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Abstract: Skin aging involves biomechanical changes like decreased elasticity, increased wrinkle
formation, and altered barrier function. The skin microbiome significantly impacts this process.
Here, we investigated the effects of decreased Cutibacterium acnes abundance and increase in other
skin microorganisms on skin biomechanical properties in 60 healthy Koreans from Seoul, divided
into younger (2029 years) and older (60-75 years) groups. Metagenomic sequencing and skin
assessments showed that the older group exhibited decreased C. acnes dominance and increased
microbial diversity, correlating with reduced skin elasticity and increased wrinkles. In the younger
age group, the enriched pathways included zeatin biosynthesis, distinct biotin metabolism pathways,
and cofactor and vitamin metabolism in the younger age group, whereas pathways related to lipid
metabolism, energy metabolism, and responses to environmental stressors, including UV damage and
pollution, were enriched in the older group, according to functional analysis results. Network analysis
indicated higher microbial connectivity in the younger group, suggesting a more stable community,
whereas the older group’s community displayed higher modularity, indicating more independent
and specialized clusters. This study enhances our understanding of the impact of skin microbiome
changes on skin aging, particularly the anti-aging effects of C. acnes. Future research should focus on
the physiological mechanisms of skin microbiota on skin aging and explore therapeutic potentials to
enhance skin health.

Keywords: skin aging; skin microbiome; biomechanical properties; metagenomic sequencing;
microbial diversity

1. Introduction

Skin, the largest organ of the human body, acts as a dynamic interface between internal
physiology and the external environment [1]. Central to this interface is the skin micro-
biome, a diverse community of microorganisms, including fungi, bacteria, archaea, viruses,
and microscopic insects like Demodex spp., with bacteria being the most predominant [2—4].
Recent studies have highlighted that as the skin ages, microbial diversity tends to increase,
with key species such as Cutibacterium acnes and Staphylococcus undergoing significant
shifts, which in turn can affect skin barrier function and immune response, potentially
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accelerating the signs of aging [5]. The composition and function of these microbial commu-
nities are crucial for skin health, affecting local and systemic immune responses [1,5]. Skin
conditions, such as atopic dermatitis [6], dandruff [7,8], and vitiligo [9], have been linked
to the skin microbiome, and they are influenced by host-related factors such as gender
and age [10]. The skin microbiome changes in response to aging, a natural and complex
biological process affecting various body systems [5,11].

Skin aging is characterized by decreased elasticity, increased wrinkles, and altered
barrier function [11,12]. Such changes, while often cosmetic, impact overall skin health
and susceptibility to skin diseases significantly. Recently, studies investigating the impact
of aging on the skin microbiome have increased, revealing that aging is associated with
notable changes in skin microbial diversity and composition, suggesting potential links be-
tween these changes and visible signs of skin aging [5,11-14]. In addition, recent advances
suggest that the skin microbiome composition may serve as a biological clock for predicting
skin aging, providing new avenues for targeted anti-aging therapies based on microbial
communities [15]. Complex interactions between intrinsic factors (genetic factors [12,16],
DNA repair, and antioxidant capacity [5]) and extrinsic aging factors, including environ-
mental influences such as UV exposure [5,17,18] and pollution [19], are being explored. For
example, UV exposure generates reactive oxygen species (ROS) that regulate gene expres-
sion related to collagen degradation and elastin accumulation, leading to photooxidative
skin aging and skin cancer [5]. Similarly, pollution can alter the skin microbiome network,
adversely affecting skin barrier function and antioxidant capacity [19]. These factors affect
the skin’s structural integrity and influence microbial habitats, potentially impacting the
aging process [11].

Interest in the role of Cutibacterium acnes in skin aging has grown recently [20-22].
While primarily recognized for its association with acne, where it can contribute to in-
flammation and bacterial colonization [23], C. acnes also plays a multifaceted role in skin
health and aging. The balance of C. acnes within the skin microbiome changes with age,
potentially influencing skin aging. Research indicates that as C. acnes decreases in older
adults, the overall skin microbiome diversity increases [13,20,21,24]. C. acnes plays a crucial
role in skin health by secreting antimicrobial substances, immunomodulatory agents, and
short-chain fatty acids. Therefore, the age-related decline in C. acnes may reduce these
benefits, contributing to clinical and physiological signs of aged skin [13].

