Evaluation of Genotoxic and Hemolytic Effects of Aphanizomenon flos-aquae and Microcystis aeruginosa Biomass Extracts on Human Blood Cells In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Extraction Procedure
2.3. Cyanotoxin Detection
2.3.1. Chemicals and Reagents
2.3.2. Solid Phase Extraction
2.3.3. Liquid Chromatography–Mass Spectrometry
2.3.4. Method Validation
2.4. Measurement of DNA Damage
2.4.1. Blood Sampling
2.4.2. Alkaline Comet Assay
2.4.3. Cell Analysis
2.5. Hemolytic Activity
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chorus, I.; Welker, M. Toxic Cyanobacteria in Water, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021; p. 839. [Google Scholar]
- Rickert, B.; Chorus, I.; Schmoll, O. Protecting Surface Water for Health: Identifying, Assessing and Managing Drinking-Water Quality Risks in Surface-Water Catchments; World Health Organization: Geneva, Switzerland, 2016; p. 178. [Google Scholar]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Bănăduc, D.; Curtean-Bănăduc, A.; Barinova, S.; Lozano, V.L.; Afanasyev, S.; Leite, T.; Branco, P.; Gomez Isaza, D.F.; Geist, J.; Tegos, A.; et al. Multi-Interacting Natural and Anthropogenic Stressors on Freshwater Ecosystems: Their Current Status and Future Prospects for 21st Century. Water 2024, 16, 1483. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Zepernick, B.N.; Wilhelm, S.W.; Bullerjahn, G.S.; Paerl, H.W. Climate change and the aquatic continuum: A cyanobacterial comeback story. Environ. Microbiol. Rep. 2022, 15, 3–12. [Google Scholar] [CrossRef]
- Simić, S.; Đorđević, N.; Milošević, D.J. The relationship between the dominance of Cyanobacteria species and environmental variables in different seasons and extreme precipitation. Fund. Appl. Limnol. 2017, 190, 1–11. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Scince 2017, 357, 405–408. [Google Scholar] [CrossRef]
- Wagner, C.; Adrian, R. Cyanobacteria dominance: Quantifying the effects of climate change. Limnol. Oceanogr. 2009, 54, 2460–2468. [Google Scholar] [CrossRef]
- Meriluoto, J.; Spoof, L.; Codd, G.A. EU-COST Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons: Chichester, UK, 2017; p. 576. [Google Scholar]
- Simić, S.; Đorđević, N.; Tokodi, N.; Drobac Backović, D.; Marinović, Z. Eutrophication of Fishing Waters and the Influence of Cyanobacterial Occurrence and Blooming on Fish Resources: Case Studies in Serbia. In Ecological Sustainability of Fish Resources of Inland Waters of the Western Balkans; Simić, V., Simić, S., Pešić, V., Eds.; Springer: Cham, Switzerland, 2023; pp. 455–504. [Google Scholar]
- Svirčev, Z.; Lalić, D.; Bojadžija Savić, G.; Tokodi, N.; Drobac Backović, D.; Chen, L.; Meriluoto, J.; Codd, G.A. Global geographical and historical overview of cyanotoxin distribution and cyano-bacterial poisonings. Arch. Toxicol. 2019, 93, 2429–2481. [Google Scholar] [CrossRef]
- Prüss-Ustün, A.; Wolf, J.; Bartram, J.; Clasen, T.; Cumming, O.; Freeman, M.C.; Gordon, B.; Hunter, P.R.; Medlicott, K.; Johnston, R. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low-and middle-income countries. Int. J. Hyg. Environ. Health 2019, 222, 765–777. [Google Scholar] [CrossRef]
- Wood, R. Acute animal and human poisonings from cyanotoxin exposure—A review of the literature. Environ. Int. 2016, 91, 276–282. [Google Scholar] [CrossRef]
- Frigg, R.; Hartmann, S. Models in Science. In The Stanfod Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Kiviranta, J.; Sivonen, K.; Niemelä, S.I.; Huovinen, K. Detection of Toxicity of Cyanobacteria by Artemia salina Bioassay. Environ. Toxicol. Water Qual. 1991, 6, 423–436. [Google Scholar] [CrossRef]
- Maršalek, B.; Bláha, L. Comparison of 17 Biotests for Detection of Cyanobacterial Toxicity. Environ. Toxicol. 2004, 19, 310–317. [Google Scholar] [CrossRef]
- Berry, J.P.; Gibbs, P.D.L.; Schmale, M.C.; Saker, M.L. Toxicity of Cylindrospermopsin, and Other Apparent Metabolites from Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum, to the Zebrafish (Danio rerio) Embryo. Toxicon 2009, 53, 289–299. [Google Scholar] [CrossRef]
