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Abstract: Breed selection alters the coevolution of plant–microbiome associations that have de-
veloped over long periods of natural evolution. We investigated the effects of breed selection on
the rhizosphere microbiomes and metabolites of hybrid parents (I101 and 84K) and their offspring
(Q1–Q5) using metagenomics and untargeted metabolomics. Rhizosphere archaeal, bacterial and
fungal community β-diversity significantly differed among hybrid parents and offspring, but only
the dominant bacterial phyla and bacterial community α-diversity revealed significant differences.
Approximately 5.49%, 14.90% and 7.86% of the archaeal, bacterial and fungal species significantly
differed among the poplar hybrid parents and offspring. Rhizosphere microbial functional genes
and metabolites were both clustered into the following three groups: I101 and 84K; Q2 and Q4; and
Q1, Q3 and Q5. Compared with the hybrid parents, 15 phytochemical compounds were enriched in
the hybrid offspring and explained 7.15%, 18.24% and 6.68% of the total variation in the archaeal,
bacterial and fungal community compositions, respectively. Rhizosphere metabolites significantly
affected the bacterial community, rather than the archaeal and fungal communities. Our observations
suggested that poplar breed selection imposed greater selection pressure on the rhizosphere bacterial
community, which was mainly driven by metabolites.
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1. Introduction

Breed selection is a process of selecting more productive and suitable plant genotypes
that can adapt to different environments [1,2]. Breeding accelerates plant evolution, which
in turn changes the coevolution of plant–microbiome associations [1]. The rhizosphere
microbiome associated with plant roots is referred to as the second genome of the plant
and it can contribute to nutrient acquisition, pathogen protection, stress tolerance and phe-
notypic plasticity in plants [3–6]. The substantial impact of beneficial microorganisms on
plant health and growth has prompted breeders to pay attention to plant–microbiome inter-
actions during the breeding process [7,8]. Breeding strategies based on plant–microbiome
interactions have been considered in crop breeding [2]. However, the influence of breed
selection on the rhizosphere microbiome of woody plants is poorly understood.

Rhizosphere microbiomes can form complex co-associations with plants and are
recognized as an extension of the plant’s root phenotype [3,9]. Root-associated microbiomes
directly affect host plants, including by the transformation and translocation of nutrients,
mitigation of environmental stress and protection from plant pathogens [9]. Colonization by
mycorrhizae can lead to generalized metabolic changes and improved N and P absorption
in plants [10] and a single bacterial genus (Variovorax) can manipulate plant hormone levels
to maintain root growth [4]. Moreover, root-associated microbiomes can also indirectly
contribute to host plants by enhancing the resistance responses of plants via interactions
between the plants and microbiomes that coregulate plant traits [9].
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Rhizosphere microbiomes are mainly controlled by root exudates, given that 11%
of the net fixed C is exuded to the rhizosphere by roots [10–12]. Root exudates are low-
molecular-weight compounds and consist of an assortment of primary metabolites and
secondary metabolites such as organic acids, amino acids, terpenoids and phenolics [10,13].
These complex chemical substances can change the rhizosphere microenvironment and
act as nutrient sources and signals to affect the recruitment and assembly of rhizosphere
microflora [5,11,13–15]. Some phytohormones, such as ethylene, abscisic acid, salicylic acid
and jasmonic acid, play important roles in mycorrhizal colonization and some microor-
ganisms need the presence of root exudates to survive [10]. In addition to root exudates,
habitat and management practices also play important roles in the assembly and functions
of rhizosphere microbiomes [16].

Root exudates are not the only source of rhizosphere metabolites, which consist of
complex compounds secreted by roots and the organisms that interact with the roots [17].
Untargeted metabolomics is one of the key technologies used to identify small molecules
in the rhizosphere and to understand the functional role of microbial metabolites [18].
Metabolic-pathway-based approaches can link metabolites to biochemical pathways and
provide insights into the function of microbial communities [18,19]. Integrated multi-
omic analyses, including soil metabolomics and microbial metagenomics, provide a better
understanding of the interactions between plants and microbiomes [20].

