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Abstract: P. aeruginosa biofilms are aggregates of bacteria surrounded by a self-produced matrix which
binds to some antibiotics such as aminoglycosides. P. aeruginosa biofilms are tolerant to antibiotics.
The treatment of biofilm infections leads to a recurrence of symptoms after finishing antibiotic
treatment, although the initial clinical response to the treatment is frequently favorable. There is a
concentration gradient of oxygen and nutrients from the surface to the center of biofilms. Surface-
located bacteria are multiplying and metabolizing, whereas deeper located bacteria are dormant and
tolerant to most antibiotics. Colistin kills dormant bacteria, and combination therapy with colistin and
antibiotics which kills multiplying bacteria is efficient in vitro. Some antibiotics such as imipenem
induce additional production of the biofilm matrix and of chromosomal beta-lactamase in biofilms.
Biofilms present a third Pharmacokinetic/Pharmacodynamic (PK/PD) micro-compartment (first:
blood, second: tissue, third: biofilm) which must be taken into consideration when calculations try
to predict the antibiotic concentrations in biofilms and thereby the probability of target attainment
(PTA) for killing the biofilm. Treating biofilms with hyperbaric oxygen to wake up the dormant
cells, destruction of the biofilm matrix, and the use of bacteriophage therapy in combination with
antibiotics are promising possibilities which have shown proof of concept in in vitro experiments
and in animal experiments.

Keywords: Pseudomonas aeruginosa; biofilm; chronic infection; antibiotic tolerance

1. Introduction

Pseudomonas aeruginosa is one of the ESKAPE bacterial pathogens which are identified
as critical multidrug-resistant bacteria for which new effective therapy is needed. These
include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bau-
mannii, Pseudomonas aeruginosa and Enterobacter species [1]. These pathogens thrive in health
care environments and they have intrinsic and acquired resistance mechanisms toward
antibiotics that contribute to the problem of resistant infections [1]. However, the resistant
infections they cause are acute infections resulting from planktonically growing bacteria,
e.g., P. aeruginosa, which may be resistant to carbapenems or to colistin, whereas their
ability to cause chronic infections due to biofilm growth is generally not described or men-
tioned [1]. Biofilm infections are tolerant to all antibiotics and to the defense mechanisms of
patients and induce chronic inflammation which destroys the surrounding tissue (collateral
damage). Biofilm infections can also be the focus for the spread of infections to, e.g., the
blood stream [2]. Biofilm infections may be found in all anatomical locations of patients
(Figure 1). The most comprehensive studies on human biofilm infection, however, have
been carried out on chronic P. aeruginosa infections in the respiratory tract of cystic fibrosis
(CF) patients, which is the topic of this review [3,4].
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Figure 1. Typical biofilm infections (reproduced with permission from ref. [3], originally). 

The present review, therefore, describes the mechanisms behind the tolerance of P. 
aeruginosa biofilms to antibiotics and discusses the possibility of circumventing this phe-
nomenon [3] to eliminate biofilm infections and cure patients. 

2. The Biofilm Growth of Bacteria 
Bacterial biofilms are aggregates of bacteria that are embedded in an extracellular 

polymeric matrix [3]. Most bacterial species grow as biofilms on submerged surfaces in 
nature such as on stones in fresh water or salt water [5,6] where the biofilm matrix and 
size protect them from predators such as amoebae and bacteriophages [7]. The natural 
habitat of P. aeruginosa is water, lakes, rivers, soil and sediments [8]. P. aeruginosa is ex-
tremely versatile, being able to survive in a broad range of habitats, where most of the 
microorganism’s cells grow as biofilms attached to surfaces which become slimy or grow 
as suspended aggregates. In health care settings, P. aeruginosa biofilms can be found in 
sinks, showers, respirator equipment and the water of dental water-cooled drilling equip-
ment [9–11]. Aggregates of P. aeruginosa become tolerant to antibiotics such as tobramycin 
when the number of aggregating cells is ≥64, and the tolerance continues to increase with 
the increasing size of the aggregates [12,13]. When P. aeruginosa cause biofilm infections 

Figure 1. Typical biofilm infections (reproduced with permission from ref. [3], originally).