Most studies investigating the correlation between skin aging and microbial communi-
ties have utilized 16S rRNA amplicon sequencing [13,14,20,25-28]. However, the method is
limited to identifying taxa up to the genus level and lacks the functional gene information
necessary for understanding skin microbial community dynamics comprehensively [29,30].
In addition to 16S rRNA sequencing, fluorescence-based methods have proven crucial
in studying C. acnes, particularly in tracking its colonization and activity on the skin sur-
face [23]. Consequently, recent studies have employed whole-metagenome sequencing for
more precise data [21,24,31,32]. Nevertheless, such studies use only subjective assessment
of wrinkle grade levels when investigating the correlation between wrinkles and microbial
communities and do not include objective assessments such as wrinkle analysis of skin
replicas or elasticity [24].

The present study addresses the gaps above by employing whole-metagenome se-
quencing for species-level identification and functional profiling, alongside objective mea-
surements of skin biomechanical properties like elasticity and wrinkle formation. By
integrating both genomic and biomechanical assessments, the present study provides a
comprehensive understanding of the role of the skin bacterial community, particularly
C. acnes, in skin aging. The approach offers in-depth insights into the complex interac-
tions between the skin microbiome and aging, revealing potential pathways for anti-aging
strategies and microbiome-targeted therapies.
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2. Materials and Methods
2.1. Subject Recruitment and Sample Collection

This study examined changes in skin microbial communities with age and the correla-
tion between C. acnes and skin biomechanical properties. Sixty healthy Korean volunteers
in Seoul were recruited to participate in the present study. Participants were recruited
through poster advertisements placed in local community centers. Interested individuals
were screened via a preliminary questionnaire to ensure they met the inclusion criteria,
such as being free from chronic skin conditions and not having used steroids or antibiotics
in the past two weeks. Written informed consent was obtained from all participants prior
to enrollment. The study design and protocol were reviewed and approved by the Institu-
tional Review Board of Hangang Sacred Heart Hospital (HG2023-020). Participants were
divided into two age groups: the younger (ages 20-29, n = 30) and the older (ages 60-75,
n = 30). Menstrual cycle status was taken into account for the female participants in the
younger group. Skin sampling and biomechanical measurements were conducted during
the follicular phase (10 d after the start of menstruation) for consistency. Female partici-
pants in the older group were all postmenopausal. Estradiol levels were measured for all
participants to ensure hormonal consistency across groups, and participants with estradiol
levels outside the normal reference ranges were excluded from the study. The reference
ranges used were follicular phase (21-251 pg/mL), postmenopausal (<10-28 pg/mL), and
male (11-44 pg/mL). Exclusion criteria included steroid or antibiotic use within the past
two weeks, pregnancy or lactation, and chronic conditions such as diabetes or skin diseases
that could affect the skin environment. Participants arrived at the laboratory without
makeup or skincare products and acclimatized for 30 min under controlled conditions of
22 +2°Cand 50 £ 5% relative humidity before measurements began. For sample collec-
tion, the nasolabial fold of each participant was swabbed using sterile swabs containing
preservatives (0.1% Tween 20, 0.15 M sodium chloride, 0.1% agar), swabbing for at least
3 min. Each swab was placed in a preservative tube and immediately frozen at —80 °C
until DNA extraction.

2.2. Measurement of Skin Biomechanical Characteristics

The biomechanical characteristics were measured at the same site as the samples.
Melanin and erythema levels, sebum, pH, transepidermal water loss related to skin barrier
function, extensibility, and elasticity were measured using the E-CUBE 7® Ultrasound
Machine (Alpinion Medical Systems Co., Ltd., Anyang, Republic of Korea), Mexameter®
MX18, Tewameter® TM 300, and Cutometer SEM 5801® (all from Courage-Khazaka Elec-
tronic GmbH, Cologne, Germany). Wrinkle parameters were measured using skin replica
analysis. A skin replica of the target area (at least 10 mm x 10 mm) was created and
analyzed with the Skin-Visioline VL 650® (Courage-Khazaka Electronic GmbH, Cologne,
Germany). All equipment was used according to the manufacturers’ instructions.