The differences in rhizosphere microbial compositions increase with an increase in
phylogenetic distance and intraspecific genotypic variations can significantly affect the
phylogenetic structure of root-associated microbiota [16,21]. Mounting evidence has demon-
strated that root-associated microbiomes dramatically change with long-term breeding [8].
There is a growing consensus that the selection, development and application of benefi-
cial associated microbiomes facilitates the development of next-generation plant-breeding
strategies [2,5,7]. Poplar is a major industrial tree species in China and has great potential
for industrial use and renewable bioenergy production [22]. In the present study, we
analyzed the rhizosphere microbiome and metabolites using metagenomic and untargeted
metabolomic methods. The aims of this work were (i) to explore the effects of breed se-
lection of poplars on the rhizosphere microbial community composition, structure and
function and on rhizosphere metabolites, and (ii) to uncover the effects of metabolites on
rhizosphere microbiomes.

2. Materials and Methods
2.1. Poplar Breed Selection and Study Site

A poplar hybrid (I101 (Populus alba L.) × 84K (Populus alba L. × Populus glandulosa
Uyeki)) was used to breed new hybrid varieties that exhibited fast growth, strong adapt-
ability, easy reproduction and climate adaptation in the northwestern China. After artificial
hybridization and breeding, QinBaiYang hybrid offspring (Q1~Q5) were selected. To date,
Q1–Q3 and Q5 have passed the examination and approval of the forest tree varieties of
China and Q4 has passed the examination and approval of the forest tree varieties of
Shaanxi Province.

This study was carried out at the Weihe Research Station (108◦17′22′′ E, 34◦11′45′′ N)
of Northwest Agriculture and Forestry University in Shaanxi Province, China. The site has
sandy loam soil and a warm temperate continental monsoon climate with a mean annual
rainfall of 650 mm and a temperature of 13.3 ◦C. An experimental forest of poplar hybrid
parents (I101 and 84K) and their offspring (Q1~Q5) was established using a randomized
complete-block design with 5 replicate plots in March 2018. The plant spacing and row
spacing were 4 m × 4 m and a total of 25 trees were planted for each poplar variety in
5 replicate plots. The same soil type, climate and forest management practices ensured that
the variation in the rhizosphere soil microbial community was mainly driven by the poplar
hybrid parents and their offspring.
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2.2. Sample Collection and Soil Nutrient Analysis

Rhizosphere soil samples were collected from the topsoil layer (0–20 cm) 1–1.5 m away
from the tree using a stainless-steel corer 10 cm in diameter in July 2022. In each replicate
plot, four trees with similar diameters at breast height (DBHs) and heights were selected for
each poplar variety and four rhizosphere soil samples from four trees were mixed together
into one soil sample. A total of 35 rhizosphere soil samples were collected from 5 replicate
plots. In this study, rhizosphere soil was isolated from roots with diameters less than
2 mm. The soil that was manually shaken from the selected roots was used to analyze soil
nutrients and the remaining roots were cut into 4 cm segments using sterile scissors and
stored in a 50 mL tube in liquid nitrogen. These roots were transported to the laboratory
and placed in a sterile tube with 40 mL of a sterile phosphate-buffered saline (PBS) solution.
Soils attached to the root surface were cleaned using a sonication protocol and the sterile
tube was sonicated for 30 s in the range of 50–60 Hz. After removal of the roots, the
liquid PBS fraction was centrifuged at 6000× g for 20 min at 4 ◦C [23]. The soil was then
collected and stored at −80 ◦C for metagenomic and untargeted metabolomic analyses.
Soil nutrients such as soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP),
nitrate nitrogen (NO3

−), ammonium nitrogen (NH4
+) and available phosphorus (AP) were

quantified as previously reported [24].

2.3. Soil DNA Extraction and Metagenomic Sequencing

Soil total DNA was extracted using an E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek,
Norcross, GA, USA) according to the manufacturer’s instructions. The concentration,
purity and quality of the extracted DNA were checked using a TBS-380, a NanoDrop2000
and 1% agarose gel electrophoresis. Covaris M220 (Gene Company Limited, Shanghai,
China) was used to fragment the extracted DNA to an average size of approximately
400 bp and NEXTflex™ Rapid DNA-Seq (Bioo Scientific, Austin, TX, USA) was used to
construct the paired-end library. Paired-end sequencing was performed using the Illumina
NovaSeq/HiSeq Xten platform (Illumina, Inc., San Diego, CA, USA) by Majorbio Bio-
Pharm Technology (Shanghai, China). The raw reads were cleaned by removing adaptor
sequences and low-quality reads and the optimized reads were assembled into contigs
using MEGAHIT (v1.1.2) [25]. Contigs with lengths less than 300 bp were removed and
the open reading frames of the remaining contigs were identified and clustered using
MetaGene 2 and CD-HIT (v 4.6.1) [26,27]. Based on the nonredundant gene catalog with
95% identity, the gene abundance in each soil sample was determined using SOAPaligner
(soap2.21release) [28]. Annotation information of nonredundant genes and the abundance
of species was obtained using Diamond (v 0.8.35), HMMER (v 3.1b2), the NCBI NR database
and Kyoto Encyclopedia of Genes and Genomes database (KEGG) [29].