The present review, therefore, describes the mechanisms behind the tolerance of
P. aeruginosa biofilms to antibiotics and discusses the possibility of circumventing this
phenomenon [3] to eliminate biofilm infections and cure patients.

2. The Biofilm Growth of Bacteria

Bacterial biofilms are aggregates of bacteria that are embedded in an extracellular
polymeric matrix [3]. Most bacterial species grow as biofilms on submerged surfaces in
nature such as on stones in fresh water or salt water [5,6] where the biofilm matrix and size
protect them from predators such as amoebae and bacteriophages [7]. The natural habitat of
P. aeruginosa is water, lakes, rivers, soil and sediments [8]. P. aeruginosa is extremely versatile,
being able to survive in a broad range of habitats, where most of the microorganism’s
cells grow as biofilms attached to surfaces which become slimy or grow as suspended
aggregates. In health care settings, P. aeruginosa biofilms can be found in sinks, showers,
respirator equipment and the water of dental water-cooled drilling equipment [9–11].
Aggregates of P. aeruginosa become tolerant to antibiotics such as tobramycin when the
number of aggregating cells is ≥64, and the tolerance continues to increase with the
increasing size of the aggregates [12,13]. When P. aeruginosa cause biofilm infections in
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humans, the aggregates are small (4–200 µm) and difficult to detect. A specific problem
is that neither PCR nor culture can distinguish between planktonic and biofilm-growing
bacteria, and microscopic detection of aggregates of P. aeruginosa is therefore the preferred
diagnostic method, which can be species-specific if the fluorescent in situ hybridization
(FISH) technique is employed [3,14]. However, in cases of chronic biofilm lung infections
in CF patients and in primary cilia dyskinesia patients, culture will in most cases show the
growth of mucoid alginate-producing P. aeruginosa, and at the same time, the patients will
produce high levels of antibodies against P. aeruginosa, which is therefore used to diagnose
chronic biofilm infections in such patients [3].

There is a gradient of metabolic activity from the surface to the center of P. aeruginosa
biofilms; generally, the center of biofilms is dormant due to a lack of oxygen and nutrients,
and the number of ribosomes in the bacterial cells, which correlates to the growth rate,
is low both in vitro and in CF patients [15,16]. The growth of P. aeruginosa biofilms in
the lungs of CF patients is therefore very slow [17]. This is probably also the reason why
intensive antibiotic treatment of P. aeruginosa biofilms in CF patients does not eliminate the
biofilms but reduces their size—probably by killing their metabolic active surface—and
thereby also reduces the inflammation in the lungs (Figure 2) [18].
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bedded in slime from a sputum smear preparation. There was a major decrease in CFU and a major 
improvement in lung function after therapy. Although biofilms persisted in the sputum, they ap-
peared more condensed (reproduced with permission from ref. [18], Supplementary Material). 
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Generally, the Pharmacokinetics/Pharmacodynamics (PK/PD) of antibiotics on bio-
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bacteria, e.g., time-dependent, concentration-dependent or dose-dependent killing 
[13,19]. However, some antibiotics such as tobramycin are bound to the alginate matrix of 
P. aeruginosa biofilms [20] and to extracellular DNA in the matrix [21], and the activity of 
such antibiotics against biofilm-growing P. aeruginosa is therefore delayed and reduced. 
In general, biofilms formed by the mucoid phenotype are more tolerant than biofilms of 
non-mucoid phenotypes [13]. Furthermore, some antibiotics such as imipenem induce in-
creased ampC beta-lactamase production, increased alginate production (the biofilm ma-
trix) and an increase in the biofilm volume of P. aeruginosa biofilms in vitro [22]. From a 
PK point of view, therefore, it is necessary to describe P. aeruginosa biofilms as a third 
micro-compartment (Figure 3) and take that into consideration in the calculation of the 
probability of target attainment (PTA) of antibiotics for biofilm treatment [23]. That is 

Figure 2. Gram staining of sputum smears from a Danish cystic fibrosis patient CF398 before (A)
and after (B) a 2-week course of suppressive antibiotic therapy administered intravenously and
by inhalation. The two bars = 10µm. Gram-negative rods (P. aeruginosa) in aggregates (biofilms)
embedded in slime from a sputum smear preparation. There was a major decrease in CFU and a
major improvement in lung function after therapy. Although biofilms persisted in the sputum, they
appeared more condensed (reproduced with permission from ref. [18], Supplementary Material).