2.3. DNA Extraction and Metagenomic Sequencing

Genomic DNA was extracted from swab samples using the DNeasy PowerSoil Pro Kit
(Qiagen, Hilden, Germany), with modifications, to enhance DNA yield and purity [33]. To
achieve the necessary yield for DNA library preparation, multiple displacement amplifica-
tion was performed using the REPLI-g Single Cell Kit (QIAGEN, Hilden, Germany) [34].
The quantity and quality of the amplified DNA were assessed using the Qubit® 2.0 Flu-
orometer (Life Technologies, Carlsbad, CA, USA) and the NanoDrop 2000/2000c Spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, USA) to ensure suitability for
high-throughput sequencing. The MGIEasy FS DNA Library Prep Set and the DNBSEQ-
G400RS High-throughput Rapid Sequencing Set (FCS PE100) (MGI, Shenzhen, China) were
used for DNA library preparation. The quality of the prepared libraries was evaluated
using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The
paired-end libraries were sequenced on the DNBSEQ-G400RS platform (MGI, Shenzhen,



Microorganisms 2024, 12, 2179

4of 16

China) at KNU NGS Core Facility (Daegu, South Korea), targeting 12.5 million reads per
sample, each with a read length of 100 base pairs.

2.4. Taxonomic and Functional Profiling

The raw sequence reads with low quality or <50 bp were trimmed using SOAPnuke
(v2.1.8) [35], and host reads were removed by mapping to GRCh38 using Bowtie2 (v2.5.1) [36].
Taxonomic classification of clean reads was conducted using Kraken?2 (v2.1.3) [37] and Bracken
(v2.9) [38]. The clean reads were also mapped against the UniRef90 database using HUMAnN
3.0 (v3.8) [39] to identify gene families, which were then re-grouped based on the Kyoto
Encyclopedia of Genes and Genomes database for pathway profiling.

2.5. Statistical Analysis

All analyses and visualizations were conducted using R software (version 4.3.3). Alpha
diversity (Chaol, Shannon, and direct Simpson indices) and Bray—Curtis distance were
calculated using the ‘microeco’ package (v1.3.0) [40]. The Wilcoxon rank-sum test, a non-
parametric test that does not assume a normal distribution, was used to compare statistical
significance between groups. The test was selected because the data did not meet the
assumptions of normality, making it a more appropriate method for comparing the two
age groups. Beta diversity was assessed based on the Bray—Curtis dissimilarity index, with
principal coordinate analysis performed to visualize differences in microbial community
composition between groups, using the ‘microeco” package. The original Bray—Curtis
dissimilarity index was introduced by Bray and Curtis [41]. Permutational multivariate
analysis of variance with 999 permutations was undertaken to statistically compare the
compositions. Differential expression of taxa across groups was identified using linear
discriminant analysis effect size with the ‘microeco’ package. Linear regression analysis was
performed using the ‘ggpubr’ package (v0.6.0) [42] to evaluate the relationship between
C. acnes abundance and skin biophysical parameters. Spearman’s correlation analyses were
conducted using the ‘corrplot’ package (v0.92) [43] to examine the relationships between
differentially expressed taxa and skin biophysical parameters and between differentially
expressed taxa and KEGG pathways. Procrustes analysis was performed to compare the
taxonomic and functional data using the ‘vegan’ package (v2.6-4) [44]. To analyze the
co-occurrence network encompassing bacterial species and functional pathways, a filtering
criterion of species and pathway prevalence >80% and an abundance >0.01% in each group
was applied. Correlation network analysis was conducted using the igraph (v1.5.1) R
package. Significant correlations were determined using Spearman’s correlation coefficient
(g <0.05, Irl >0.80). The topological properties, including clustering coefficients, density,
and modularity, were estimated using the functions transitivity(), edge_density(), and
modularity() in the igraph R package [45].

