A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptide Synthesis
2.2. Analysis of the Physicochemical Characteristics of Synthetic Peptides
2.3. ABTS Radical Scavenging Activity Assay
2.4. Cell Cultures and X-Ray Irradiation
2.5. Cytotoxic Activity Assay
2.6. Colony-Forming Assay (Clonogenic Assay)
2.7. Measurement of Intracellular ROS
2.8. Annexin V/Propidium Iodide (PI) Assay
2.9. Measurement of Intracellular Malondialdehyde (MDA) Level
2.10. Measurement of Changes in Mitochondrial Membrane Potential (MMP)
2.11. Statistics
3. Results
3.1. Selection of Peptides from D. deserti
3.2. Ddes-P3 Shows Antioxidant Properties In Vitro
3.3. Ddes-P3 Protects CHO-K1 Cells from Radiation by Neutralizing ROS
3.4. Ddes-P3 Reduces Radiation-Induced Apoptosis and Necrosis in CHO-K1 Cells
3.5. Ddes-P3 Reduces Cellular Damage in Irradiated CHO-K1 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Wang, K.; Jia, X.; Fu, C.; Yu, H.; Wang, Y. Antioxidant peptides, the guardian of life from oxidative stress. Med. Res. Rev. 2024, 44, 275–364. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current trends of bioactive peptides—New sources and therapeutic effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Liu, K.; Yang, J.; Liu, S.; Wang, S.; Wang, S. Advances on food-derived peptidic antioxidants-a review. Antioxidants 2020, 9, 799. [Google Scholar] [CrossRef]
- Jeong, S.; Jung, J.H.; Jung, K.W.; Ryu, S.; Lim, S. From microbes to molecules: A review of microbial-driven antioxidant peptide generation. World J. Microbiol. Biotechnol. 2024, 40, 29. [Google Scholar] [CrossRef]
- Le Caër, S. Water Radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water 2011, 3, 235–253. [Google Scholar] [CrossRef]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules−mechanisms of damage and emerging methods of detection. Antioxid. Redox. Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef]
- Lim, S.; Jung, J.H.; Blanchard, L.; de Groot, A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol. Rev. 2019, 43, 19–52. [Google Scholar] [CrossRef]
- Liu, F.; Li, N.; Zhang, Y. The radioresistant and survival mechanisms of Deinococcus radiodurans. Radiat. Med. Prot. 2023, 4, 70–79. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant defense of Deinococcus radiodurans: How does it contribute to extreme radiation resistance? Int. J. Radiat. Biol. 2023, 99, 1803–1829. [Google Scholar] [CrossRef]
- Daly, M.J.; Gaidamakova, E.K.; Matrosova, V.Y.; Kiang, J.G.; Fukumoto, R.; Lee, D.Y.; Wehr, N.B.; Viteri, G.A.; Berlett, B.S.; Levine, R.L. Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS ONE 2010, 5, e12570. [Google Scholar] [CrossRef] [PubMed]
- Culotta, V.C.; Daly, M.J. Manganese complexes: Diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. Antioxid. Redox. Signal. 2013, 19, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Peana, M.; Medici, S.; Pangburn, H.A.; Lamkin, T.J.; Ostrowska, M.; Gumienna-Kontecka, E.; Zoroddu, M.A. Manganese binding to antioxidant peptides involved in extreme radiation resistance in Deinococcus radiodurans. J. Inorg. Biochem. 2016, 164, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Berlett, B.S.; Levine, R.L. Designing antioxidant peptides. Redox. Rep. 2014, 19, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Gayen, M.; Smith, J.T.; Gaidamakova, E.K.; Matrosova, V.Y.; Grichenko, O.; Knollmann-Ritschel, B.; Daly, M.J.; Kiang, J.G.; Maheshwari, R.K. MDP: A Deinococcus Mn2+-decapeptide complex protects mice from ionizing radiation. PLoS ONE 2016, 11, e0160575. [Google Scholar] [CrossRef]