3. Tolerance Mechanisms of P. aeruginosa Biofilms
3.1. The Biofilm Matrix

Generally, the Pharmacokinetics/Pharmacodynamics (PK/PD) of antibiotics on biofilm-
growing P. aeruginosa follows the same rules as the PK/PD on planktonically growing
bacteria, e.g., time-dependent, concentration-dependent or dose-dependent killing [13,19].
However, some antibiotics such as tobramycin are bound to the alginate matrix of P. aerug-
inosa biofilms [20] and to extracellular DNA in the matrix [21], and the activity of such
antibiotics against biofilm-growing P. aeruginosa is therefore delayed and reduced. In
general, biofilms formed by the mucoid phenotype are more tolerant than biofilms of
non-mucoid phenotypes [13]. Furthermore, some antibiotics such as imipenem induce
increased ampC beta-lactamase production, increased alginate production (the biofilm
matrix) and an increase in the biofilm volume of P. aeruginosa biofilms in vitro [22]. From
a PK point of view, therefore, it is necessary to describe P. aeruginosa biofilms as a third
micro-compartment (Figure 3) and take that into consideration in the calculation of the
probability of target attainment (PTA) of antibiotics for biofilm treatment [23]. That is
probably part of the explanation why the eradication of P. aeruginosa biofilms by antibiotics
is so difficult in clinical practice.
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Figure 3. A diagram showing the two general Pharmacokinetic (PK) compartments which characterize
antibiotic therapy of acute infections caused by planktonically growing bacteria (the upper part of
the diagram) and of the three PK compartments which characterize antibiotic therapy of biofilm
infections, (1) the blood stream, (2) the interstitial fluid/tissue and (3) the bacterial biofilm (the lower
part of the diagram), with an even lower free concentration (based on ref. [23], but the diagram is not
present in the reference (drawn by Claus Moser)).

3.2. Antibiotics and Anaerobic Condition in Biofilms

Most of the oxygen around P. aeruginosa biofilms in CF sputum is consumed by the
surrounding polymorphonuclear leucocytes and to a smaller degree by the metabolism of
P. aeruginosa [24]. There are, therefore, anaerobic conditions around P. aeruginosa biofilms
in the sputum inside the conductive airways of CF patients, but P. aeruginosa can grow
anaerobically—although slowly—because there is enough nitrate in the sputum to function
as electron acceptors [25,26]. Most antibiotics (e.g., beta-lactams, aminoglycosides, fluo-
roquinolones) which are active against P. aeruginosa require metabolic activity to inhibit
(bacteriostatic) or kill (bactericidal) the bacteria. Therefore, slow-growing or dormant
bacteria will either require much longer exposure times to such antibiotics or, in the case
of non-growing bacteria, these antibiotics fail to be bactericidal [27]. The intra-bacterial
concentration of reactive oxygen radicals (ROSs) produced during bacterial metabolism is
increased during exposure to most antibiotics which interfere with their metabolism, and
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ROSs contribute to the killing of the bacteria by such antibiotics or induce mutations if the
bacteria survive [28–31]. However, ROSs are not formed by dormant bacteria.

The antimicrobial action of colistin, however, is independent of ROSs [32]. Never-
theless, an inducible adaptive tolerance phenomenon toward colistin has been described
in P. aeruginosa. LPS is produced intracellularly and transported from the cytoplasmic
membrane to the outer membrane [33]. Colistin kills P. aeruginosa by targeting lipopolysac-
charide (LPS) in both the outer membrane and the cytoplasmic membrane, leading to
disruption of the cell envelope and bacterial lysis [33]. Colistin with its positively charged
L-2,4-diaminobutyric acid binds to the negatively charged LPS phosphates in the outer
membrane, displacing Ca2+ and Mg2+, which bridges LPS molecules. This disrupts the
structural integrity of the membrane and thereby self-promotes other colistin molecules to
pass through to the cytoplasmic membrane where they bind to the intracellularly produced
LPS awaiting to be transported to the outer membrane. Colistin thereby lyses the bacterial
cell [33,34].

