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Abstract: Fungi inhabiting deep subseafloor sediments have been shown to possess anaerobic
methane (CH4) production capabilities under atmospheric conditions. However, their ability to
produce CH4 under in situ conditions with high hydrostatic pressure (HHP) remains unclear. Here,
Schizophyllum commune 20R-7-F01, isolated from ~2 km below the seafloor, was cultured in Seawater
Medium (SM) in culture bottles fitted with sterile syringes for pressure equilibration. Subsequently,
these culture bottles were transferred into 1 L stainless steel pressure vessels at 30 ◦C for 5 days to sim-
ulate in situ HHP and anaerobic environments. Our comprehensive analysis of bioactivity, biomass,
and transcriptomics revealed that the S. commune not only survived but significantly enhanced CH4

production, reaching approximately 2.5 times higher levels under 35 MPa HHP compared to 0.1 MPa
standard atmospheric pressure. Pathways associated with carbohydrate metabolism, methylation,
hydrolase activity, cysteine and methionine metabolism, and oxidoreductase activity were notably
activated under HHP. Specifically, key genes involved in fungal anaerobic CH4 synthesis, including
methyltransferase mct1 and dehalogenase dh3, were upregulated 7.9- and 12.5-fold, respectively,
under HHP. Enhanced CH4 production under HHP was primarily attributed to oxidative stress in-
duced by pressure, supported by intracellular reactive oxygen species (ROS) levels and comparative
treatments with cadmium chloride and hydrogen peroxide. These results may provide a strong
theoretical basis and practical guidance for future studies on the contribution of fungi to global
CH4 flux.

Keywords: anaerobic; HHP; Schizophyllum commune 20R-7-F01; CH4; transcriptomics; ROS

1. Introduction

Methane (CH4) is a potent greenhouse gas pivotal to global climate dynamics, pri-
marily sourced from biogenic emissions driven by microbial activity, which constitute
approximately 90% of the global CH4 budget, estimated at 380–755 Tg annually. Significant
contributors include coal beds, seafloor sediments, and subsurface reservoirs, with deep-sea
sediments alone contributing around 20% of these emissions [1–3].

Archaea are well documented as major producers of CH4, utilizing various biochemical
pathways, such as CO2 reduction with H2, acetate reduction, and methylotrophic pathways
involving methanol and methoxy-group-containing substrates [4]. Recent research has also
identified aerobic bacterial pathways contributing to CH4 production, including methylthio-
alkane reductase’s involvement in methionine biosynthesis and C-P lyase in phosphonate
ester degradation [5,6]. Furthermore, both plant and animal cells have been observed
releasing CH4 under aerobic conditions independently of endosymbionts, although the
precise mechanisms remain elusive [7,8]. In contrast, fungi, a vital group of eukaryotic
organisms, have received less attention concerning CH4 production. Lenhart et al. (2012)
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provided initial evidence that wood-decaying fungi such as Pleurotus sapidus, Trametes
versicolor, Lentinula edodes, Laetiporus sulphureus, and Hypholoma fasciculare produce CH4
under aerobic conditions, identifying serine as a precursor for methane synthesis [9].
Subsequent studies by Ernst et al. (2022) presented contradictory findings, showing that
fungi like Saccharomyces cerevisiae S288C and Aspergillus niger DSM 821 primarily generate
CH4 via Fenton chemistry rather than enzymatic reactions [10].

Recent research by Huang et al. (2022), employing biochemical, genetic, and stable
isotopic tracer analyses, revealed that strains of Schizophyllum commune 20R-7-F01, iso-
lated from coal-bearing sediments ~2 km below the seafloor (under 35 MPa hydrostatic
pressure), utilized a novel halomethane-dependent pathway for CH4 production during
anaerobic degradation of phenol, benzoic acid mono- and polymers, and cyclic sugars [11].
The taxonomic classification of S. commune is complicated by its widespread distribution
and genetic diversity. Traditionally viewed as a single species, recent genomic analyses
reveal significant variation among strains. Notably, the subseafloor S. commune 20R-7-F01
shows genetic divergence from terrestrial strains like S. commune H4-8, with many genes
lacking orthologs [12]. Similar anaerobic methanogenic pathways have been confirmed
in other wood-rot fungi, such as Agaricus bisporus, Hypsizygus marmoreus, and Pleurotus
ostreatus [13–15]. Nonetheless, uncertainties persist regarding the ability of these fungi to
produce CH4 under in situ high hydrostatic pressure (HHP) conditions, as well as specific
mechanism governing CH4 production in response to HHP.