2.4. Untargeted Metabolomic Profiling

The soils were extracted using 4:1 (v/v) methanol–water, ground while frozen for
6 min (−10 ◦C; 50 Hz), subjected to low-temperature ultrasonic extraction for 30 min (5 ◦C;
40 kHz), left at −20 ◦C for 30 min and centrifuged for 15 min (4 ◦C; 13000 × g). The super-
natant was transferred to sample vials for a liquid chromatography/mass spectrometry
(LC-MS) analysis. The LC-MS analysis was conducted using a Thermo UHPLC-Q Exactive
HF-X system equipped with an ACQUITY HSS T3 column (100 mm × 2.1 mm i.d.; 1.8 µm)
(Waters, Milford, MA, USA) and an electrospray ionization (ESI) source at Majorbio Bio-
Pharm Technology Co., Ltd. (Shanghai, China). The mobile phases consisted of 0.1% formic
acid in water–acetonitrile (95:5, v/v) and 0.1% formic acid in acetonitrile–isopropanol–
water (47.5:47.5:5, v/v/v), with a flow rate of 0.40 mL/min and a column temperature
of 40 ◦C. The mass spectrometric conditions were set as follows: source temperature of
425 ◦C; sheath gas flow rate of 50 arb; aux gas flow rate of 13 arb; and floating ion-spray
voltage at −3500 V in negative mode and 3500 V in positive mode. The full MS and MS/MS
resolutions were 60,000 and 7500, respectively. Data acquisition was performed using
the data-dependent acquisition (DDA) mode and detection was carried out over a mass
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range of 70–1050 m/z. The pretreatment of the raw LC-MS raw data was performed using
Progenesis QI (v2.0) software (Waters Corporation, Milford, CT, USA). Internal standard
peaks and any known false-positive peaks were removed from the data matrix and the
remaining peaks were then subjected to a de-redundancy analysis and pooled. The metabo-
lites were identified using HMDB (http://www.hmdb.ca/, accessed on 20 December 2022)
and Metlin (https://metlin.scripps.edu/, accessed on 20 December 2022).

2.5. Statistical Analysis

The variations in the soil microbial community composition, diversity and soil nu-
trients among the poplar varieties were analyzed using a one-way analysis of variance
(ANOVA) and a least significant difference (LSD) multiple comparison test. The β-diversity
of the rhizosphere soil bacterial, fungal and archaeal communities was identified by non-
metric multidimensional scaling (NMDS) using the ‘vegan’ package [30]. A hierarchical
clustering analysis with a heatmap was used to explore the similarity of microbial func-
tional genes and metabolites among hybrid parents and offspring. A linear discriminant
analysis effect size (LEfSe) analysis of microbial community compositions, a heatmap analy-
sis and an enrichment analysis of KEGG level 3 pathways were performed using the online
platform of the Majorbio Cloud platform (www.majorbio.com, 24 October 2024). Bacte-
rial species with relative abundances greater than 0.01% and archaeal and fungal species
with relative abundances greater than 0.05% were selected for a co-occurrence network
analysis using the ‘igraph’ package based on Pearson’s correlation coefficients (p < 0.05;
r ≥ 0.9), after which visualization was performed using Gephi-0.9.2 [31]. The co-occurrence
network analysis of microbial functional genes associated with N and P cycles was also
performed using the ‘igraph’ package based on Pearson’s correlation coefficients (p < 0.05;
r ≥ 0.8), after which visualization was performed using Gephi-0.9.2 [31]. A volcano plot
was used to analyze the variations in metabolites among different clustered poplar groups.
The variable importance in projection (VIP) score was used to analyze the variations in
phytochemical compounds among cluster groups. The effects of soil nutrients on dominant
microbial phyla, diversities and compositions (species level; relative abundance > 0.05%)
were analyzed using a multiple regression model (MRM) and redundancy analysis (RDA)
based on the ‘relaimpo’ and ‘vegan’ packages [30,32]. The effect of phytochemical com-
pounds with significant differences among the varieties on soil microbial composition were
analyzed using RDA on the ‘vegan’ package. A Procrustes analysis was used to analyze
the relationships between microbial community compositions and metabolites using the
‘vegan’ package. The R software used in this work was R v. 4.3.3.