The mutational resistance mechanisms against colistin involve the alteration of the
outer membrane to become less permeable, e.g., through the addition of 4-amino-L-
arabinose to LPS which results in reduced negative charges and interferes with the elec-
trostatic interaction with the positively charged colistin molecule [34–37]. P. aeruginosa
is known for its antibiotic tolerance due to biofilm growth, but P. aeruginosa has another
inducible tolerance mechanism which functions similarly to the mutational resistance de-
scribed above and which also interferes with the action of cationic peptide antibiotics like
colistin and other polymyxins [34]. This mechanism was already detected in 1975 [38,39].
Later, it was shown that the polymyxin tolerance of P. aeruginosa is due to a complicated
two-component regulatory system which also modifies LPS in the outer membrane by
adding N4-aminoarabinose to the lipid-A-phosphates of LPS [40]. However, there is a lag
period before the tolerance phenomenon occurs since the modified LPS has to be produced
intracellularly and inserted in the cytoplasmic membrane and then transported to the outer
membrane where it replaces the normal LPS in newly produced cells [33].

It has been shown that if a P. aeruginosa biofilm in an in vitro flow-cell experiment is
treated with ciprofloxacin, only the metabolic active surface of the biofilm is killed [41].
If, on the other hand, the biofilm is treated with colistin, only the dormant center of the
biofilm is killed, whereas the metabolic active surface becomes resistant due to the inducible
tolerance mechanism described above [41]. If the biofilm is treated with a combination
of colistin and ciprofloxacin (or another anti-pseudomonas antibiotic such as tobramycin
or tetracycline), then the whole biofilm is killed [41]. The same phenomenon has been
reported with tobramycin and colistin (Figure 4). This synergistic combination has been
shown to have better clinical effects in a clinical pilot project in CF patients with chronic
P. aeruginosa biofilm infection who were treated with this combination for 28 days, where
the number of P. aeruginosa colony forming units (cfu) decreased by 2.5 log10 (p < 0.027) [42].
Furthermore, the combination of inhaled colistin and oral ciprofloxacin was also shown to
be able to eradicate intermittent P. aeruginosa colonization of the lungs and thereby prevent
chronic biofilm P. aeruginosa lung infection in CF patients [43].

Colistin combined with rifampicin against P. aeruginosa biofilms was likewise found
to act synergistically and to kill the biofilms of colistin-resistant strains in vitro, probably
because colistin enhances the penetration of rifampicin through the outer membrane of
P. aeruginosa [44].
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30 °C and then were continuously exposed to 10 x the minimum inhibitory concentration (MIC) of 
colistin (A,D), tobramycin (B,E) and a combination of both drugs (C,F) for 24 h (A–C) and 48 h (D–
F). (G) The untreated P. aeruginosa biofilm. Live cells appear green as a result of green fluorescent 
protein expression, and dead cells appear red because of propidium iodine staining (propidium 
iodine does not penetrate the cell wall of living bacteria). Colistin kills the dormant deep center part 
of the biofilm, tobramycin kills the metabolizing surface of the biofilm and colistin + tobramycin 
kills the entire biofilm (synergy). The right lower part of the figure (also named (G)): The efficiency 
of antibiotics against P. aeruginosa in a rat lung biofilm infection model. Rats were challenged in-
tratracheally with alginate beads containing 1 × 108 cfu/mL P. aeruginosa strain PAO1 (cfu = colony 
forming units) and then treated with 64× the minimum inhibitory concentration of colistimethate 
sodium (colistin), tobramycin (tobra) or combinations of these antibiotics. After 7 days, the P. aeru-
ginosa cfu were determined and the results for colistin vs. tobra, colistin vs. colistin–tobra, and tobra 
vs. colistin–tobra were all significantly different, p < 0.05. (Reproduced from ref. [42] by permission). 

