Breed Selection of Poplars Imposes Greater Selection Pressure on the Rhizosphere Bacterial Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Poplar Breed Selection and Study Site
2.2. Sample Collection and Soil Nutrient Analysis
2.3. Soil DNA Extraction and Metagenomic Sequencing
2.4. Untargeted Metabolomic Profiling
2.5. Statistical Analysis
3. Results
3.1. Plant and Rhizosphere Soil Properties
3.2. Rhizosphere Microbial Community Composition and Diversity
3.3. Rhizosphere Microbial Community Structure and Function
3.4. Rhizosphere Untargeted Metabolomics
3.5. Effects of Soil Nutrients and Metabolites on the Microbial Community
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Resende, R.T.; Piepho, H.P.; Rosa, G.J.; Silva-Junior, O.B.; e Silva, F.F.; de Resende MD, V.; Grattapaglia, D. Enviromics in breeding: Applications and perspectives on envirotypic-assisted selection. Theor. Appl. Genet. 2021, 134, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Nerva, L.; Sandrini, M.; Moffa, L.; Velasco, R.; Balestrini, R.; Chitarra, W. Breeding toward improved ecological plant–microbiome interactions. Trends Plant Sci. 2022, 26, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Finkel, O.M.; Salas-González, I.; Castrillo, G.; Conway, J.M.; Law, T.F.; Teixeira, P.J.P.L.; Wilson, E.D.; Fitzpatrick, C.R.; Jones, C.D.; Dangl, J.L. A single bacterial genus maintains root growth in a complex microbiome. Nature 2020, 587, 103–108. [Google Scholar] [CrossRef]
- Henneron, L.; Kardol, P.; Wardle, D.A.; Cros, C.; Fontaine, S. Rhizosphere control of soil nitrogen cycling: A key component of plant economic strategies. New Phytol. 2020, 228, 1269–1282. [Google Scholar] [CrossRef]
- Hou, S.; Wolinska, K.W.; Hacquard, S. Microbiota-root-shoot-environment axis and stress tolerance in plants. Curr. Opin. Plant Biol. 2021, 62, 102028. [Google Scholar] [CrossRef]
- Gopal, M.; Gupta, A. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Front. Microbiol. 2016, 7, 1971. [Google Scholar] [CrossRef]
- Kinnunen-Grubb, M.; Sapkota, R.; Vignola, M.; Nunes, I.M.; Nicolaisen, M. Breeding selection imposed a differential selective pressure on the wheat root-associated microbiome. FEMS Microbiol. Ecol. 2020, 96, fiaa196. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Vives-Peris, V.; De Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef]
- el Zahar Haichar, F.; Santaella, C.; Heulin, T.; Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 2014, 77, 69–80. [Google Scholar] [CrossRef]
- Jamil, F.; Mukhtar, H.; Fouillaud, M.; Dufossé, L. Rhizosphere signaling: Insights into plant–rhizomicrobiome interactions for sustainable agronomy. Microorganisms 2022, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Venturi, V.; Keel, C. Signaling in the Rhizosphere. Trends Plant Sci. 2016, 21, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Brunel, C.; Pouteau, R.; Dawson, W.; Pester, M.; Ramirez, K.S.; van Kleunen, M. Towards Unraveling Macroecological Patterns in Rhizosphere Microbiomes. Trends Plant Sci. 2020, 25, 1017–1029. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Bu, J.; Lin, Y.; Bai, Y. Host genetics regulate the plant microbiome. Curr. Opin. Microbiol. 2023, 72, 102268. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef]
- van Dam, N.M.; Bouwmeester, H.J. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends Plant Sci. 2016, 21, 256–265. [Google Scholar] [CrossRef]
- Bauermeister, A.; Mannochio-Russo, H.; Costa-Lotufo, L.V.; Jarmusch, A.K.; Dorrestein, P.C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 2022, 20, 143–160. [Google Scholar] [CrossRef]
- Withers, E.; Hill, P.W.; Chadwick, D.R.; Jones, D.L. Use of untargeted metabolomics for assessing soil quality and microbial function. Soil Biol. Biochem. 2020, 143, 107758. [Google Scholar] [CrossRef]