3. Results
3.1. Plant and Rhizosphere Soil Properties

The highest and lowest values of the tree growth indices (DBH and height) were
observed in Q5 and Q4, respectively (Table 1). SOC values were significantly greater in the
offspring (Q1~Q5) than in the hybrid parents (I101 and 84K), but showed no difference
among the offspring. The TN content significantly differed among varieties, but the NO3

–

and NH4
+ contents showed no difference. TP and AP contents significantly differed among

the varieties. The soil stoichiometric characteristics showed significant differences, with the
highest C–N, C–P and N–P ratios observed at 84K, Q2 and Q4, respectively.

Table 1. Tree growth properties and rhizosphere soil nutrients.

Properties I101 84K Q1 Q2 Q3 Q4 Q5 F p

Height (m) 12.37 ± 0.45 ab 11.15 ± 0.58 bc 13.42 ± 1.15 a 13.05 ± 1.03 a 13.42 ± 1.56 a 10.45 ± 1.67 c 13.95 ± 1.25 a 4.852 0.003
DBH (cm) 13.4 ± 0.91 b 13.25 ± 0.52 b 13.53 ± 0.5 b 13.67 ± 1.09 b 13.15 ± 1.13 b 10.3 ± 1.24 c 16.15 ± 1.05 a 10.588 <0.001

SOC (g kg−1) 4.15 ± 1.33 b 5.56 ± 1.74 ab 6.51 ± 0.94 a 7.14 ± 0.99 a 6.66 ± 0.54 a 7.03 ± 0.68 a 6.86 ± 1.98 a 3.39 0.012
TN (g kg−1) 1.21 ± 0.23 bc 1.0 ± 0.19 cd 0.90 ± 0.21 d 1.01 ± 0.12 cd 1.43 ± 0.30 ab 1.66 ± 0.15 a 1.29 ± 0.07 b 9.939 <0.001
TP (g kg−1) 0.92 ± 0.05 a 0.91 ± 0.12 a 0.93 ± 0.08 a 0.77 ± 0.13 b 0.83 ± 0.07 ab 0.91 ± 0.05 a 0.93 ± 0.06 a 2.863 0.026

NO3
− (mg kg−1) 4.97 ± 0.62 5.23 ± 1.05 4.07 ± 1.76 4.62 ± 2.1 4.23 ± 1.18 4.74 ± 1.14 2.85 ± 1.28 1.825 0.129

NH4
+ (mg kg−1) 8.72 ± 2.35 7.67 ± 1.79 7.1 ± 1.18 7.25 ± 2.89 7.77 ± 1.99 6.22 ± 1.47 5.8 ± 2.68 1.109 0.381

http://www.hmdb.ca/
https://metlin.scripps.edu/
www.majorbio.com
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Table 1. Cont.

Properties I101 84K Q1 Q2 Q3 Q4 Q5 F p

AP (mg kg−1) 12.9 ± 0.8 b 14.25 ± 0.53 a 13.99 ± 1.85 a 13.21 ± 0.93 ab 12.21 ± 1.23 b 12.16 ± 0.59 b 13.45 ± 0.66 ab 3.138 0.017
C–N 3.60 ± 1.66 d 5.64 ± 1.75 bc 7.43 ± 1.1 a 7.11 ± 1.02 ab 4.82 ± 1.12 cd 4.23 ± 0.21 cd 5.33 ± 1.64 cd 5.731 <0.001
C–P 4.57 ± 1.55 c 6.03 ± 1.36 bc 7.13 ± 1.69 b 9.50 ± 1.70 a 8.11 ± 0.82 ab 7.73 ± 0.83 ab 7.46 ± 2.45 ab 4.713 0.002
N–P 1.32 ± 0.24 1.11 ± 0.24 0.99 ± 0.32 1.35 ± 0.23 1.73 ± 0.26 1.83 ± 0.18 1.39 ± 0.11 8.485 <0.001

Values are the means ± standard deviation (n = 5); different letters indicate a significant difference (p < 0.05) based
on a one-way ANOVA followed by an LSD test.