- Davidović, P. Toxicity of Selected Strains of Cyanobacteria in In Vivo and In Vitro Tests. Ph.D. Thesis, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia, 2023; p. 229. [Google Scholar]
- Nizan, S.; Dimentman, C.; Shilo, M. Acute Toxic Effects of the Cyanobacterium Microcystis aeruginosa on Daphnia magna. Lim-nol. Oceanogr. 1986, 31, 497–502. [Google Scholar] [CrossRef]
- Dao, T.S.; Do-Hong, L.C.; Wiegand, C. Chronic Effects of Cyanobacterial Toxins on Daphnia magna and Their Offspring. Toxicon 2010, 55, 1244–1254. [Google Scholar] [CrossRef]
- Davidović, P.; Blagojević, D.; Meriluoto, J.; Simeunović, J.; Svirčev, Z. Biotests in Cyanobacterial Toxicity Assessment—Efficient Enough or Not? Biology 2023, 12, 711. [Google Scholar] [CrossRef]
- Yilmaz, O.; Patinote, A.; Nguyen, T.; Bobe, J. Multiple Vitellogenins in Zebrafish (Danio rerio): Quantitative Inventory of Genes, Transcripts and Proteins, and Relation to Egg Quality. Fish. Physiol. Biochem. 2018, 44, 1509–1525. [Google Scholar] [CrossRef]
- Sazdova, I.; Keremidarska-Markova, M.; Chichova, M.; Uzunov, B.; Nikolaev, G.; Mladenov, M.; Schubert, R.; Stoyneva-Gärtner, M.; Gagov, H.S. Review of Cyanotoxicity Studies Based on Cell Cultures. J. Toxicol. 2022, 2022, 5647178. [Google Scholar] [CrossRef]
- Ćomić, L.; Ostojić, A. Akumulaciono Jezero Gruža (The Gruža Reservoir—In Serbian); Faculty of Science: Kragujevac, Serbia, 2005. [Google Scholar]
- Arsenijević, M. Algal Diversity and Ecological Potential of the Gruža Reservoir During the Autumn of 2019. Master’s Thesis, Faculty of Science, Kragujevac, Serbia, 2020. [Google Scholar]
- EN 16698:2016; Water Quality—Guidance on Quantitative and Qualitative Sampling of Phytoplankton from Inland Waters. European Committee for Standardization (CEN): Brussels, Belgium, 2016; p. 35.
- Utermöhl, H. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Int. Ver. Theor. Angew. Limnol. Mitteilungen 1958, 9, 1–38. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota 1. Teil: Chroococcales. In Süsswasserflora von Mitteleuropa, Bd. 19/1; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 1998; p. 759. [Google Scholar]
- Komárek, J. Cyanoprokaryota 3. Teil: Heterocystous Genera. In Süßwasserflora von Mitteleuropa, Bd. 19/3; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; p. 1130. [Google Scholar]
- Harada, K.; Kondo, F.; Lawton, L. Laboratory analysis of cyanotoxins, chapter 13. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management (WHO); Chorus, I., Bartram, J., Eds.; CRC Press: London, UK, 1999; pp. 369–405. [Google Scholar]
- Zervou, S.-K.; Christophoridis, C.; Kaloudis, T.; Triantis, T.M.; Hiskia, A. New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. J. Hazard. Mater. 2017, 321, 56–66. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology; Q2 (R2); Somatek Inc.: San Diego CA, USA, 2022; p. 38. [Google Scholar]
- Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Eyluel Bankoglu, E.; Bonassi, S.; Boutet-Robinet, E.; Brunborg, G.; et al. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc. 2023, 18, 929–989. [Google Scholar] [CrossRef] [PubMed]
- Tubić Vukajlović, J.; Simić, I.; Smiljanić, Z.; Grujičić, D.; Milošević-Djordjević, O. Genome instability in peripheral blood lymphocytes of patients with heart failure and reduced ejection fraction. Mutagenesis 2023, 38, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Pitarque, M.; Vaglenov, A.; Nosko, M.; Hirvonen, A.; Norppa, H.; Creus, A.; Marcos, R. Evaluation of DNA damage by the comet assay in shoe workers exposed to toluene and other organic solvents. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 1999, 441, 115–127. [Google Scholar] [CrossRef]
- Srećković, N.Z.; Nedić, Z.P.; Monti, D.M.; D’Elia, L.; Dimitrijević, S.B.; Mihailović, N.R.; Katanić Stanković, J.S.; Mihailović, V.B. Biosynthesis of Silver Nanoparticles Using Salvia pratensis L. Aerial Part and Root Extracts: Bioactivity, Biocompatibility, and Catalytic Potential. Molecules 2023, 28, 1387. [Google Scholar] [CrossRef] [PubMed]
- Public Utility Company “Water and Sewerage” Kragujevac. Available online: https://jkpvik-kg.com/ (accessed on 12 October 2023).