- Gaidamakova, E.K.; Myles, I.A.; McDaniel, D.P.; Fowler, C.J.; Valdez, P.A.; Naik, S.; Gayen, M.; Gupta, P.; Sharma, A.; Glass, P.J.; et al. Preserving immunogenicity of lethally irradiated viral and bacterial vaccine epitopes using a radio-protective Mn2+-Peptide complex from Deinococcus. Cell Host Microbe 2012, 12, 117–124. [Google Scholar] [CrossRef]
- Gayen, M.; Gupta, P.; Morazzani, E.M.; Gaidamakova, E.K.; Knollmann-Ritschel, B.; Daly, M.J.; Glass, P.J.; Maheshwari, R.K. Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development. Vaccine 2017, 35, 3672–3681. [Google Scholar] [CrossRef]
- Tobin, G.J.; Tobin, J.K.; Gaidamakova, E.K.; Wiggins, T.J.; Bushnell, R.V.; Lee, W.M.; Matrosova, V.Y.; Dollery, S.J.; Meeks, H.N.; Kouiavskaia, D.; et al. A novel gamma radiation-inactivated sabin-based polio vaccine. PLoS ONE 2020, 15, e0228006. [Google Scholar] [CrossRef]
- Dollery, S.J.; Zurawski, D.V.; Bushnell, R.V.; Tobin, J.K.; Wiggins, T.J.; MacLeod, D.A.; Tasker, N.J.P.E.R.; Alamneh, Y.A.; Abu-Taleb, R.; Czintos, C.M.; et al. Whole-cell vaccine candidates induce a protective response against virulent Acinetobacter baumannii. Front. Immunol. 2022, 13, 941010. [Google Scholar] [CrossRef]
- Beck, H.J.; Moll, I. Leaderless mRNAs in the spotlight: Ancient but not outdated! Microbiol. Spectr. 2018, 6, RWR-0016-2017. [Google Scholar] [CrossRef]
- Zheng, X.; Hu, G.Q.; She, Z.S.; Zhu, H. Leaderless genes in bacteria: Clue to the evolution of translation initiation mechanisms in prokaryotes. BMC Genom. 2011, 12, 361. [Google Scholar] [CrossRef] [PubMed]
- de Groot, A.; Roche, D.; Fernandez, B.; Ludanyi, M.; Cruveiller, S.; Pignol, D.; Vallenet, D.; Armengaud, J.; Blanchard, L. RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biol. Evol. 2014, 6, 932–948. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Ji, H.J.; Choi, J.I.; Han, S.H.; Lim, S.; Seo, H.S.; Ahn, K.B. Anti-allergic function of the cell wall (DeinoWall) from Deinococcus radiodurans. Mol. Immunol. 2022, 151, 103–113. [Google Scholar] [CrossRef]
- Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Leiva, L.E.; Katz, A. Regulation of leaderless mRNA translation in bacteria. Microorganisms 2022, 10, 723. [Google Scholar] [CrossRef]
- Phillis, J.W.; Estevez, A.Y.; O’Regan, M.H. Protective effects of the free radical scavengers, dimethyl sulfoxide and ethanol, in cerebral ischemia in gerbils. Neurosci. Lett. 1998, 244, 109–111. [Google Scholar] [CrossRef]
- Jiao, Y.; Cao, F.; Liu, H. Radiation-induced cell death and its mechanisms. Health Phys. 2022, 123, 376–386. [Google Scholar] [CrossRef]
- Cordiano, R.; Di Gioacchino, M.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. Molecules 2023, 28, 5979. [Google Scholar] [CrossRef]
- Shimura, T.; Kobayashi, J.; Komatsu, K.; Kunugita, N. Severe mitochondrial damage associated with low-dose radiation sensitivity in ATM- and NBS1-deficient cells. Cell Cycle 2016, 15, 1099–1107. [Google Scholar] [CrossRef]
- Hirose, E.; Noguchi, M.; Ihara, T.; Yokoya, A. Mitochondrial metabolism in X-irradiated cells undergoing irreversible cell-cycle arrest. Int. J. Mol. Sci. 2023, 24, 1833. [Google Scholar] [CrossRef] [PubMed]
- Cassier-Chauvat, C.; Marceau, F.; Farci, S.; Ouchane, S.; Chauvat, F. The glutathione system: A journey from cyanobacteria to higher eukaryotes. Antioxidants 2023, 12, 1199. [Google Scholar] [CrossRef] [PubMed]