- Li, P.; Ye, S.; Chen, J.; Wang, L.; Li, Y.; Ge, L.; Wu, G.; Song, L.; Wang, C.; Sun, Y.; et al. Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil CN metabolism. ISME Commun. 2023, 3, 4. [Google Scholar] [CrossRef]
- Bouffaud, M.L.; Poirier, M.A.; Muller, D.; Moënne-Loccoz, Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ. Microbiol. 2014, 16, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Liu, Y.; Liu, Y.; Lu, M.; Kang, X.; Mansfield, S.D.; Zeng, W.; Zhang, J. Opportunities and barriers for biofuel and bioenergy production from poplar. GCB Bioenergy 2021, 13, 905–913. [Google Scholar] [CrossRef]
- Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Jonathan, A.E.; Sundaresan, V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Z.; Dang, P.; Zhu, H.; Gao, Y.; Ha, V.N.; Zhao, Z. Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: A chronosequence approach. Plant Soil 2018, 423, 327–338. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Noguchi, H.; Park, J.; Takagi, T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef]
- Gu, S.; Fang, L.; Xu, X. Using SOAPaligner for short reads alignment. Curr. Protoc. Bioinform. 2013, 44, 11. [Google Scholar] [CrossRef]
- Lavigne, R.; Seto, D.; Mahadevan, P.; Ackermann, H.W.; Kropinski, A.M. Unifying classical and molecular taxonomic classification: Analysis of the using BLASTP-based tools. Res. Microbiol. 2008, 159, 406–414. [Google Scholar] [CrossRef]
- Noguchi, H.; Park, J.; Takagi, T. The vegan package. Community Ecol. Package 2006, 10, 719. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar] [CrossRef]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2007, 17, 1–27. [Google Scholar] [CrossRef]
- Gao, Z.; Karlsson, I.; Geisen, S.; Kowalchuk, G.; Jousset, A. Protists: Puppet Masters of the Rhizosphere Microbiome. Trends Plant Sci. 2019, 24, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, R.P.; Chen, L.; Schwier, M.; Koprivova, A.; Kopriva, S. Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Research 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Huang, X.; Zhang, J.; Cai, Z.; Jiang, K.; Chang, Y. Deciphering the relative importance of soil and plant traits on the development of rhizosphere microbial communities. Soil Biol. Biochem. 2020, 148, 107909. [Google Scholar] [CrossRef]
- Morella, N.M.; Weng FC, H.; Joubert, P.M.; Metcalf, C.J.E.; Lindow, S.; Koskella, B. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl. Acad. Sci. USA 2020, 117, 1148–1159. [Google Scholar] [CrossRef]
- Wagner, M.R. Prioritizing host phenotype to understand microbiome heritability in plants. New Phytol. 2021, 232, 502–509. [Google Scholar] [CrossRef]
- Jiao, S.; Yang, Y.; Xu, Y.; Zhang, J.; Lu, Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020, 14, 202–216. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; Da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Brown, R.W.; Chadwick, D.R.; Zang, H.; Jones, D.L. Use of metabolomics to quantify changes in soil microbial function in response to fertiliser nitrogen supply and extreme drought. Soil Biol. Biochem. 2021, 160, 108351. [Google Scholar] [CrossRef]
- Miller, S.B.; Heuberger, A.L.; Broeckling, C.D.; Jahn, C.E. Non-Targeted Metabolomics Reveals Sorghum Rhizosphere-Associated Exudates are Influenced by the Belowground Interaction of Substrate and Sorghum Genotype. Int. J. Mol. Sci. 2019, 20, 431. [Google Scholar] [CrossRef]
- Guo, S.; Tao, C.; Jousset, A.; Xiong, W.; Wang, Z.; Shen, Z.; Wang, B.; Xu, Z.; Gao, Z.; Liu, S.; et al. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME J. 2022, 16, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Biosynthesis and Biological Functions of Terpenoids in Plants. In Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology; Schrader, J., Bohlmann, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 148. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Jilling, A.; Keiluweit, M.; Contosta, A.R.; Frey, S.; Schimel, J.; Schnecker, J.; Smith, R.G.; Tiemann, L.; Grandy, A.S. Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 2018, 139, 103–122. [Google Scholar] [CrossRef]