3. Results
3.1. Study Population

To investigate whether age-related changes in C. acnes within the skin microbiome
affect skin biomechanical properties, 60 healthy Koreans were recruited and divided into
two age groups. The biomechanical characteristics of the nasolabial fold, including melanin,
erythema levels, sebum, pH, transepidermal water loss, extensibility, and elasticity, were
measured. The results showed significantly higher transepidermal water loss and greater
mean depth, length, and area of wrinkles in the older group compared to in the younger
group (p = 0.032, p < 0.001, p < 0.001, and p < 0.001, respectively). Skin elasticity measures,
including final distensibility (p = 0.013), gross (p < 0.001), net (p < 0.001), and biological
elasticities (p < 0.001), were significantly lower in the older group. However, viscoelasticity
was significantly higher in the older individuals (p = 0.011) (Table 1). No significant
differences were observed in pH, sebum, melanin, and erythema between the two groups.
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Table 1. Participant characteristics for age-related study of skin bacterial communities.
Group
Variables p-Value
Older (1 = 30) Younger (1 = 30)
Age, years 64.53 £+ 4.51 24.83 +3.22 <0.001
Male 15 (50.00%) 15 (50.00%)
Sex Female 15 (50.00%) 15 (50.00%) >0.999
TEWL, g/m?/h 17.35 £ 4.25 15.31 £ 2.78 0.032
pH 5.30 £ 0.65 5.39 £.075 0.630
Sebum, ug sebum/cm? 53.80 + 34.31 75.47 4+ 50.87 0.058
Melanin, AU 159.00 £ 47.18 178.20 £+ 37.10 0.085
Erythema, AU 261.20 4 78.73 284.20 + 66.41 0.227
Average depth of wrinkles, mm 240.50 + 60.86 153.70 + 34.34 <0.001
Average length of wrinkles, mm 1.54 + 0.30 0.92 +0.24 <0.001
Average area of wrinkles, mm 0.46 & 0.25 0.11 & 0.08 <0.001
Final distensibility (R0), mm 0.11 £ 0.03 0.13 £ 0.03 0.013
Gross elasticity (R2), % 49.30 £7.85 67.85 + 6.13 <0.001
Net elasticity (R5), % 33.44 +7.82 52.48 + 10.57 <0.001
Viscoelasticity (R6), % 1255 £7.23 8.16 £ 5.67 0.011
Biological elasticity (R7), % 29.61 + 6.20 48.60 + 9.75 <0.001

Data are expressed as mean + standard deviation or n (percentage). The p-value was obtained using the
Wilcoxon rank-sum test for continuous variables. Statistical significance was set at p < 0.05. Abbreviations: TEWL,
transepidermal water loss; AU, arbitrary unit.

3.2. Age-Related Decline in C. acnes Dominance and Its Impact on Skin Bacterial Diversity

We identified 109 species-level taxa with an average relative abundance of >0.01%
across all skin microbiome communities. Among these taxa, three were considered core,
accounting for approximately 83% of the average reads. In the older group, C. acnes had
an average relative abundance of 60.55 + 35.68%, whereas in the younger group, it was
83.14 & 22.18%, indicating significantly higher dominance in the younger group (p = 0.007)
(Figure 1a,b).

The reduced C. acnes dominance in the older group led to higher abundance and
diversity of typical skin commensals, resulting in greater bacterial diversity (Figure 1c—e).
The Chaol index, estimating species richness, was 78 & 19 for the older group and 58 + 20
for the younger group (p < 0.001). Similarly, the Shannon index, measuring species diversity,
was 1.29 & 0.99 for the older group and 0.52 & 0.57 for the younger group (p < 0.001). The
Simpson index, focusing on evenness, was 0.44 & 0.29 for the older group and 0.22 & 0.22
for the younger group (p < 0.001). The results suggest a more diverse and evenly distributed
bacterial community in the older group.

Principal coordinate analysis using Bray—Curtis distances clearly separated the two
groups (p = 0.002) (Figure 1f). The intra-group sample distance was greater in the older
group (0.74 £ 0.26) due to decreased C. acnes dominance and increased presence of other
skin commensals, compared to the younger group (0.42 £ 0.27) (Figure 1g).