Figure 4. The distribution of dead and live cells in P. aeruginosa biofilms in a flow cell visualized by
three-dimensional confocal laser scanning microscopy from the top and from two sides. The three-
dimensional imaging of the biofilm allowed for the localization of dead (red) and surviving (green)
bacteria in the mushroom-like biofilm structures. Biofilms were grown in laminar flow for 4 days at
30 ◦C and then were continuously exposed to 10 × the minimum inhibitory concentration (MIC) of
colistin (A,D), tobramycin (B,E) and a combination of both drugs (C,F) for 24 h (A–C) and 48 h (D–F).
(G) The untreated P. aeruginosa biofilm. Live cells appear green as a result of green fluorescent protein
expression, and dead cells appear red because of propidium iodine staining (propidium iodine does
not penetrate the cell wall of living bacteria). Colistin kills the dormant deep center part of the biofilm,
tobramycin kills the metabolizing surface of the biofilm and colistin + tobramycin kills the entire
biofilm (synergy). The right lower part of the figure (also named (G)): The efficiency of antibiotics
against P. aeruginosa in a rat lung biofilm infection model. Rats were challenged intratracheally
with alginate beads containing 1 × 108 cfu/mL P. aeruginosa strain PAO1 (cfu = colony forming
units) and then treated with 64× the minimum inhibitory concentration of colistimethate sodium
(colistin), tobramycin (tobra) or combinations of these antibiotics. After 7 days, the P. aeruginosa
cfu were determined and the results for colistin vs. tobra, colistin vs. colistin–tobra, and tobra vs.
colistin–tobra were all significantly different, p < 0.05. (Reproduced from ref. [42] by permission).



Microorganisms 2024, 12, 2115 7 of 14

4. The Way Forward—Circumvention of the Antibiotic Tolerance of
P. aeruginosa Biofilms

Effective antibiotic therapy for planktonic infections caused by, e.g., P. aeruginosa
and other ESKAPE pathogens is based on the results of in vitro susceptibility testing of
individual antibiotics and combinations of antibiotics. However, the established methods
of susceptibility testing rely on planktonically growing bacteria and not on established
biofilms of the same bacteria. The disk diffusion method, however, illustrates the tolerance
of biofilm growth to the diffusing antibiotics since formation of the edge of the inhibition
zone is the transition of the bacteria from the planktonic to biofilm mode of growth [12].
Biofilms adhering to microtiter plates have been used to measure their antibiotic suscepti-
bility (Minimum Biofilm Eradication Concentration) but the results obtained in vitro did
not correlate to the results of animal experiments or to the clinical success of antibiotic
treatment [13,19,45,46]. The best way to study the action of antibiotics on P. aeruginosa
biofilms is probably confocal laser scanning microscopy (CLSM) of biofilm formation in
flow cells, since the action of antibiotics on both the surface and the center of the biofilm
can be visualized, but this method is only suitable for research purposes (Figure 4) [41,42].
At present, the way forward is animal experiments based on promising results from CLSM
of biofilms exposed to antibiotics and eventually followed by clinical trials (Figure 4) [42].

Realizing that the dormant interior of biofilm growth is due to a lack of oxygen, in vitro
experiments (Figure 5) and animal experiments have been carried out employing hyperbar
oxygen atmospheric conditions with promising results and may be a way forward which
deserves further study [46,47].
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p ≤ 0.001. (The mean tobramycin concentration in the sputum of cystic fibrosis patients during to-
bramycin inhalation therapy is >1024 µg/mL [48].) (Reproduced from reference [47] with permis-
sion.) 

Figure 5. Tobramycin killing of three anoxic aggregating (biofilms) not-related P. aeruginosa isolates
from sinus paranasales of three different CF patients (IC-232 isolated 2008 (non-mucoid phenotype),
EC-SP02 from 2008 (non-mucoid phenotype) taken 3 years before (−3) chronic lung infection started,
LC-554 from 2010 (mucoid phenotype) taken 3 years after (+3) the onset of chronic biofilm infection).
The aggregates were grown at 37 ◦C in the agarose-embedded aggregate model for three days
during anoxic conditions with NO3

− as the electron acceptor. The effect of anoxic (black line) or
hyperbaric oxygen (90 min. at 100% O2 at 2.8 bar, red line) conditions; error bars indicate the
mean ± SEM (n = 3). Two-way ANOVA with Bonferroni multiple comparison tests; *: p ≤ 0.05,
**: p ≤ 0.01 and ***: p ≤ 0.001. (The mean tobramycin concentration in the sputum of cystic fibrosis
patients during tobramycin inhalation therapy is >1024 µg/mL [48].) (Reproduced from reference [47]
with permission.)