3.2. Rhizosphere Microbial Community Composition and Diversity

After quality filtering, assembly and annotation, the high-quality sequences were clus-
tered into 5 domains, 11 kingdoms, 217 phyla, 1384 families, 4336 genera and 27,323 species.
The microbial community compositions were dominated by bacteria (98.31%), archaea
(1.48%) and fungi (0.02%) at the kingdom level. The archaeal community was dominated
by Thaumarchaeota and Euryarchaeota, which showed no differences in abundance among
the varieties (Figure 1a). The bacterial community was dominated by Actinobacteria, Pro-
teobacteria, Acidobacteria, Chloroflexi, Candidatus_Rokubacteria and Gemmatimonadetes,
the abundance of which significantly differed among the varieties. The fungal community
was dominated by Mucoromycota, Ascomycota and Basidiomycota, the abundance of
which showed no differences among the varieties. The archaeal and bacterial Chao1 indices
significantly differed among the varieties, with lower values in Q4. Only the bacterial
Shannon–Wiener index significantly differed, with lower values in Q3 and Q4 (Figure 1b).
NMDS was used to identify rhizosphere microbial community β-diversity at the species
level. The archaeal (stress = 0.027), bacterial (stress = 0.121) and fungal (stress = 0.095)
community compositions significantly varied among varieties (Figure 1c).
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Figure 1. Comparison of metagenomic sequencing data from the rhizosphere soils of different poplar
varieties. (a) Relative abundance of dominant microbial phyla; ** (p < 0.01) and * (p < 0.05) indicate
significant differences based on a one-way ANOVA followed by an LSD test; NS: not significant.
(b) Variations in bacterial, archaeal and fungal α-diversity (Shannon–Wiener and Chao1 indices);
Different letters indicate a significant difference (p < 0.05) based on a one-way ANOVA followed
by an LSD test. (c) Microbial β-diversity was analyzed using nonmetric multidimensional scaling
(NMDS) based on Bray–Curtis distances.
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A linear discriminant analysis effect size (LEfSe) analysis was used to identify the
differences in microbes from the phylum level to the species level and microbial clades
were identified based on linear discriminant analysis (LDA) scores. In total, 51 archaeal
clades were selected based on LDA scores > 2.5 and p < 0.05, and Nitrosopumilales_archaeon
(LDA scores > 2 and relative abundance > 1%) was enriched in Q3 (Figure 2a). A total of
296 bacterial clades were selected based on LDA scores > 2.5 and p < 0.05, and 5 bacterial
species (LDA scores > 3 and relative abundance > 0.1%) were enriched in Q5 (Figure 2b).
A total of 48 fungal clades were selected based on LDA scores > 2.5 and p < 0.05, and
Rhizopus_arrhizus, Mucor_ambiguus and Coccidioides_immitis (LDA scores > 2.5 and relative
abundance > 1%) were enriched in I101, 84K and Q3 at the species level, respectively
(Figure 2c).
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Figure 2. Linear discriminant analysis effect size (LEfSe) analysis of archaeal (a), bacterial (b) and
fungal (c) communities among hybrid parents and offspring. Linear discriminant analysis (LDA) was
used to identify the variations in species among the poplar varieties. Differently colored nodes in
the figure indicate significant enrichment in the corresponding variety and yellow nodes indicate no
significant difference among varieties.
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3.3. Rhizosphere Microbial Community Structure and Function

Multiple network topological metrics consistently showed that the rhizosphere mi-
crobial co-occurrence patterns markedly differed between the hybrid parents and their
offspring (Figure 3 and Table 2). The most complex and simplest co-occurrence networks
were observed in I101 and 84K based on the values of the edge and the edge-to-node ratio,
respectively. The co-occurrence networks showed a modular structure with modularity
values > 0.5 for all varieties (Table 2). The percentages of positive correlations between
nodes were greater than 80% in I101, Q2 and Q3 and less than 70% in 84K, Q1, Q4 and Q5.
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Edges 24,351 10,842 20,896 18,523 18,981 18,584 17,270

Edges/nodes 21.66 9.82 18.91 16.63 17.81 17.99 15.26
Modules 19 19 26 22 23 19 31

Modularity 0.86 0.84 0.82 0.87 0.86 0.82 0.89
Transitivity 0.95 0.74 0.96 0.93 0.92 0.97 0.94

Density 0.039 0.018 0.034 0.030 0.033 0.035 0.027
Diameter 27.29 30.25 25.34 25.34 27.29 21.44 35.08

Positive correlation (%) 86.44 61.67 69.77 87.34 83.31 74.74 68.91
Negative correlation (%) 13.56 38.33 30.23 12.66 16.69 25.26 31.09