In this study, we cultured the fungal strain S. commune 20R-7-F01 anaerobically in 1 L
stainless steel vessels at 30 ◦C to mimic in situ subseafloor environments. Our findings
revealed a significant increase in CH4 production by this subseafloor fungus under elevated
hydrostatic pressure (HP), primarily attributed to the induction of reactive oxygen species
(ROS) by HHP. These results likely highlight the potential role of fungi as CH4 producers
in the deep biosphere, an aspect that may have been previously underestimated in global
CH4 budgets.

2. Materials and Methods
2.1. High Hydrostatic Pressure Cultivation Experiments

Schizophyllum commune 20R-7-F01 (CGMCC 11604) was isolated from a sediment core
collected at a depth of 1966 m below seafloor (mbsf) from the Western Pacific Ocean [16].
Mycelial inocula were prepared following the method described by Zain Ul Arifeen et al.
(2021). For the high hydrostatic pressure (HHP) cultivation experiments, fresh mycelial
inocula (7 g) were introduced into 170 mL sterile culture bottles containing Seawater
Medium (SM). The SM composition included CaCl2 (2.99 g/L), MgCl2 (4.17 g/L), KBr
(0.10 g/L), NH4Cl (0.16 g/L), KCl (5.05 g/L), NaCl (33.43 g/L), H3BO3(0.02 g/L), Na2SO4
(0.21 g/L), and C6H12O6 (20 g/L). The bottles were then purged with 99.99% N2 for 15 min
to remove oxygen from the culture bottles [17]. Culture bottles, fitted with sterile syringes
for pressure equilibration, were incubated at 30 ◦C under HP of 15 MPa and 35 MPa,
achieved by manual pumping of water into the vessel(TOP INDUSTRIE, Paris, France).
A control culture under standard atmospheric pressure (0.1 MPa) was maintained under
identical conditions. Fungal mycelia were harvested after 1, 3, and 5 days of culture, and one
vial of mycelia was filtered through sterile gauze, rinsed three times with deionized water,
immediately treated with liquid nitrogen, and stored at −80 ◦C for transcriptome analysis.
Additionally, three replicates of harvested mycelia underwent the same gauze filtration
and rinsing steps before being immediately utilized for biomass and CH4 quantification.
Simultaneously, one vial of mycelia was also employed for assessing cellular activity
following the aforementioned procedures.

For the ROS testing experiments, fresh mycelial inocula (7 g) were inoculated into
170 mL culture bottles containing SM supplemented with 0.75 mM, 1.5 mM, and 3 mM
concentrations of cadmium chloride (Sigma-Aldrich, Shanghai, China) or hydrogen per-
oxide (Sigma-Aldrich, Shanghai, China) [18,19]. Culture bottles were incubated at 30 ◦C
under standard atmospheric pressure. Fungal mycelia were harvested after 1, 3, and 5 days
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of incubation. Subsequently, three replicates of harvested mycelia underwent the same
gauze filtration and rinsing steps before being immediately utilized for biomass and CH4
quantification. Simultaneously, one vial of mycelia was also employed for assessing cellular
activity following the aforementioned procedures.

2.2. Assessment of Fungal Hyphal Vitality and Biomass Determination

To assess fungal mycelial viability, a 0.4% trypan blue (Sigma-Aldrich, Shanghai,
China) staining technique was employed [20]. Viable mycelial cells were identified as
colorless under optical microscopy (XIUILAB, Shanghai, China), whereas non-viable cells
were stained blue. Mycelia harvested by filtration were dried in a 65 ◦C oven for one day
to determine biomass. Dry weights were measured to quantify biomass production [21].