4.1. Topical Antibiotic Treatment of Biofilm Infections

The PK/PD problem of the third micro-compartment of bacterial biofilms is difficult
to solve due to side effects of antibiotic therapy if too high dosages are used (Figures 6
and 7) [13,49]. However, topical dosing of antibiotics, e.g., by inhalation, may circumvent
the problem of most side effects since inhaled antibiotics are virtually not absorbed into
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the blood, and this is, therefore, an established way of therapy which improves the clinical
condition of patients, although it does not eradicate the biofilm infection [48,50–52].
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Figure 6. Pharmacokinetics in mouse blood of colistin and imipenem versus minimum inhibitory
concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory
Concentration (MBIC) and Minimum Biofilm Eradication Concentration (MBEC) of P. aeruginosa
PAO1. Black squares: 16 mg/kg of colistin; black circles: 64 mg/kg of imipenem with one-dose
intraperitoneal administration. Eradication of (MBEC) young (24 h old) or mature biofilms (3 or
7 days old) cannot be achieved. Compare Figure 6 (mice) and Figure 7 (cystic fibrosis patients).
(Reproduced from ref. [13] with permission.)
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of one dose of 6 International Million Units (IMIU) and 9 IMIU colistinmethate sodium in 5 cystic
fibrosis patients. Compare Figure 6 (mice) and Figure 7 (cystic fibrosis patients). (Reproduced from
ref. [49] with permission.)

However, in the case of P. aeruginosa biofilms in the paranasal sinuses of CF patients,
treatment with a combination of endoscopic sinus surgery and local application of 5 mL
autologous platelet-rich fibrin sealant containing high concentrations of colistinmethate
sodium (2.5 mL = 625,000 IU) combined with ciprofloxacin (2.5 mL = 7.5 mg) completely
eradicated the P. aeruginosa biofilms because the fibrin sealant retained the antibiotics for
1–2 weeks in the sinuses [53], whereas nasal irrigation with antibiotics cannot reach all
sinuses and the antibiotics disappear rapidly from the sinuses [54].