We analyzed the similarity of the top 50 microbial functional groups based on KEGG
pathway level 3 using a heatmap analysis and hierarchical cluster analysis (Figure 4a).
The five most abundant KEGG pathways were metabolic pathways, biosynthesis of sec-
ondary metabolites, microbial metabolism in diverse environments, carbon metabolism
and biosynthesis of amino acids. Poplar varieties were clustered into three groups, i.e., I101
and 84K; Q2 and Q4; and Q1, Q3 and Q5 (Figure 4a). We analyzed the enrichment of KEGG
pathway level 3 among the clustered groups and the top 20 pathways with reporter score
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values > 1.65 were listed. Compared with those in the group of hybrid parents (I101 and
84K), 12 pathways were enriched in the clustered groups of Q2 and Q4 and the clustered
groups of Q1, Q3 and Q5, respectively. (Figure 4b).
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Furthermore, we analyzed the differences and co-occurrence networks of microbial
functional genes associated with the N and P cycles. Higher network edge values of N
cycles were observed in Q3 and Q5, and the functional gene abundance of nitrification
significantly differed among varieties, with the highest value in Q3 (Figure 5a,b). Similarly,
higher network edge values of P cycles were observed in Q4 and Q5, and the abundance
of functional genes related to organic P mineralization significantly differed among the
varieties, with the highest value occurring in Q4 (Figure 5c,d).
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3.4. Rhizosphere Untargeted Metabolomics

A total of 1208 individual metabolites were detected and then classified based on the
KEGG database. We analyzed the similarity of the top 50 metabolites based on the relative
transcript level using a heatmap analysis and hierarchical cluster analysis. Similar to the
microbial functional gene clustering results, the poplar varieties were clustered into three
groups, i.e., I101 and 84K; Q2 and Q4; and Q1, Q3 and Q5 (Figure 6a). Compared with
those in the hybrid parents (I101 and 84K), the levels of 162 and 189 metabolites increased
and decreased, respectively, in the group of Q1, Q3 and Q5, and those with 298 and 201
metabolites increased and decreased, respectively, in the group of Q2 and Q4. Compared
with those in the group of Q2 and Q4, the levels of 50 and 270 metabolites significantly
increased and decreased in the group of Q1, Q3 and Q5, respectively (Figure 6b).

In this study, 146 phytochemical compounds were selected from the poplar varieties.
Compared with those in the group of hybrid parents (I101 and 84K), the levels of pha-
seic acid, vulgarin, gibberellin A8, gibberellin A14, 3-indoleacetic acid and isocolumbin
increased and niacinamide and gibberellin A24 decreased in the group of Q1, Q3 and Q5,
respectively (Figure 7a). Compared with those in the hybrid parents (I101 and 84K), the
levels of vulgarin, fraxetin and fusaric acid increased and gibberellin A4, gibberellin A24
and niacinamide decreased in the group of Q2 and Q4, respectively (Figure 7b). Compared
with those in the group of Q2 and Q4, the levels of helenalin, fusaric acid, fraxetin, tectori-
genin and cucurbitacin D decreased and gibberellin A4 and cyclokievitone increased in the
group of Q1, Q3 and Q5, respectively (Figure 7c). In total, 9 KEGG pathways associated
with phytochemical compounds were enriched and the enrichment ratios of pathways ≥ 1
were monoterpenoid biosynthesis and flavone and flavonol biosynthesis (Figure 7d).
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Enrichment analysis of KEGG pathways associated with phytochemical compounds among poplar
varieties (d). *** (p < 0.001), ** (p < 0.01) and * (p < 0.05).
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3.5. Effects of Soil Nutrients and Metabolites on the Microbial Community