- Bojarska, J.; Mieczkowski, A.; Ziora, Z.M.; Skwarczynski, M.; Toth, I.; Shalash, A.O.; Parang, K.; El-Mowafi, S.A.; Mohammed, E.H.M.; Elnagdy, S.; et al. Cyclic dipeptides: The biological and structural landscape with special focus on the anti-cancer proline-based scaffold. Biomolecules 2021, 11, 1515. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.N.; Dileep, C.; Mohandas, C.; Nambisan, B.; Ca, J. Cyclo (d-Tyr-d-Phe): A new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode. J. Pept. Sci. 2014, 20, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell Infect. Microbiol. 2021, 11, 668632. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Choi, Y.H.; Choi, Y.S.; Alam, M.B.; Lee, S.H.; Yoo, J.C. A novel antioxidant peptide, purified from Bacillus amyloliquefaciens, showed strong antioxidant potential via Nrf-2 mediated heme oxygenase-1 expression. Food Chem. 2018, 239, 502–510. [Google Scholar] [CrossRef]
- Srivastava, A.; Gogoi, P.; Deka, B.; Goswami, S.; Kanaujia, S.P. In silico analysis of 5′-UTRs highlights the prevalence of Shine-Dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively. J. Theor. Biol. 2016, 402, 54–61. [Google Scholar] [CrossRef]
- Cortes, T.; Schubert, O.T.; Rose, G.; Arnvig, K.B.; Comas, I.; Aebersold, R.; Young, D.B. Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell Rep. 2013, 5, 1121–1131. [Google Scholar] [CrossRef]
- Nguyen, T.G.; Vargas-Blanco, D.A.; Roberts, L.A.; Shell, S.S. The impact of leadered and leaderless gene structures on translation efficiency, transcript stability, and predicted transcription rates in Mycobacterium smegmatis. J. Bacteriol. 2020, 202, e00746-19. [Google Scholar] [CrossRef]
- Shell, S.S.; Wang, J.; Lapierre, P.; Mir, M.; Chase, M.R.; Pyle, M.M.; Gawande, R.; Ahmad, R.; Sarracino, D.A.; Ioerger, T.R.; et al. Leaderless transcripts and small proteins are common features of the mycobacterial translational landscape. PLoS Genet. 2015, 11, e1005641. [Google Scholar] [CrossRef]
- Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in research on the activity evaluation, mechanism and structure-activity relationships of natural antioxidant peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Chen, Y.; Sun, X.; Wang, L. AODB: A comprehensive database for antioxidants including small molecules, peptides and proteins. Food Chem. 2023, 418, 135992. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, C.; Bordoni, L.; Petracci, I.; Wu, D.; Fang, L.; Wang, J.; Wang, X.; Gabbianelli, R.; Min, W. Advances on the antioxidant peptides from nuts: A narrow review. Antioxidants 2022, 11, 2020. [Google Scholar] [CrossRef] [PubMed]
- López-García, G.; Dublan-García, O.; Arizmendi-Cotero, D.; Gómez Oliván, L.M. Antioxidant and antimicrobial peptides derived from food proteins. Molecules 2022, 27, 1343. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Lee, H.J. Biphasic effects of dietary antioxidants on oxidative stress-mediated carcinogenesis. Mech. Ageing Dev. 2006, 127, 424–431. [Google Scholar] [CrossRef]
- Xi, X.; Wang, J.; Qin, Y.; You, Y.; Huang, W.; Zhan, J. The biphasic effect of flavonoids on oxidative stress and cell proliferation in breast cancer cells. Antioxidants 2022, 11, 622. [Google Scholar] [CrossRef]
- Oikawa, S.; Furukawaa, A.; Asada, H.; Hirakawa, K.; Kawanishi, S. Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species. Free Radic. Res. 2003, 37, 881–890. [Google Scholar] [CrossRef]
- Lee, B.C.; Gladyshev, V.N. The biological significance of methionine sulfoxide stereochemistry. Free Radic. Biol. Med. 2011, 50, 221–227. [Google Scholar] [CrossRef]
- Grassi, L.; Cabrele, C. Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019, 51, 1409–1431. [Google Scholar] [CrossRef]