In-depth analysis using the linear discriminant analysis effect size tool revealed that
only C. acnes was a biomarker in the younger group, while 22 diverse species, includ-
ing Streptococcus salivarius and Staphylococcus aureus, were biomarkers in the older group
(Figure 1h). The results indicate that C. acnes dominance decreases with age, leading to an
increase in the variety of other skin bacterial communities (Figure 1h).
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Figure 1. Age-related differences in diversity and dominance of the skin bacterial community.
(a) Relative abundance of bacterial species in older and younger groups. The color-coded bars repre-
sent specific bacterial species. (b) Relative abundance of Cutibacterium acnes in older and younger
groups. (c) Chaol diversity index comparison between older and younger groups. (d) Shannon diver-
sity index comparison between older and younger groups. (e) Simpson diversity index comparison
between older and younger groups. (f) Principal coordinate analysis (PCoA) plot based on Bray-
Curtis distances, illustrating the separation of bacterial communities between the older and younger
groups. (g) Bray—Curtis distances within the older group and within the younger group, respectively,
illustrating intra-group microbial community differences. (h) Linear discriminant analysis effect size
identifying significant bacterial biomarkers in older and younger groups. Stars denote the level of
significance (unpaired t-test; ** p-value < 0.01; *** p-value < 0.001).
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3.3. Correlation Analysis Between Group-Specific Biomarker Bacterial Taxa and Skin
Biomechanical Characteristics

We observed that the dominance of C. acnes decreases with aging, leading to changes
in the skin bacterial community composition. The changes were correlated with skin
biomechanical properties. C. acnes was positively correlated with gross (r = 0.408, p = 0.001),
net (r = 0.397, p = 0.002), and biological elasticities (r = 0.406, p = 0.001). However, it was
negatively correlated with wrinkle area (r = —0.366, p = 0.004), depth (r = —0.264, p = 0.041),
and length (r = —0.381, p = 0.003) (Figure 2). The results suggest that C. acnes maintains
skin elasticity, inhibiting wrinkle formation. However, other participant characteristics,
such as TEWL, pH, sebum levels, melanin, erythema, final distensibility, and viscoelasticity,
did not exhibit significant correlations with C. acnes (Table S1).
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Figure 2. Regression plot for skin biomechanical properties significantly correlated with Cutibacterium
acnes. Correlation between C. acnes abundance and (a) gross elasticity, (b) net elasticity, (c) biological
elasticity, (d) average wrinkle area, (e) average wrinkle depth, and (f) average wrinkle length.

Figure 3 presents a heatmap showing the correlations between the 22 biomarkers in the
older group and skin biomechanical properties. It reveals significant negative correlations
with gross elasticity, with Staphylococcus aureus showing the highest correlation (r = —0.264,
p = 0.041). Net elasticity exhibited significant negative correlations with 20 species, exclud-
ing Staphylococcus lugdunensis and Streptococcus pneumoniae. Biological elasticity exhibited
significant negative correlations with 21 species, excluding Streptococcus pneumoniae.
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Figure 3. Correlation heatmap of skin biomechanical properties and biomarkers in older individuals.
Heatmap of correlations between skin biomechanical properties and biomarkers in the older group.
Heatmap illustrating the correlations between the 22 biomarkers identified in the older group and
various skin biomechanical properties, including gross, net, and biological elasticities, average
wrinkle area, depth, and length. Each cell in the heatmap represents the strength and direction of
the correlation, with significant positive correlations in blue and significant negative correlations in
red. The biomarkers include species such as Staphylococcus aureus, Staphylococcus haemolyticus, and
Rhizobium pusense (* p < 0.05, ** p < 0.01, ** p < 0.001).

Staphylococcus haemolyticus, Staphylococcus saprophyticus, Staphylococcus lugdunensis,
Staphylococcus warneri, Corynebacterium macginleyi, Staphylococcus pasteuri, Rhizobium pusense,
Staphylococcus hominis, Streptococcus gordonii, Staphylococcus capitis, Streptococcus salivarius,
and Staphylococcus aureus all exhibited significant positive correlations with wrinkle depth,
length, and area.

3.4. Correlation Analysis Between Group-Specific Bacterial Taxa and Potential Functions

To understand how the differences in bacterial taxa identified as biomarkers in each
group reflect functional potential differences, we analyzed their functional profiles. The
taxonomic composition and functional pathways were consistent among participants within
each group (Figure 4a), suggesting that samples with similar taxonomic compositions tend
to be functionally identical. Additionally, the functional profiles of the two groups showed
distinct differences, similar to their taxonomic profiles (Figure 4b).

