly found the point of growth inflection occurred
around 70 days of age. Collectively, these results suggest that this population of New
Zealand White rabbits finished at 70 days of age would have higher growth performance
and feed efficiency.

During the past decade, genomic BLUP approaches have been widely used for genetic
evaluation in various livestock, especially regarding these low heritability and hard-to-
measure traits [7,55]; whereas these state-of-the-art approaches have not been effectively
implemented in meat rabbits yet. In this study, we combined genomic and pedigree
information to perform genetic evaluation on several important growth and feed efficiency
traits in meat rabbits. Our results revealed the high estimates of heritability for all BW and
ADG traits. The previous estimates of heritability solely based on the pedigree information
were 0.443 ± 0.02 and 0.297 ± 0.03 for the BW at 30 and 90 days of age in New Zealand
White rabbits, respectively [56]. The heritabilities estimated for BW at weaning and the
end of the fattening period were 0.033 ± 0.013 and 0.059 ± 0.020 in a synthetic rabbit
line, respectively [57]. El-Deghadi et al. [58] estimated the heritability of 0.24 ± 0.01 for
BW84 in an Egyptian rabbit breed. Therefore, our estimates in this study are somewhat
higher than previous reports found in the literature, which may be due to the differences
in population genomic architecture, environmental condition, and genetic relationship
information constructed. In contrast to growth traits, we found that two FCR traits were
not heritable in our population, whereas the two RFIs were moderately heritable. Gidenne
et al. [6] comprehensively reviewed genetic and non-genetic aspects of feed efficiency in
rabbits, and they showed that FCR and RFI traits are moderately heritable. Therefore,
our observations in this study would be partially inconsistent with previous reports,
which may indicate inter-population variation and the requirement to perform a case-by-
case estimation of genetic parameters. A previous study similarly revealed that genetic
correlations between feed efficiency and growth traits may be varied between ad libitum
and restricted feeding regimens [6]. Based on genome-wide association studies, Sánchez
et al. [59] and Garreau et al. [60] found tens to hundreds of SNPs that are significantly
associated with FCR and RFI traits in rabbits, whereas both studies did not estimate
the heritability. As only a proportion of rabbits (~30%) were genotyped in this study,
the increased number of genotyping is expected to increase the estimation accuracy of
genetic parameters. Collectively, we suggested that the traits used to genetically improve
feed efficiency in rabbits need to be specifically evaluated before including them into the
breeding schemes.

Although there were only moderate phenotypic correlations of BW35 with BW70 and
BW84 observed in this study, we found greater genetic correlations among them. Our
results were consistent with previous estimates on genetic correlation between weaning
and fattening BW in New Zealand White rabbits [61]. These results suggest that, therefore,
it is possible to select individuals based on the genetic merits evaluated at weaning BW for
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indirectly improving the finishing BW, while the accuracy may be decreased if we only use
their phenotypic information at the weaning age. However, it is less efficient to indirectly
select ADG only based on the genetic merits evaluated at the finishing BW as only moderate
genetic correlations were present between them, although actually they had the strong
phenotypic correlations. In our population, RFI is a promising trait used for genetically
improving feed efficiency in meat rabbits as moderate heritability was observed, whereas it
is impossible to indirectly improve feed efficiency according to genetic merits evaluated
at the finishing BW because no genetic correlation was present between them. For BW,
ADG, and RFI, strong phenotypic and nearly complete genetic correlations were observed
between 70 and 84 days of age, which means that the two traits could be replaceable with
each other into breeding schemes. For example, only either BW70 or BW84 needs to be
included for selection. Sakthivel et al. [61] systematically estimated phenotypic and genetic
correlations among multiple growth traits in New Zealand White rabbits, and revealed
similar results as we observed in this study. However, phenotypic or genetic correlations
of feed efficiency traits with these traditional growth traits in meat rabbits have not been
commonly found in literature yet. On the whole, both FCR and RFI traits measured in this
study showed no or low phenotypic and genetic correlations with different BW and ADG
traits in meat rabbits.