- Tang, X.; Placella, S.A.; Daydé, F.; Bernard, L.; Robin, A.; Journet, E.P.; Justes, E.; Hinsinger, P. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant. Soil. 2016, 407, 119–134. [Google Scholar] [CrossRef]
Properties | I101 | 84K | Q1 | Q2 | Q3 | Q4 | Q5 | F | p |
---|---|---|---|---|---|---|---|---|---|
Height (m) | 12.37 ± 0.45 ab | 11.15 ± 0.58 bc | 13.42 ± 1.15 a | 13.05 ± 1.03 a | 13.42 ± 1.56 a | 10.45 ± 1.67 c | 13.95 ± 1.25 a | 4.852 | 0.003 |
DBH (cm) | 13.4 ± 0.91 b | 13.25 ± 0.52 b | 13.53 ± 0.5 b | 13.67 ± 1.09 b | 13.15 ± 1.13 b | 10.3 ± 1.24 c | 16.15 ± 1.05 a | 10.588 | <0.001 |
SOC (g kg−1) | 4.15 ± 1.33 b | 5.56 ± 1.74 ab | 6.51 ± 0.94 a | 7.14 ± 0.99 a | 6.66 ± 0.54 a | 7.03 ± 0.68 a | 6.86 ± 1.98 a | 3.39 | 0.012 |
TN (g kg−1) | 1.21 ± 0.23 bc | 1.0 ± 0.19 cd | 0.90 ± 0.21 d | 1.01 ± 0.12 cd | 1.43 ± 0.30 ab | 1.66 ± 0.15 a | 1.29 ± 0.07 b | 9.939 | <0.001 |
TP (g kg−1) | 0.92 ± 0.05 a | 0.91 ± 0.12 a | 0.93 ± 0.08 a | 0.77 ± 0.13 b | 0.83 ± 0.07 ab | 0.91 ± 0.05 a | 0.93 ± 0.06 a | 2.863 | 0.026 |
NO3− (mg kg−1) | 4.97 ± 0.62 | 5.23 ± 1.05 | 4.07 ± 1.76 | 4.62 ± 2.1 | 4.23 ± 1.18 | 4.74 ± 1.14 | 2.85 ± 1.28 | 1.825 | 0.129 |
NH4+ (mg kg−1) | 8.72 ± 2.35 | 7.67 ± 1.79 | 7.1 ± 1.18 | 7.25 ± 2.89 | 7.77 ± 1.99 | 6.22 ± 1.47 | 5.8 ± 2.68 | 1.109 | 0.381 |
AP (mg kg−1) | 12.9 ± 0.8 b | 14.25 ± 0.53 a | 13.99 ± 1.85 a | 13.21 ± 0.93 ab | 12.21 ± 1.23 b | 12.16 ± 0.59 b | 13.45 ± 0.66 ab | 3.138 | 0.017 |
C–N | 3.60 ± 1.66 d | 5.64 ± 1.75 bc | 7.43 ± 1.1 a | 7.11 ± 1.02 ab | 4.82 ± 1.12 cd | 4.23 ± 0.21 cd | 5.33 ± 1.64 cd | 5.731 | <0.001 |
C–P | 4.57 ± 1.55 c | 6.03 ± 1.36 bc | 7.13 ± 1.69 b | 9.50 ± 1.70 a | 8.11 ± 0.82 ab | 7.73 ± 0.83 ab | 7.46 ± 2.45 ab | 4.713 | 0.002 |
N–P | 1.32 ± 0.24 | 1.11 ± 0.24 | 0.99 ± 0.32 | 1.35 ± 0.23 | 1.73 ± 0.26 | 1.83 ± 0.18 | 1.39 ± 0.11 | 8.485 | <0.001 |
Topological Metrics | I101 | 84K | Q1 | Q2 | Q3 | Q4 | Q5 |
---|---|---|---|---|---|---|---|
Nodes | 1124 | 1104 | 1105 | 1114 | 1066 | 1033 | 1132 |
Edges | 24,351 | 10,842 | 20,896 | 18,523 | 18,981 | 18,584 | 17,270 |
Edges/nodes | 21.66 | 9.82 | 18.91 | 16.63 | 17.81 | 17.99 | 15.26 |
Modules | 19 | 19 | 26 | 22 | 23 | 19 | 31 |
Modularity | 0.86 | 0.84 | 0.82 | 0.87 | 0.86 | 0.82 | 0.89 |
Transitivity | 0.95 | 0.74 | 0.96 | 0.93 | 0.92 | 0.97 | 0.94 |
Density | 0.039 | 0.018 | 0.034 | 0.030 | 0.033 | 0.035 | 0.027 |
Diameter | 27.29 | 30.25 | 25.34 | 25.34 | 27.29 | 21.44 | 35.08 |
Positive correlation (%) | 86.44 | 61.67 | 69.77 | 87.34 | 83.31 | 74.74 | 68.91 |
Negative correlation (%) | 13.56 | 38.33 | 30.23 | 12.66 | 16.69 | 25.26 | 31.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhou, L.; Lan, Y.; Fan, J. Breed Selection of Poplars Imposes Greater Selection Pressure on the Rhizosphere Bacterial Community. Microorganisms 2024, 12, 2176. https://doi.org/10.3390/microorganisms12112176
Liu J, Zhou L, Lan Y, Fan J. Breed Selection of Poplars Imposes Greater Selection Pressure on the Rhizosphere Bacterial Community. Microorganisms. 2024; 12(11):2176. https://doi.org/10.3390/microorganisms12112176
Chicago/Turabian StyleLiu, Jinliang, Long Zhou, Yan Lan, and Junfeng Fan. 2024. "Breed Selection of Poplars Imposes Greater Selection Pressure on the Rhizosphere Bacterial Community" Microorganisms 12, no. 11: 2176. https://doi.org/10.3390/microorganisms12112176
APA StyleLiu, J., Zhou, L., Lan, Y., & Fan, J. (2024). Breed Selection of Poplars Imposes Greater Selection Pressure on the Rhizosphere Bacterial Community. Microorganisms, 12(11), 2176. https://doi.org/10.3390/microorganisms12112176