In the older age group, functions such as energy metabolism, lipid metabolism,
photosynthesis, organismal systems, fructose, mannose, phosphonate and phosphinate
metabolism, cell motility, RNA polymerase, and aminobenzoate degradation were more
abundant than in the younger group. Conversely, the younger group was characterized by
functions such as zeatin biosynthesis, biotin metabolism, pantothenate and CoA biosynthe-
sis, lipoic acid metabolism, and the metabolism of cofactors and vitamins (Figure 4c).

Correlation analysis between bacterial taxa identified as biomarkers and potential
functions in each group showed contrasting results between C. acnes, a biomarker in
the younger group, and the biomarkers in the older group (Figure 5). C. acnes showed
significant positive correlations with 5 of 13 functional profiles. Among these, zeatin
biosynthesis (r = 0.790, false discovery rate [FDR]-adjusted p < 0.001) had the strongest
positive correlation, followed by biotin metabolism (r = 0.754, FDR-adjusted p < 0.001) and
metabolism of cofactors and vitamins (r = 0.732, FDR-adjusted p < 0.001).
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Figure 4. Differences in functional profiles between age groups. (a) Procrustes analysis showing
congruence between the taxonomic and functional compositions of the microbiome. The statisti-
cally significant Pearson correlation indicates that microbiomes had similar taxonomic composition
and functions. (b) PCoA based on functional profiles, illustrating distinct differences between the
younger and older groups. (c) Linear discriminant analysis scores of functional pathways enriched in

each group.
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Figure 5. Heatmap of correlations between functional profiles and biomarkers. This heatmap
illustrates the correlations between the identified microbial biomarkers and various functional
profiles. Positive correlations are shown in red, indicating that an increase in microbial abundance
is associated with an increase in the specific functional profile. Negative correlations are shown in
blue, indicating that an increase in microbial abundance is associated with a decrease in the specific
functional profile. Significance levels are indicated by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001).

Functional profiles that showed positive correlations with C. acnes had no positive
correlations with the 22 biomarkers of the older group; rather, most showed significant
negative correlations. Additionally, C. acnes showed significant negative correlations with
eight functional profiles, with lipid metabolism showing the strongest negative correlation
(r = —0.677, FDR-adjusted p < 0.001). All 22 biomarkers of the older group showed positive
correlations with this functional profile. These results suggest that decreased C. acnes
dominance significantly impacts the microbial community’s functional capabilities.

3.5. Network Analysis of Ecological Relationships Between C. acnes and Metabolic Characteristics

We conducted a network analysis integrating taxonomic and functional data to ex-
plore the ecological relationships between C. acnes and metabolic characteristics (Figure 6).
Significant correlations were identified, and network properties such as clustering, density,
and modularity were analyzed. In the older group, only ‘other glycan degradation” was
positively correlated with C. acnes, while several pathways, including ‘mismatch repair’
and ‘Staphylococcus aureus infection’, showed negative correlations. In the younger group,
positive correlations were observed with ‘pentose and glucuronate interconversions” and
‘zeatin biosynthesis,” while negative correlations included ‘Staphylococcus aureus infection’
and ‘fatty acid biosynthesis’. Notably, only ‘Staphylococcus aureus infection” was correlated
with C. acnes in both age groups. The results suggest that changes in microbial commu-
nity composition can alter microbial roles, indicating functional shifts across different
age groups.
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Figure 6. Co-occurrence network analysis of taxonomic and functional profiles in older and younger
groups focusing on C. acnes. This figure illustrates the co-occurrence networks of bacterial species and
functional pathways in older (left panel) and younger (right panel) groups. Each panel contains two
circles: the left circle represents the taxonomic profile, and the right circle represents the functional
profile. The size of each node corresponds to its abundance, while the color of the edges indicates the
type of correlation—blue for positive correlations and red for negative correlations.