Multiple regression was used to estimate the relationships between soil nutrients
and the dominant phyla. Soil nutrients explained more than 30% of the variation in the
phyla Candidatus_Rokubacteria and Basidiomycota and were significantly correlated with
the dominant microbial phyla, excluding Proteobacteria and Acidobacteria (Figure 8a).
The major bacterial and archaeal phyla were significantly correlated with soil AP. The
Shannon–Wiener and Chao1 indices of the bacterial and fungal communities were sensitive
to changes in the TN and N–P ratios. RDA was used to explore the effects of soil nutrients
and 15 phytochemical compounds with significant difference in the microbial community
composition at the species level. Soil nutrients explained only 8.48%, 5.53% and 6.11% of the
total variation in the bacterial, archaeal and fungal community compositions, respectively
(Figure 8b). The 15 phytochemical compounds explained 18.24%, 7.15% and 6.68% of the
total variation in the bacterial, archaeal and fungal community compositions, respectively
(Figure 8c). The correlation between metabolites and microbial community composition
was estimated by a Procrustes analysis. The effects of rhizosphere metabolites on the
bacterial community composition were significant (M2 = 0.85; p = 0.01), but those on the
archaeal (M2 = 0.94; p = 0.24) and fungal (M2 = 0.94; p = 0.23) communities were not
significant (Figure 8d).
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Figure 8. Effects of soil nutrients, phytochemical compounds and metabolites on microbial com-
munity composition. Effects of soil nutrients on microbial dominant phyla based on a multiple
regression model (a). RDA was used to explore the influence of soil nutrients (b) and phyto-
chemical compounds (c) on rhizosphere archaeal, bacterial and fungal community compositions.
Relationships between metabolites and microbiomes were determined using a Procrustes analysis (d).
*** (p < 0.001), ** (p < 0.01) and * (p < 0.05).
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4. Discussion

The rhizosphere microbiome is recognized as an extension of the plant root phenotype
and plays key roles in plant adaptations to changes in the internal and external environ-
ment [4,6]. Various studies have reported that the rhizosphere microbiome can directly
impact plant functional traits and economic strategies [5,33]. In contrast, plants have a
decisive effect on rhizosphere microbiomes and can recruit specific microorganisms by
releasing root exudates [5,14,15,34,35]. Therefore, improving ecological plant–microbiome
interactions has become a new avenue for plant breeding [2]. The effects of breeding
selection on the rhizosphere microbiome of offspring have been mostly studied in crop
breeding and studies on woody plants are limited [8].

The same ecological site and forest management measures ensured that variations
in rhizosphere microbiomes were mainly driven by the breeding of poplar hybrids. Rhi-
zosphere soil microbiomes and metabolites differed between hybrid parents and their
offspring, indicating that microbial functional genes and metabolites were both clustered
into the following three groups: I101 and 84K; Q2 and Q4; and Q1, Q3 and Q5. These
findings confirmed the key controls of rhizosphere metabolites on the microbiome. The
observation that the Q1, Q3 and Q5 group was separated from the Q2 and Q4 group
supported the important effect of intraspecific genotypic variations on the phylogenetic
composition of rhizosphere microbial communities [16]. At least a part of the variations in
the rhizosphere microbial community compositions among hybrid parents and offspring
may be caused by plant-associated microorganisms, which can be selected by the plant
genotype [2,8,36,37].

Breeders reported that breeding selection imposes differential selective pressure on
the plant-root-associated microbiome [8]. Although the rhizosphere microbial β-diversity
significantly differed among the parents and offspring, only bacterial Chao1 and the
Shannon–Wiener indices significantly differed. The dominant archaeal and fungal phyla
showed no difference among the parents and offspring, but the dominant bacterial phyla
significantly differed. In combination with the finding that 5.49%, 14.90% and 7.86% of
archaeal, bacterial and fungal community compositions significantly differed among the
varieties, respectively, on the basis of the LEfSe analysis, we suggest that breed selection
imposes greater selective pressure on the rhizosphere bacterial community.

Soil microorganisms can form complex interaction networks based on niche spaces
shared and competed for by microbial community members [38]. The edge-to-node ratio
can reflect the closeness of the connections between microorganisms in the microbial
network and the percentage of positive and negative correlations in the network can reflect
resource-sharing and competition [18]. The edge-to-node ratios and positive-to-negative
ratios of the microbial networks for the hybrid offspring were between those of the parents.
This finding suggests that the complexities of rhizosphere microbial co-occurrence networks
in offspring are likely to be affected by their parents.

Untargeted metabolomics allows us to identify the compounds that are secreted by
roots and microbiomes in the rhizosphere [17]. Recent studies have reported that untargeted
metabolomics can be used to assess changes in microbial function and drive rhizosphere
microbial community assembly [39,40]. When all of the rhizosphere metabolites were
considered, approximately 26.49~41.31% of the total metabolites differed among three
clustered groups and those differentially abundance metabolites may have acted as nutrient
sources and signals to recruit specific rhizosphere microflora [5,15]. The high levels and
different types of carbon sources in the rhizosphere metabolites acted as chemoattractants
that directly affected the bacterial community composition (Fig. 8d), resulting in significant
difference in dominant bacterial phyla among parents and offspring. Furthermore, the huge
influence of rhizosphere metabolites on dominant bacterial flora can help us to understand
the variations in bacterial β-diversity (stress=0.121 > 0.1) among the parents and offspring.