4.2. Bacteriophage Therapy

Bacteriophage therapy is still in the experimental stage, but current in vitro experi-
ments point toward combinations of bacteriophages and antibiotics like ciprofloxacin to
avoid the development of resistance to the phages (Figure 8) [55,56]. However, we have
shown that the sputum from 16 CF patients with chronic P. aeruginosa biofilm lung infection
contained a high number of free bacteriophages belonging to the Myoviridae, Siphoviridae
or Podoviridae families. They are all tailed phages which are known to be temperate and
thus mediate the transduction and conversion of P. aeruginosa. These phages were able to
lyse several different clinical P. aeruginosa strains in vitro [57]. The therapeutic possibility of
bacteriophages in CF patients may therefore be difficult or not possible to realize since the
patients’ own P. aeruginosa strains already contain bacteriophages which have no therapeu-
tic effects [57]. An in vitro study of the addition of a cocktail of 10 different bacteriophages
to the sputum of CF patients with chronic P. aeruginosa lung infection showed a reduction
in the number of bacteria in the sputum but no clearance of P. aeruginosa [58]. The rationale
of bacteriophage therapy in CF is clear and a few case reports were published a few years
ago, but no breakthrough has been reported [59]. A recent review summarized the problem
of the viscid sputum for bacteriophage therapy in CF patients [60].
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control; (B), phage treatment of a 1 h old biofilm; (C), phage treatment of a 24 h old biofilm; (D), 
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mg/L). (H), continuous treatment with ciprofloxacin (0.5 mg/L) of a 24 h old biofilm; (I), combination 
treatment with ciprofloxacin followed 5 h later by the addition of phages. (1) Early treatment (1 h 
biofilm) was most efficient, whereas later treatment gave rise to phage-resistant biofilm colonies 
(green, (C,D)). Ciprofloxacin treatment also gave rise to ciprofloxacin-resistant colonies (green, (H). 
Combination treatment with ciprofloxacin and the phage was efficient and prevented the develop-
ment of resistance independent of the sequence of phage and ciprofloxacin treatment (G,I). (Treat-
ment with a mixture of 3 different phages or the use of each individual phage gave similar results.) 
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Figure 8. (1) The effect of a single phage treatment on P. aeruginosa PAO1 biofilms of different
ages in flow cells. (2) The effect of a combination of phage and ciprofloxacin treatment on PAO1
biofilms. Living cells are green cells (tagged with green fluorescent protein) and dead cells are red
(propidium iodide staining). The images show perspective 3D biofilm views. The scale bars are
30 µm. (1) (A), control; (B), phage treatment of a 1 h old biofilm; (C), phage treatment of a 24 h old
biofilm; (D), phage treatment of a 72 h old biofilm. (2) (E), control; (F), phage treatment of a 24 h
old biofilm; (G), combination treatment of phages followed 5 h later by continuous treatment with
ciprofloxacin (0.5 mg/L). (H), continuous treatment with ciprofloxacin (0.5 mg/L) of a 24 h old biofilm;
(I), combination treatment with ciprofloxacin followed 5 h later by the addition of phages. (1) Early
treatment (1 h biofilm) was most efficient, whereas later treatment gave rise to phage-resistant biofilm
colonies (green, (C,D)). Ciprofloxacin treatment also gave rise to ciprofloxacin-resistant colonies
(green, (H). Combination treatment with ciprofloxacin and the phage was efficient and prevented the
development of resistance independent of the sequence of phage and ciprofloxacin treatment (G,I).
(Treatment with a mixture of 3 different phages or the use of each individual phage gave similar
results.) (Reproduced from reference [55] with permission.)

4.3. Destruction of the Biofilm Matrix

Destruction of the alginate matrix of P. aeruginosa biofilms is possible in vitro and in
animal experiments. Alginate is a polymer (MW 28,000–1,550,000) consisting of blocks of
mannuronic acid and guluronic acid kept together by Ca++ which strongly binds to the
guluronic blocks. Oligo-guluronic acid (blocks of 12 mainly guluronic acids) has a greater
affinity to Ca++ and therefore solubilizes alginate in vitro but also in animal experiments
(Figure 9) [61]. However, clinical trials with this interesting approach were unfortunately
stopped some years ago.
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OligoG used is the OligoG CF5/20 which was used for a clinical trial in cystic fibrosis patients as a 
solubilizer of sputum.) (Reproduced from ref. [52] with permission.) 
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Figure 9. Histopathology of Hematoxylin- and Eosin-stained and Alcian Blue-stained (polysaccharide
staining) and Nuclear Fast Red-stained (staining of nuclei) sections of lung tissues from controls and
OligoG-treated mice. Mice treated with OligoG exhibited a marked reduction in Alcian blue staining
of the alginate, reflecting the significant disruption of biofilms in the infected lungs. (The OligoG
used is the OligoG CF5/20 which was used for a clinical trial in cystic fibrosis patients as a solubilizer
of sputum.) (Reproduced from ref. [52] with permission.)

5. Conclusions

In vitro experiments, animal experiments and clinical investigations have been carried
out to improve treatment of P. aeruginosa biofilm infections in CF patients. Gradually, the
results of these experiments have improved the prognosis of CF patients with chronic
P. aeruginosa biofilm lung infections, and the treatment methods used in CF patients have,
therefore, spread to other clinical P. aeruginosa biofilm infections in, e.g., cilia dyskinesia
patients, bronchiectasis patients and patients suffering from chronic wounds [62]. However,
antibiotic eradication of such infections has unfortunately not yet been possible and the
main reason may be the tolerance of biofilms to antibiotics.
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