Additionally, network characteristics revealed structural differences between the
groups. The older group had a clustering coefficient of 0.510, network density of 0.050, and
modularity of 0.755, while the younger group had a clustering coefficient of 0.622, network
density of 0.086, and modularity of 0.629. The higher clustering coefficient and density
in the younger group indicate a more connected and interactive microbial ecosystem.
Conversely, higher modularity in the older group suggests a compartmentalized network
with distinct functional units, indicating more specialized functions. These structural
differences highlight how microbial roles evolve with age, potentially impacting overall
microbial community function and skin health across different age groups.

4. Discussion

The skin microbiome plays a crucial role in skin health, prompting many studies on
its relationship with various skin diseases [46]. As skin microbial communities change
with disease and aging, research aimed at understanding these changes has also increased.
While previous studies primarily used 16S rRNA sequencing [5,13,14,20,25-28], whole-
genome sequencing techniques have enabled a better understanding of microbial structure
and functional potential at the species level [20,24,31,32]. However, understanding the skin
microbiome in the context of aging, particularly regarding the correlation between skin
aging-related biomechanical properties and the skin microbiome, is limited. Our study
focuses on the role of C. acnes on changes in the biomechanical properties of the skin with
aging and reveals age-related changes in the skin microbiome. These findings contribute
to the existing literature on the skin microbiome’s impact on skin health and provide new
insights into the complex interactions between the microbiome and skin aging.

The present study found that higher alpha diversity index values indicated greater
species richness and diversity in the older group, consistent with previous
findings [13,14,20,21,24,25,28]. A decrease in C. acnes was observed in the older group,
consistent with previous studies [13,20,21,24,31,32]. These diversity changes are likely
related to the reduction in C. acnes with aging. Linear discriminant analysis effect size
revealed that C. acnes was the sole biomarker in the younger group, while 22 different
microbial species were identified as biomarkers in the older group. C. acnes produces the
antibiotic cutimycin and short-chain fatty acids, inhibiting biofilm formation [47,48]. Thus,
its decrease with aging may allow for an increase in other microbes, resulting in higher
alpha diversity.
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Our analysis revealed significant correlations between C. acnes abundance and various
skin biomechanical properties. C. acnes was positively correlated with skin elasticity and
negatively correlated with wrinkle formation (Figure 2), suggesting a protective role in
maintaining skin structure. C. acnes produces short-chain fatty acids that boost essential
lipids, contributing to skin homeostasis through antioxidant activity [49-52]. Conversely,
the 22 biomarkers identified in the older group showed opposite results to those of C. acnes
(Figure 3). Recent studies have highlighted that C. acnes supports skin health through
multiple mechanisms, including the production of short-chain fatty acids like propionic
acid [47,48], which enhances skin barrier function and exhibits anti-inflammatory prop-
erties [22,49]. C. acnes also has immunomodulatory effects that help maintain a balanced
immune response, potentially reducing inflammation-related damage associated with ag-
ing [13]. Such effects help maintain a balanced immune response, which could reduce
inflammation-related damage associated with aging. Furthermore, C. acnes has been shown
to reduce oxidative stress, a key factor in skin aging, by neutralizing reactive oxygen species,
which can otherwise cause damage to skin cells. By reducing oxidative damage, C. acnes
may protect skin cells from premature aging and maintain overall skin integrity [53]. This
combination of protective biochemical effects supports the hypothesis that C. acnes plays a
crucial role in delaying skin aging and preserving skin elasticity. In addition to age, other
factors such as lifestyle and sebum production may play a role in the correlation between
C. acnes abundance and skin mechanical properties. Previous studies have shown that
sebum levels can influence microbial diversity and C. acnes abundance significantly, with
higher sebum production potentially enhancing the protective role of C. acnes in main-
taining skin elasticity and preventing wrinkle formation [54]. Moreover, lifestyle factors,
including diet, skincare routines, and exposure to environmental stressors, are likely to
impact both the skin microbiome and biomechanical properties. Future research should
further explore the combined effects of these factors to better understand their contributions
to skin aging.