2.3. Assessment of ROS, O2−, OH·, H2O2, and CH4 Levels in Fungal Mycelia

Intracellular levels of ROS in fungal mycelia were assessed following established
methodologies [22,23]. The 2′,7′-dichlorofluorescein diacetate (DCFH-DA, Beyotime, Shang-
hai, China) probe was introduced into cells, and ROS concentrations were determined
through fluorescence microscopy examination and subsequent quantification using ImageJ
software (version 1.55i). The intracellular content of O2− in fungal mycelia was determined
as per established protocols [24,25]. The superoxide anion reacts with hydroxylamine
hydrochloride to form NO2−, which, upon reaction with p-aminobenzenesulfonami-de
and naphthalene ethylenediamine hydrochloride, produces a red azo compound with a
characteristic absorption peak at 530 nm. The content of O2− can be determined based on
the absorbance at 530 nm. The intracellular content of OH· in fungal mycelia was deter-
mined as per established protocols [26]. The hydroxyphenyl fluorescein (HPF,) probe was
introduced into cells, and OH· concentrations were determined through fluorescence mi-
croscopy examination and subsequent quantification using ImageJ software (version 1.55i).
The intracellular content of H2O2 in fungal mycelia was determined as per established pro-
tocols [27,28]. Absorbance at 415 nm, resulting from the formation of a titanium peroxide
complex (Ti4+ and H2O2), was measured to quantify H2O2 concentrations. Intracellular
CH4 levels in fungal mycelia were evaluated following detailed procedures, utilizing gas
chromatography (GC, HP-Agilent, Shanghai, China) for accurate quantification of CH4.

2.4. Transcriptomic Analysis

Mycelial samples for transcriptome sequencing were labeled as follows: “d1_01M”,
“d3_01M”, “d5_01M”, “d1_15M”, “d3_15M”, “d5_15M”, “d1_35M”, “d3_35M”, and
“d5_35M”. Here, “dn” denotes sampling days (1, 3, and 5 days), and “nM” indicates
pressure levels (0.1, 15, and 35 MPa) applied to the strain. Total RNA extraction utilized
TRIzol reagent (TIANGEN, Beijing, China) per the manufacturer’s instructions, followed
by cDNA library construction. Sequencing employed the Illumina HiSeq platform with
default RNA protocols (Meiji, Shanghai, China). Clean reads were obtained by removing
adapters, sequences with >10% N bases, and low-quality sequences (Phred score Q ≤ 5,
>50% of reads) (Table S1). Clean reads were mapped to the strain 20R-7-F01 assembled
genome (BioProject ID: PRJNA544166) using TopHat2 [29]. Gene expression levels were
quantified in Transcripts Per Million (TPM) using Cufflinks software (version 2.2.1) [30].
Raw RNA-seq data were deposited in the NCBI Sequence Read Archive under BioProject
ID PRJNA1101667.

Differential gene expression analyses utilized the DESeq method DESeq2 [31], ap-
plying a threshold of p-value < 0.05 and |Log2 (fold-change)| ≥ 1 to identify significant
DEGs [32]. Functional analysis of DEGs included gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment analyses using clusterProfiler in
R (v4.3.0). Enriched pathways were visualized with the Pathview package, setting the
threshold for enriched gene annotations at p-value < 0.05. DEGs related to key pathways
underwent hierarchical clustering, with correlation analysis performed using psych and
reshape 2 packages in R (v4.3.0). A correlation network of pathway genes was constructed
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using Cytoscape software version 3.9.1 (https://cytoscape.org/releasenotes.html, accessed
on 12 May 2024).

2.5. Quantitative Real-Time PCR Analysis

Quantitative real-time PCR (qRT-PCR) followed the protocol outlined by Zain Ul
Arifeen et al. Fungal cultures were maintained under identical conditions and durations to
those for RNA-seq samples. SYBR qPCR Master Mix (Vazyme, Nanjing, China) and specific
primer pairs for each gene (Table S2) were used for qRT-PCR analysis. Thermal cycling
conditions included initial denaturation at 95 ◦C for 30 s, followed by 43 cycles of 95 ◦C for
10 s, 58.5 ◦C for 30 s, and 72 ◦C for 30 s. Relative gene expression was calculated using the
2−∆∆CT method [33].

2.6. Statistical Analysis

The data were presented as mean ± standard deviation. One-way analysis of variance
(ANOVA) or Student’s t-test, performed using GraphPad Prism version 8.0.2, was used to
analyze significant differences between treatments (p < 0.05).