Due to potential biological implications of gut microbes on regulating host growth and
feed efficiency, as well as the technological advances on microbiota profiling, gut microbiota
data have been increasingly used for evaluating feed efficiency and growth traits in various
livestock [18,20–22,62,63]. Collectively, these studies suggested positive contributions of
gut microbiota to the phenotypic variation of traits studied. For example, the estimates of
microbiability were suggested to be relatively moderate for feed efficiency traits in pigs [62],
dairy cattle [22], and chickens [63]. In rabbits, Velasco-Galilea et al. [10] also reported high
estimates of microbiability for the feed efficiency traits and suggested that the inclusion of
microbial information could obviously improve the predictability for cage-average feed
efficiency and individual growth traits. On the other hand, the effects of continuous
selection on environmental variance could significantly shift gut microbiota composition
in rabbits [64]. In contrast to these reports, we did not detect meaningful contribution
of gut microbiota to either the feed efficiency or growth traits involved in this study,
which may be essentially resulted from inter-population differences. However, additional
comparisons on different statistical models, long-read sequencing of the 16S rRNA gene,
and the development of novel indicators are required in future studies to explore potential
correlations of gut microbiota with growth and feed efficiency in rabbits. Anyway, our
negative results suggested that there may be variable involvement of gut microbiota in
regulating host growth and feed efficiency. Therefore, some caution is required when using
gut microbiota data for phenotypic prediction on feed efficiency and growth traits in rabbits,
or even as well as other livestock. For every trait analyzed in this study, meanwhile, we
found that the maternal permanent environments have significant effects on regressing gut
microbiota on the phenotype by linear mixed models. This may coincide with the fact that
gut microbiota composition is especially apt to be influenced by common environmental
factors, such as living condition and diet [65]. Therefore, our results also suggested that
specific attention should be paid to exclude possible confounding environmental factors,
which, if not adjusted properly in the statistic models, may result in the overestimation of
microbiota contribution to the phenotypic variation of traits of interest. Furthermore, it is
well-known that gut microbiota composition would be dynamically changed along with
individual growth. In this study, the 49 days of age of rabbits was selected for sampling the
feces samples because of two considerations. First, the gut microbial composition may be
relatively stable as it was two weeks after the weaning date. Second, at least three weeks
remained before the possible finishing date (may be varied from 70 to 84 days of age among
different breeds or markets), which could facilitate the obtainment of gut microbiota data
for conducting individual selection.
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5. Conclusions

In this study, we successfully used genomic and gut microbiota data for evaluating
their contributions to several important growth and feed efficiency traits in meat rabbits.
Our estimates of heritability were relatively high for all growth traits, whereas only one
of the two feed efficiency traits showed moderate heritability. These results suggested
that we could genetically improve growth performance in meat rabbits, but the trait(s)
used to improve feed efficiency should be specially evaluated before including them in
the breeding schemes. In contrast to previous reports in the literature, no contribution of
gut microbiota to phenotypic variation was observed for any trait analyzed in this study;
however, these negative results may be further re-estimated using different statistical
models, higher resolution on microbiota composition profiling, as well as an increased
sample size.
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32. Szendrő, Z.; Gerencsér, Z.; McNitt, J.I.; Matics, Z. Effect of lighting on rabbits and its role in rabbit production: A review. Livest.
Sci. 2016, 193, 12–18. [CrossRef]

33. Drouilhet, L.; Achard, C.S.; Zemb, O.; Molette, C.; Gidenne, T.; Larzul, C.; Ruesche, J.; Tircazes, A.; Segura, M.; Bouchez, T.; et al.
Direct and correlated responses to selection in two lines of rabbits selected for feed efficiency under ad libitum and restricted
feeding: I. Production traits and gut microbiota characteristics. J. Anim. Sci. 2016, 94, 38–48. [CrossRef]

34. Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute
deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [CrossRef]

35. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
[PubMed]

36. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

https://doi.org/10.1128/AEM.00061-17
https://doi.org/10.3390/microorganisms10122322
https://www.ncbi.nlm.nih.gov/pubmed/36557575
https://doi.org/10.1186/s12866-020-01797-5
https://www.ncbi.nlm.nih.gov/pubmed/32410629
https://doi.org/10.1038/nature18850
https://www.ncbi.nlm.nih.gov/pubmed/27383984
https://doi.org/10.1186/s12711-021-00658-7
https://doi.org/10.1371/journal.pgen.1007580
https://doi.org/10.1038/s41396-019-0367-2
https://doi.org/10.1186/s12711-020-00561-7
https://doi.org/10.3168/jds.2023-23869
https://doi.org/10.3168/jds.2022-22948
https://doi.org/10.1039/D0MO00041H
https://doi.org/10.1038/nature25973
https://www.ncbi.nlm.nih.gov/pubmed/29489753
https://doi.org/10.1126/sciadv.aav8391
https://www.ncbi.nlm.nih.gov/pubmed/31281883
https://doi.org/10.1038/s41598-020-66791-3
https://www.ncbi.nlm.nih.gov/pubmed/32576852
https://doi.org/10.1111/jbg.12447
https://doi.org/10.1093/genetics/iyab130
https://doi.org/10.1186/s40168-021-01040-x
https://doi.org/10.1186/s12711-022-00742-6
https://doi.org/10.1016/j.livsci.2015.11.012
https://doi.org/10.2527/jas.2015-9402
https://doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1093/bioinformatics/bty560
https://www.ncbi.nlm.nih.gov/pubmed/30423086
https://doi.org/10.1093/bioinformatics/btp324
https://www.ncbi.nlm.nih.gov/pubmed/19451168