Interactions between plant and rhizosphere microbiomes are mostly achieved via root
exudates, which contain an array of primary and secondary plant metabolites and are
mainly influenced by interactions between the substrate and the plant genotype [10,17,41].
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Plants can regulate rhizosphere microbiomes by providing an energy-rich environment and
producing a wide variety of signals [11]. We analyzed the differences in the VIP scores of
phytochemical compounds to explore the effects of plant genotypes on the plant metabolites.
3-indoleacetic acid, gibberellin and phaseic acid, which are associated with plant growth
and resistance, were enriched in the Q1, Q3 and Q5 group. Fraxetin, associated with Fe
(III) mobilization, was enriched in the Q2 and Q4 group compared with the hybrid parent
group. These phytochemical compounds, which significantly differ among poplar varieties,
explained 7.15%, 18.24% and 6.68% of the total variation in the archaeal, bacterial and
fungal community compositions, suggesting that plant metabolites exert key control over
the rhizosphere microbial community composition [10].

Microbial functional genes in the rhizosphere are determined mainly by trophic rela-
tionships and interactions between microbiomes and plants [42]. Terpenoids and flavonoids
play important role in plant growth and defense as well as the interaction of plants with
their environment [43,44]. The KEGG pathways of monoterpenoid biosynthesis, diter-
penoid biosynthesis, isoflavonoid biosynthesis and flavone and flavonol biosynthesis were
enriched based on the analysis of phytochemical compounds (Figure 7d). Compared
with the microbial functional genes in the hybrid parent group, the KEGG pathways as-
sociated with the citrate cycle, carbon metabolism, propanoate metabolism and pyruvate
metabolism were enriched in the Q1, Q3 and Q5 group and the pathways of phospho-
nate and phosphinate metabolism, pentose phosphate pathway and lipopolysaccharide
biosynthesis were enriched in the Q2 and Q4 group. The mechanism of the variations in the
enriched pathways of microbial functional genes between two offspring groups is highly
complex and enriched phytochemical compounds may play important roles in regulating
rhizosphere microbial functional groups [2,8,37].

Rhizosphere microbiomes can modulate key steps in nutrient cycles. leading to in-
traspecific variations in the plant nutrient status [16]. In this study, we focused on the
analysis of functional genes involved in the N and P cycles, which play key roles in
plant economic strategies [5]. The complexity of the networks in the N-related functional
genes varied among the hybrid offspring and the most simple and complex networks
were observed in the Q1 and Q3 groups, respectively. This finding could be partly ex-
plained by the variations in root exudates, which may have enhanced the mobilization
and solubilization of mineral-associated organic matter and subsequently affected nitrogen
availability [10,45]. Only nitrification- and organic-P-mineralization-related functional
genes significantly differed among the hybrid parents and offspring, suggesting that the
variations in microbial functional groups associated with N and P cycles were dominated
by several key functional genes.

Although strong correlations between dominant microbial phyla and soil nutrients
were observed, soil nutrients explained limited variations in the archaeal (5.53%), bacterial
(8.48%) and fungal (6.11%) community compositions at the species level. The first two
RDA axes of the bacterial, archaeal and fungal communities were associated with AP,
confirming the important control effects of phosphorus availability on the rhizosphere
microbial community [46]. Similarly, soil nutrients explained 4.93%, 8.5% and 5.05% of the
total variation in C, N and P functional genes, respectively. These observations confirmed
that rhizosphere metabolites associated with plant genotype, rather than soil nutrients,
drive changes in rhizosphere microbiomes under the same ecological conditions.

5. Conclusions

Rhizosphere soil microbial community compositions, structure and function signif-
icantly differed among poplar hybrid parents and offspring. Breed selection imposed
greater selection pressure on the poplar rhizosphere bacterial community than on archaeal
and fungal communities. Rhizosphere microbial functional genes were clustered into three
groups; this was consistent with the metabolomic classification. The effects of metabolites
on rhizosphere archaeal and fungal community compositions were not significant and
the variations in bacterial community composition were mainly driven by metabolites.
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Phytochemical compounds played important roles in regulating rhizosphere bacterial com-
munity compositions. Variations in microbial functional groups associated with N and P
cycles were dominated by several key functional genes.
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