3. Results and Discussion
3.1. Impact of High Hydrostatic Pressure on Fungal Methane Productivity

To assess the effect of HHP on fungal CH4 productivity, strain 20R-7-F01 was cultured
in bottles under varying HHP conditions, and the CH4 yield in the headspace was quanti-
fied using GC. The results demonstrated a significant enhancement in the CH4 production
of strain 20R-7-F01 with increasing HP(Figure 1). Specifically, CH4 production at 15 MPa
was approximately 1.3, 1.7, and 1.9 times higher on days 1, 3, and 5 of culture, respec-
tively, compared to atmospheric conditions. Furthermore, at 35 MPa (equivalent to in situ
pressure), CH4 production increased to approximately 2.0, 2.4, and 2.5 times higher than
at atmospheric pressure. This substantial increase suggests a strong influence of HHP in
enhancing CH4 production by strain 20-7-1. The effect of hydrostatic pressure on biological
methanogenesis may be a universal phenomenon that affects all methanogens, but similar
observations have only been noted in archaea, such as Thermophilic marburgensis, which
exhibited CH4 production levels approximately 3 times higher than atmospheric levels
when cultured at 50 MPa [34]. The mechanism behind enhanced CH4 production under
HHP in archaea is hypothesized to involve oxidative stress induced by HP. However, it
remains unclear whether analogous mechanisms govern the impact of HHP on fungal
CH4 production.
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3.2. Transcriptomic Analysis of Methane Synthesis Genes Under High Hydrostatic Pressure

The transcriptomic analysis revealed significant upregulation of key genes involved
in methane synthesis under high hydrostatic pressure conditions in S. commune 20R-7-F01.
Following cultivation at 15 MPa for 3 days, the expression levels of mct1, dh3, and ms
increased by 5.9-fold, 2.8-fold, and 2.7-fold, respectively, compared to ambient pressure
(0.1 MPa) (Table 1). Similarly, at 35 MPa, these genes showed increases of 7.9-fold, 4.5-
fold, and 3.1-fold, respectively (Table 1). The quantitative PCR validated these findings,
demonstrating significant upregulation of mct1, dh3, and ms under HHP conditions (Table 1).
This enhanced methane production is primarily attributed to the upregulation of genes
encoding key enzymes involved in methane synthesis.

The transcriptional correlation analysis identified 2316 differentially expressed genes
(DEGs) highly correlated (|p| ≥ 0.9) with mct1 (689 DEGs), dh3 (817 DEGs), and ms
(810 DEGs) (Table S1). The gene ontology (GO) enrichment analysis revealed that these
DEGs were enriched in activities associated with oxidoreductase functions, carbohydrate
metabolism, methylation, ATP binding, hydrolase activity, metal ion binding, and trans-
membrane transport. Notably, oxidoreductase activity exhibited the highest enrichment,
comprising 8.5% of the total 2316 DEGs (p = 6.95 × 10ˆ−11) (Figure 2A, Table S1). The KEGG
pathway enrichment analysis further indicated significant enrichment of these DEGs in
pathways such as peroxisomes, glycolysis/gluconeogenesis, the tricarboxylic acid cycle,
and the pentose phosphate pathway under HHP conditions (Figure 2B).

The hierarchical clustering analysis illustrated the upregulation of genes involved in
oxidoreductase activities, particularly those implicated in oxidative stress response (e.g.,
SOD, CAT, and BCP), in S. commune 20R-7-F01 under HHP conditions (Figure 3, Table S2).
Collectively, these findings suggest that the enhancement of methane synthesis metabolism
under HHP conditions may be linked to alterations in oxidoreductase activities. Similar
observations in other piezophilic organisms, such as Sporosarcina psychrophila DSM 6497 and
Shewanella piezotolerans WP3, underscore that S. commune 20R-7-F01, like other piezophiles,
counters oxidative stress induced by HHP through the activation of oxidative–reductive
pathways [35,36].

Furthermore, the investigation of DEGs related to antioxidant genes revealed signif-
icant correlations with key genes involved in methane biosynthesis in strain 20R-7-F01
(Figure 4). A total of 197 DEGs of antioxidant genes were identified, with 54 (27.4%)
showing notable correlations with mct1, 79 (40.1%) with dh3, and 64 (32.5%) with metE.
These findings indicate that these antioxidant genes were significantly involved in methane
production by S. commune under HHP conditions. Enhanced methane release in response
to oxidative stress induced by HHP may serve as a protective mechanism against biological
membrane damage caused by reactive oxygen species (ROS) [37,38]. In summary, our study
highlights that the increased methane production observed in S. commune 20R-7-F01 under
HHP conditions is a response to oxidative stress induced by HHP, mediated through the
upregulation of genes associated with both methane synthesis and antioxidant defense
mechanisms. These findings contribute to our understanding of microbial adaptation to
extreme environmental conditions, emphasizing the role of methane production in stress
response strategies.
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Table 1. Relative expression of genes associated with methane synthesis in S. commune 20R-7-F01.