Microorganisms 2024, 12, 2091 13 of 14

37. Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.;
Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr.
Protoc. Bioinform. 2013, 43, 11.10.11–11.10.33. [CrossRef] [PubMed]

38. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al.
PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575.
[CrossRef]

39. Browning, B.L.; Zhou, Y.; Browning, S.R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum.
Genet. 2018, 103, 338–348. [CrossRef]

40. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef]

41. Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4,
e2584. [CrossRef]

42. Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Xu, Z.Z.; Kightley, E.P.; Thompson, L.R.; Hyde, E.R.;
Gonzalez, A.; et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2017, 2, e00191-00116.
[CrossRef]

43. R Core Team. R: A Language and Environment for Statistical Computing; 2019. Available online: https://www.r-project.org (accessed
on 1 May 2024).

44. Legarra, A.; Aguilar, I.; Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 2009, 92,
4656–4663. [CrossRef]

45. Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full
pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [CrossRef]

46. VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [CrossRef] [PubMed]
47. Ross, E.M.; Moate, P.J.; Marett, L.C.; Cocks, B.G.; Hayes, B.J. Metagenomic predictions: From microbiome to complex health and

environmental phenotypes in humans and cattle. PLoS ONE 2013, 8, e73056. [CrossRef] [PubMed]
48. Masuda, Y. Introduction to BLUPF90 suite programs. 2018.
49. Misztal, I.; Tsuruta, S.; Lourenco, D.A.L.; Masuda, Y.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family Programs.

2018. Available online: https://nce.ads.uga.edu/wiki/doku.php?id=documentation (accessed on 1 May 2024).
50. Connor, E.E. Invited review: Improving feed efficiency in dairy production: Challenges and possibilities. Animal 2015, 9, 395–408.

[CrossRef] [PubMed]
51. Manzanilla-Pech, C.I.V.; Stephansen, R.B.; Difford, G.F.; Løvendahl, P.; Lassen, J. Selecting for feed efficient cows will help to

reduce methane gas emissions. Front. Genet. 2022, 13, 885932. [CrossRef]
52. Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [CrossRef]
53. Herd, R.M.; Arthur, P.F. Physiological basis for residual feed intake. J. Anim. Sci. 2009, 87, E64–E71. [CrossRef]
54. Liao, Y.; Wang, Z.; Glória, L.S.; Zhang, K.; Zhang, C.; Yang, R.; Luo, X.; Jia, X.; Lai, S.J.; Chen, S.-Y. Genome-wide association

studies for growth curves in meat rabbits through the single-step nonlinear mixed model. Front. Genet. 2021, 12, 750939.
[CrossRef]

55. Guinan, F.L.; Wiggans, G.R.; Norman, H.D.; Dürr, J.W.; Cole, J.B.; Van Tassell, C.P.; Misztal, I.; Lourenco, D. Changes in genetic
trends in US dairy cattle since the implementation of genomic selection. J. Dairy Sci. 2023, 106, 1110–1129. [CrossRef]

56. Dige, M.S.; Kumar, A.; Kumar, P.; Dubey, P.P.; Bhushan, B. Estimation of variance components and genetic parameters for growth
traits in New Zealand White rabbit (Oryctolagus cuniculus). J. Appl. Anim. Res. 2012, 40, 167–172. [CrossRef]

57. Ezzeroug, R.; Belabbas, R.; Argente, M.J.; Berbar, A.; Diss, S.; Boudjella, Z.; Talaziza, D.; Boudahdir, N.; García, M.D.L.L. Genetic
correlations for reproductive and growth traits in rabbits. Can. J. Anim. Sci. 2019, 100, 317–322. [CrossRef]

58. El-Deghadi, A.S. Genetic evaluation of some doe, litterand lactiontraits of New Zealand white rabbits. Egypt. J. Rabbit Sci. 2019,
29, 23–43. [CrossRef]