- Mishra, K.; Alsbeih, G. Appraisal of biochemical classes of radioprotectors: Evidence, current status and guidelines for future development. 3 Biotech 2017, 7, 292. [Google Scholar] [CrossRef]
- Shaghaghi, Z.; Alvandi, M.; Nosrati, S.; Hadei, S.K. Potential utility of peptides against damage induced by ionizing radiation. Future Oncol. 2021, 17, 1219–1235. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.; Hernandez-Mijares, A.; Garcia-Malpartida, K.; Bañuls, C.; Bellod, L.; Victor, V.M. Mitochondria-targeted antioxidant peptides. Curr. Pharm. Des. 2010, 16, 3124–3131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Yin, J.; Chen, J.; Ma, X.; Wu, M.; Liu, G.; Yao, K.; Tan, B.; Yin, Y. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid. Med. Cell Longev. 2020, 2020, 8837893. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gao, P.; Zhang, Y.; Wang, J.; Sun, F.; Liu, Q.; Zhang, S. Protective effect of the antioxidative peptide SS31 on ionizing radiation-induced hematopoietic system damage in mice. Blood Cells Mol. Dis. 2019, 77, 82–87. [Google Scholar] [CrossRef]
- Wipf, P.; Polyzos, A.A.; McMurray, C.T. A double-pronged sword: XJB-5-131 is a suppressor of somatic instability and toxicity in Huntington’s disease. J. Huntingt. Dis. 2022, 11, 3–15. [Google Scholar] [CrossRef]
- Jiang, J.; Belikova, N.A.; Hoye, A.T.; Zhao, Q.; Epperly, M.W.; Greenberger, J.S.; Wipf, P.; Kagan, V.E. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 816–825. [Google Scholar] [CrossRef]
- Goff, J.P.; Shields, D.S.; Wang, H.; Skoda, E.M.; Sprachman, M.M.; Wipf, P.; Garapati, V.K.; Atkinson, J.; London, B.; Lazo, J.S.; et al. Evaluation of potential ionizing irradiation protectors and mitigators using clonogenic survival of human umbilical cord blood hematopoietic progenitor cells. Exp. Hematol. 2013, 41, 957–966. [Google Scholar] [CrossRef]
- Basu, B. The radiophiles of Deinococcaceae family: Resourceful microbes for innovative biotechnological applications. Curr. Res. Microb. Sci. 2022, 3, 100153. [Google Scholar] [CrossRef]
Peptide Name | Sequence (No. ofaa) | Predicted pI/MW | Net Charge at pH 7.0 | Instability Index | GRAVY Index | Water Solubility |
---|---|---|---|---|---|---|
Ddes-P1 | MPFEEITLGAA (11) | 3.79/1178.37 | −2 | 105.97 (unstable) | 0.627 (hydrophobic) | poor |
Ddes-P2 | VSHNEQQMEEE (11) | 4.09/1359.39 | −3.9 | 124.91 (unstable) | −2.036 (hydrophilic) | good |
Ddes-P3 | MMWSSGHISA (10) | 6.49/1106.28 | 0.1 | 69.32 (unstable) | 0.320 (hydrophobic) | poor |
Ddes-P4 | MSVTKERRL (9) | 10.83/1119.35 | 2 | 111.92 (unstable) | −0.889 (hydrophilic) | good |
DP1 | DEHGTAVMLK (10) | 5.32/1100.25 | −0.9 | −25.89 (stable) | −0.350 (hydrophilic) | good |
HP1 | HMHMHM (6) | 7.02/823.02 | 0.3 | 199.27 (unstable) | −0.650 (hydrophilic) | poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.; Song, H.-Y.; Park, H.R.; Ahn, K.B. A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells. Microorganisms 2024, 12, 2161. https://doi.org/10.3390/microorganisms12112161
Lim S, Song H-Y, Park HR, Ahn KB. A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells. Microorganisms. 2024; 12(11):2161. https://doi.org/10.3390/microorganisms12112161
Chicago/Turabian StyleLim, Sangyong, Ha-Yeon Song, Hae Ran Park, and Ki Bum Ahn. 2024. "A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells" Microorganisms 12, no. 11: 2161. https://doi.org/10.3390/microorganisms12112161
APA StyleLim, S., Song, H. -Y., Park, H. R., & Ahn, K. B. (2024). A Novel Deinococcus Antioxidant Peptide Mitigates Oxidative Stress in Irradiated CHO-K1 Cells. Microorganisms, 12(11), 2161. https://doi.org/10.3390/microorganisms12112161