1 d 3 d 5 d

RNA-Seq qPCR RNA-Seq qPCR RNA-Seq qPCR

15
MPa

35
MPa 15 MPa 35 MPa 15

MPa
35

MPa 15 MPa 35 MPa 15
MPa

35
MPa 15 MPa 35 MPa

mct1 1.16 1.69 1.21 ± 0.03 1.85 ± 0.11 2.56 2.99 2.82 ± 0.17 3.25 ± 0.21 3.49 5.15 3.17 ± 0.15 5.36 ± 0.19
mct2 0.42 0.73 0.37 ± 0.02 0.61 ± 0.05 0.52 0.85 0.44 ± 0.05 0.65 ± 0.07 −0.09 −0.08 −0.1 ± 0.03 −1.7 ± 0.03
dh1 0.91 0.62 0.85 ± 0.04 0.88 ± 0.06 0.82 −0.31 0.73 ± 0.02 −0.43 ± 0.04 0.81 −0.73 0.66 ± 0.05 −0.88 ± 0.05
dh2 0.21 0.89 0.27 ± 0.03 0.73 ± 0.09 0.85 0.55 0.91 ± 0.06 0.77 ± 0.08 1.48 0.87 1.12 ± 0.11 0.69 ± 0.07
dh3 0.68 1.07 0.93 ± 0.06 1.21 ± 0.16 1.48 2.16 1.69 ± 0.11 2.49 ± 0.19 2.11 3.21 1.95 ± 0.13 3.11 ± 0.11
dh4 0.56 2.05 0.71 ± 0.03 2.31 ± 0.14 −0.26 −0.24 −0.43 ± 0.03 −0.22 ± 0.01 0.65 −0.23 0.51 ± 0.04 −0.28 ± 0.01
dh5 −1.72 −2.04 −1.66 ± 0.04 −2.15 ± 0.15 −1.39 −1.36 −1.31 ± 0.12 −1.46 ± 0.06 −0.13 −0.18 −0.22 ± 0.01 −0.32 ± 0.03
ms 1.04 1.12 1.12 ± 0.02 1.25 ± 0.08 1.42 1.63 1.66 ± 0.07 1.77 ± 0.02 1.48 1.51 1.31 ± 0.08 1.63 ± 0.07
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3.3. ROS and H2O2 Induced in Fungal Cells by High Hydrostatic Pressure

To explore the enhanced methane production of S. commune 20R-7-F01 under high
hydrostatic pressure (HHP) as a potential response to elevated fungal cell ROS and H2O2
levels induced by HHP, we assessed intracellular ROS and H2O2 levels, as well as the
activities of antioxidative enzymes (SOD, CAT, POD) at 0.1 (control), 15, and 35 MPa
pressures. Our results revealed significant increases in ROS and H2O2 levels in fungal cells
under HHP compared to 0.1 MPa, accompanied by reduced fungal cell viability (Table 2,
Figure S1). For instance, after 5 days of cultivation, the ROS and H2O2 levels were 7.04-fold
and 6.12-fold higher at 15 MPa, and 10.33-fold and 8.51-fold higher at 35 MPa, respectively,
compared to at 0.1 MPa, yet the cells were clearly labeled blue, with trypan blue. Further
analysis demonstrated that the increase in ROS levels induced by HHP was primarily
due to changes in H2O2 levels, while the contributions of superoxide anion (O2−) and
hydroxyl radical (OH·) were relatively insignificant (Table S3). This is similar to findings
by Zhe et al. (2018), who reported oxidative damage in the deep-sea bacterium Shewanella
piezotolerans WP3 due to elevated intracellular H2O2 levels under 20 MPa conditions [39].
Additionally, the antioxidative enzyme activities within the fungal hyphae increased with
pressure, notably with peroxidase (POD) activity at 35 MPa after 5 days of cultivation,
which was 5.95 times higher than at 0.1 MPa over the same period. This is consistent
with the results shown in Figure 3. The heightened activities of SOD, CAT, and POD in
scavenging ROS- and H2O2-induced cellular damage under HHP suggest that S. commune,
in response to HHP stress, employed metabolic mechanisms akin to those observed in the
deep-sea bacterium Shewanella piezotolerans WP3 and yeast Saccharomyces cerevisiae [40,41].
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Table 2. Oxidative levels of S. commune 20R-7-F01 under high hydrostatic pressure.