59. Sánchez, J.P.; Legarra, A.; Velasco-Galilea, M.; Piles, M.; Sánchez, A.; Rafel, O.; González-Rodríguez, O.; Ballester, M. Genome-
wide association study for feed efficiency in collective cage-raised rabbits under full and restricted feeding. Anim. Genet. 2020, 51,
799–810. [CrossRef] [PubMed]

60. Garreau, H.; Labrune, Y.; Chapuis, H.; Ruesche, J.; Riquet, J.; Demars, J.; Benitez, F.; Richard, F.; Drouilhet, L.; Zemb, O.; et al.
Genome wide association study of growth and feed efficiency traits in rabbits. World Rabbit Sci. 2023, 31, 163–169. [CrossRef]

61. Sakthivel, M.; Balasubramanyam, D.; Kumarasamy, P.; Gopi, H.; Raja, A.; Anilkumar, R.; Devaki, A. Estimates of (co)variance
components and genetic parameters for body weights and growth efficiency traits in the New Zealand white rabbit. World Rabbit
Sci. 2017, 25, 329–338. [CrossRef]

62. Aliakbari, A.; Zemb, O.; Cauquil, L.; Barilly, C.; Billon, Y.; Gilbert, H. Microbiability and microbiome-wide association analyses of
feed efficiency and performance traits in pigs. Genet. Sel. Evol. 2022, 54, 29. [CrossRef]

63. Zhou, Q.; Lan, F.; Gu, S.; Li, G.; Wu, G.; Yan, Y.; Li, X.; Jin, J.; Wen, C.; Sun, C.; et al. Genetic and microbiome analysis of feed
efficiency in laying hens. Poult. Sci. 2023, 102, 102393. [CrossRef]

https://doi.org/10.1002/0471250953.bi1110s43
https://www.ncbi.nlm.nih.gov/pubmed/25431634
https://doi.org/10.1086/519795
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1128/mSystems.00191-16
https://www.r-project.org
https://doi.org/10.3168/jds.2009-2061
https://doi.org/10.3168/jds.2009-2730
https://doi.org/10.3168/jds.2007-0980
https://www.ncbi.nlm.nih.gov/pubmed/18946147
https://doi.org/10.1371/journal.pone.0073056
https://www.ncbi.nlm.nih.gov/pubmed/24023808
https://nce.ads.uga.edu/wiki/doku.php?id=documentation
https://doi.org/10.1017/S1751731114002997
https://www.ncbi.nlm.nih.gov/pubmed/25482927
https://doi.org/10.3389/fgene.2022.885932
https://doi.org/10.1017/S175173111100005X
https://doi.org/10.2527/jas.2008-1345
https://doi.org/10.3389/fgene.2021.750939
https://doi.org/10.3168/jds.2022-22205
https://doi.org/10.1080/09712119.2011.645037
https://doi.org/10.1139/cjas-2019-0049
https://doi.org/10.21608/ejrs.2019.45672
https://doi.org/10.1111/age.12988
https://www.ncbi.nlm.nih.gov/pubmed/32697387
https://doi.org/10.4995/wrs.2023.18215
https://doi.org/10.4995/wrs.2017.7057
https://doi.org/10.1186/s12711-022-00717-7
https://doi.org/10.1016/j.psj.2022.102393


Microorganisms 2024, 12, 2091 14 of 14

64. Casto-Rebollo, C.; Argente, M.J.; García, M.L.; Pena, R.N.; Blasco, A.; Ibáñez-Escriche, N. Selection for environmental variance
shifted the gut microbiome composition driving animal resilience. Microbiome 2023, 11, 147. [CrossRef]

65. Sanna, S.; Kurilshikov, A.; van der Graaf, A.; Fu, J.; Zhernakova, A. Challenges and future directions for studying effects of host
genetics on the gut microbiome. Nat. Genet. 2022, 54, 100–106. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s40168-023-01580-4
https://doi.org/10.1038/s41588-021-00983-z

	Introduction 
	Materials and Methods 
	Animals and Phenotype 
	Host Genotyping and Profiling of Gut Microbiota 
	Statistical Models of Single Traits 
	Bivariate Models 
	Estimates of Genetic Parameters 

	Results 
	Phenotype and Correlations 
	Model Comparisons 
	Estimates of Heritability, Microbiability, and Genetic Correlations 

	Discussion 
	Conclusions 
	References