This group included various staphylococci, such as Staphylococcus aureus, which can
reduce skin elasticity by stimulating protease activity and inducing inflammation [55,56].
The results of the present study suggest that the decrease in C. acnes dominance leads to
reduced elasticity maintenance, while the proliferation of other bacteria negatively affects
elasticity, contributing to skin aging. However, the conclusions are based on correlational
data, and thus, causation cannot be definitively established. The observed negative cor-
relation between C. acnes levels and the presence of other bacteria may simply reflect the
decrease in C. acnes, allowing other bacteria to proliferate. Further research is required to
clarify the underlying causal relationships. Additionally, skin staphylococci require nutri-
ents like arginine, cysteine, methionine, valine, and aromatic amino acids for survival [57]
and break down compounds like triglycerides, diglycerides, monoglycerides, glycerol, and
cholesterol to obtain these nutrients from the skin [58]. Such activities likely contribute to
the degradation of skin biomechanical properties.

The functional profiling of microbial communities revealed distinct differences be-
tween the younger and older groups. The younger group’s microbial community was
characterized by zeatin biosynthesis, biotin metabolism, and vitamin metabolism. Zeatin
has anti-aging effects on adult skin fibroblasts in vitro [59], and biotin is essential for skin
health, with biotin deficiency leading to dermatitis and skin infections [60]. Other vitamins
also regulate various biological functions that impact skin health [61]. Conversely, the
microbial community in the older group was associated with pathways related to lipid
metabolism, energy metabolism, and responses to environmental stressors such as UV
damage and pollution.

Network analysis elucidates complex biological systems through interactions within
bacterial communities [62]. It provides insights into the ecological relationships between
C. acnes and other bacterial species. The bacterial network in the younger group exhibited
higher connectivity and interactions, suggesting a more stable and resilient community. In
contrast, the older group’s network showed higher modularity, indicating more indepen-



Microorganisms 2024, 12, 2179

13 of 16

dent and specialized communities. Network analysis highlighted differential ecological
relationships between C. acnes and various metabolic functions across age groups. Only
‘Staphylococcus aureus infection” was negatively correlated with C. acnes in both groups,
while other pathways differed. The findings suggest that aging affects correlations among
key bacterial species and their functional roles. The structural differences in these microbial
networks reflect functional changes and adaptations that could impact skin health with age.

This study offers valuable insights into the relationship between the skin bacterial
community and skin biomechanical properties. However, several limitations should be
acknowledged. First, the study was conducted on healthy Korean individuals from Seoul,
which may limit the generalizability of the results to other populations with different ethnic
backgrounds or geographic regions. The sample size of 30 participants per group may
also be insufficient to detect subtle differences. Future research should include a larger,
more diverse participant pool to enhance the generalizability of the findings. Second, the
focus of this study was on the bacterial component of skin bacterial communities, without
accounting for eukaryotic members, such as Malassezia spp., which play critical roles in
skin health and disease [23,63]. Future research should include both bacterial and eukary-
otic microorganisms for a more comprehensive understanding of how various microbial
communities influence skin biomechanical properties. Third, factors such as diet, cosmetic
use, and geographic variations—known to affect skin bacterial communities—were not
controlled for in the present study. Such factors could have influenced skin bacterial com-
position and biomechanical properties. Future studies should control for the variables
and apply multivariate analyses to account for their potential impact. Lastly, while the
present study focused on structural and functional changes in the skin bacterial community,
the precise mechanisms through which microbes like C. acnes affect skin biomechanical
properties remain unclear. Future research should investigate the mechanisms by which
C. acnes contributes to skin elasticity and how other microbes impact skin barrier function.
Investigations into microbial metabolic products, such as short-chain fatty acids, are es-
sential. Microbiome modulation strategies, including the use of probiotics and prebiotics
to enhance beneficial microbes like C. acnes, could also be explored as potential interven-
tions for maintaining skin elasticity and reducing wrinkle formation. Studies involving
animal models could provide valuable insights into how the skin microbiome influences
the aging process.

In conclusion, this study highlights significant age-related changes in the skin mi-
crobiome and their impact on skin biomechanical properties. The age-related decrease in
C. acnes is associated with increased microbial diversity and altered functional profiles,
correlating with reduced skin elasticity and increased wrinkle formation. These findings
advance our understanding of the complex interactions between the skin bacterial commu-
nity and aging, offering potential pathways for developing innovative anti-aging products.
Future research should explore microbiome modulation to improve skin health and slow
down age-related changes.
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