ROS (AU/g) H2O2 (µmol/g)

0.1 MPa 15 MPa 35 MPa 0.1 MPa 15 MPa 35 MPa

1 d 0.37 ± 0.09 1.14 ± 0.22 2.84 ± 0.23 0.31 ± 0.03 0.99 ± 0.12 2.33 ± 0.21
3 d 0.85 ± 0.13 4.46 ± 0.31 6.37 ± 0.21 0.76 ± 0.09 3.66 ± 0.35 4.34 ± 0.37
5 d 0.89 ± 0.11 6.27 ± 0.58 9.19 ± 0.77 0.77 ± 0.08 4.71 ± 0.29 6.55 ± 0.49

SOD (U/g) CAT (U/g) POD (U/g)

0.1 MPa 15 MPa 35 MPa 0.1 MPa 15 MPa 35MPa 0.1 MPa 15 MPa 35 MPa

1 d 7.65 ± 0.63 20.94 ± 1.66 26.89 ± 1.53 9.40 ± 0.55 14.87 ± 1.13 23.28 ± 1.51 5.95 ± 0.62 9.18 ± 0.92 35.25 ± 2.53
3 d 14.27 ± 1.37 26.57 ± 1.38 37.78 ± 1.22 12.73 ± 1.06 23.21 ± 1.47 37.25 ± 1.73 15.95 ± 1.33 24.62 ± 1.31 94.56 ± 3.22
5 d 15.92 ± 1.03 28.45 ± 1.54 43.22 ± 1.71 14.54 ± 1.25 25.51 ± 1.64 40.03 ± 2.21 16.35 ± 1.03 25.50 ± 1.52 97.29 ± 3.71

After establishing the occurrence of oxidative damage in S. commune 20R-7-F01 under
HHP conditions, we conducted a correlation analysis between intracellular ROS and H2O2
levels, antioxidant enzyme activities (SOD, CAT, and POD), and methane content across
different pressures. The results depicted in Figure 5 reveal that at 0.1 MPa, there existed a
moderate positive correlation between methane production in the strain and intracellular
ROS and H2O2 levels, as well as antioxidant enzyme activities, although this was not
statistically significant. In contrast, at 15 MPa and 35 MPa, significant positive correlations
were observed between methane production and intracellular ROS and H2O2 levels, as
well as antioxidant enzyme activities. Particularly notable was the pronounced positive
correlation between methane production and H2O2 levels. For instance, at 15 MPa, the
correlation coefficient between methane production and H2O2 levels in the strain reached
0.9334. Similarly, at 35 MPa, the correlation coefficient between methane production and
H2O2 levels also reached 0.9686. These results indicate that alongside the increase in
intracellular H2O2 levels in S. commune 20R-7-F01, there is a corresponding increase in
methane release. This further corroborates the conclusion from our transcriptome analysis
showing that enhancing methane metabolism in S. commune 20R-7-F01 is a fungal response
mechanism to HHP-induced ROS. While Ernst et al. (2022) [10] have demonstrated the
existence of an ROS-driven methane production mechanism in general organisms, this is
based on Fenton chemistry rather than a direct ROS-driven pathway specific to methane
production in organisms. Similarly, although Mauerhofer et al. (2021) [34] found an
increase in methane production by methanogenic archaea with increasing HHP, they did
not identify the fundamental reasons behind the HHP-induced enhancement of methane
production in archaea [33]. Here, we provide the first evidence that HHP can promote
methane production in S. commune 20R-7-F01 for adapting to oxidative stress.
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3.4. Experimental Evidence of ROS Contribution to Increased Methane Production in S. commune
20R-7-F01

To investigate the influence of oxidative stress induced by H2O2 or CdCl2 on methane
production by S. commune 20R-7-F01, we cultured the fungus in a liquid mPD medium
supplemented with varying concentrations (0.75 mM, 1.5 mM, and 3 mM) of these stressors.
Control cultures lacking H2O2 or CdCl2 served as a baseline. Methane production capacity
was assessed under atmospheric pressure conditions after 1, 3, and 5 days of cultivation.
As detailed in Table 3, the methane production markedly increased with increasing concen-
trations of H2O2 or CdCl2. For instance, exposure to 0.75 mM CdCl2 resulted in methane
production 1.45 times higher than the control after five days, which further increased to
2.44 times higher with 3 mM CdCl2. Similarly, exposure to 0.75 mM H2O2 led to a 1.74-fold
enhancement in methane production relative to the control condition, while increasing
the H2O2 concentration to 3 mM further augmented methane production by a factor of
3.06. It is noteworthy that supplementation of the mPD culture medium with BHT to scav-
enge intracellular ROS under different oxidative stress conditions led to a corresponding
decrease in methane production by the strain. For example, the addition of antioxidant
BHT (5 mM) to the fungal mycelium exposed to 3 mM H2O2 for five days resulted in a
significant reduction in methane production from 2.63 mmol/g to 2.23 mmol/g. Concur-
rently, increasing concentrations of H2O2 or CdCl2 were correlated with elevated levels of
intracellular ROS (Table S4), accompanied by reduced fungal cell viability and biomass
(Figures S2 and S3). For instance, exposure to 3 mM H2O2 led to a decrease in biomass by
45.27 mg relative to the control, accompanied by significant trypan blue staining of the cells.
These findings collectively underscore that oxidative stress induced by H2O2 or CdCl2
promotes methane production by S. commune 20R-7-F01. Thus, oxidative damage induced
by HHP likely contributes to the increased methane production by this fungus. Similar
observations by Gu et al. and Samma et al. in alfalfa roots indicate that elevated ROS levels
from metal stressors enhance methane emission [17,18].

Table 3. Effects of varying oxidative stress conditions on methane production in S. commune 20R-7-F01.

CK CdCl2 CdCl2 + BHT H2O2 H2O2 + BHT

0.75 1.5 3 0.75 1.5 3 0.75 1.5 3 0.75 1.5 3

1 d 0.56 ±
0.04

0.64 ±
0.03

0.91 ±
0.05

1.07 ±
0.02

0.60 ±
0.01

0.81 ±
0.03

0.97 ±
0.01

0.76 ±
0.02

1.03 ±
0.04

1.26 ±
0.06

0.68 ±
0.01

0.87 ±
0.03

1.08 ±
0.01

3 d 0.81 ±
0.03

0.90 ±
0.06

1.54 ±
0.07

1.82 ±
0.05

0.83 ±
0.04

1.40 ±
0.06

1.65 ±
0.07

1.05 ±
0.05

1.74 ±
0.05

2.48 ±
0.09

0.89 ±
0.02

1.52 ±
0.04

2.07 ±
0.04

5 d 0.86 ±
0.06

1.25 ±
0.08

1.69 ±
0.06

2.10 ±
0.09

1.15 ±
0.05

1.53 ±
0.07

1.87 ±
0.03

1.50 ±
0.03

2.09 ±
0.11

2.63 ±
0.12

1.26 ±
0.06

1.85 ±
0.08

2.23 ±
0.05

4. Conclusions

In conclusion, our study demonstrates that Schizophyllum commune 20R-7-F01, isolated
from the subseafloor sediment approximately 2 km below the seabed, exhibited enhanced
methane (CH4) production capabilities under in situ temperature, high hydrostatic pres-
sure, and anaerobic conditions. Through comprehensive analyses encompassing biological
activity assays, biomass quantification, transcriptomics, and metabolomics, we found that
S. commune not only survived but significantly increased CH4 production under HHP
conditions. Pathways related to carbohydrate metabolism, methylation, hydrolase activity,
and the metabolism of cysteine and methionine, as well as activities of redox enzymes, were
notably activated under HHP. Specifically, critical genes involved in fungal anaerobic CH4
synthesis, such as methyltransferase mct1 and dehalogenase dh3, were markedly upregu-
lated. The observed enhancement in CH4 production under HHP was primarily attributed
to pressure-induced oxidative stress, supported by comparative analyses of intracellular
ROS levels and treatments involving cadmium chloride and hydrogen peroxide. These
findings may indicate a potentially significant role for deep subseafloor sediment fungi in
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global methane generation, which has not been unaccounted for in previous estimations.
Further elucidation of the mechanisms governing methane production by sediment fungi
in the deep biosphere promises to advance our understanding of the Earth’s additional
sources of methane that contribute to global climate change.
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