- Đorđević, N.B.; Matić, S.L.; Simić, S.B.; Stanić, S.M.; Mihailović, V.B.; Stanković, N.M.; Stanković, V.D.; Ćirić, A.R. Impact of the toxicity of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju on laboratory rats in vivo. Environ. Sci. Pollut. Res. Int. 2017, 24, 14259–14271. [Google Scholar] [PubMed]
- Žegura, B.; Gajski, G.; Štraser, A.; Garaj-Vrhovac, V.; Filipič, M. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2011, 726, 116–122. [Google Scholar] [CrossRef]
- Mankiewicz-Boczek, J.; Palus, J.; Gagała, I.; Izydorczyk, K.; Jurczak, T.; Dziubałtowska, E.; Stepnik, M.; Arkusz, J.; Komorowska, M.; Skowron, A.; et al. Effects of microcystins-containing cyanobacteria from a temperate ecosystem on human lymphocytes culture and their potential for adverse human health effects. Harmful Algae 2011, 10, 356–365. [Google Scholar] [CrossRef]
- Seo, Y.; Yoon, Y.; Lee, M.; Jang, M.; Kim, T.; Kim, Y.; Yoo, H.Y.; Min, J.; Lee, T. Rapid electrochemical biosensor composed of DNA probe/iridium nanoparticle bilayer for Aphanizomenon flos-aquae detection in fresh water. Colloid Surf. B 2023, 225, 113218. [Google Scholar] [CrossRef]
- Žegura, B.; Gajski, G.; Štraser, A.; Garaj-Vrhovac, V. Cylindrospermopsin induced DNA damage and alteration in the expression of genes involved in the response to DNA damage, apoptosis and oxidative stress. Toxicon 2011, 58, 471–479. [Google Scholar] [CrossRef]
- Bláha, L.; Babica, P.; Maršálek, B. Toxins produced in cyanobacterial water blooms—Toxicity and risks. Interdiscip. Toxicol. 2009, 2, 36–41. [Google Scholar] [CrossRef]
- Qiu, T.; Xie, P.; Li, L.; Guo, L.; Zhang, D.; Zhou, Q. Nephrotoxic effects from chronic toxic cyanobacterial blooms in fishes with different trophic levels in a large Chinese lake. Environ. Toxicol. Pharmacol. 2012, 33, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Grabow, W.O.; Du Randt, W.C.; Prozesky, O.W.; Scott, W.E. Microcystis aeruginosa toxin: Cell culture toxicity, hemolysis, and mutagenicity assays. Appl. Environ. Microbiol. 1982, 43, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, S.; Benvenuti, F.; Pagliarani, S.; Francogli, S.; Scoglio, S.; Canestrari, F. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci. 2004, 75, 2353–2362. [Google Scholar] [CrossRef] [PubMed]
- Sicińska, P.; Bukowska, B.; Michałowicz, J.; Duda, W. Damage of cell membrane and antioxidative system in human erythrocytes incubated with microcystin-LR in vitro. Toxicon 2006, 47, 387–397. [Google Scholar] [CrossRef]
- Lone, Y.; Bhide, M.; Koiri, R.K. Microcystin-LR Induced Immunotoxicity in Mammals. J. Toxicol. 2016, 2016, 8048125. [Google Scholar] [CrossRef]
- Sukenik, A.; Reisner, M.; Carmeli, S.; Werman, M. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in mice: Long-term exposure to low doses. Environ. Toxicol. Int. J. 2006, 21, 575–582. [Google Scholar] [CrossRef]
- Reisner, M.; Carmeli, S.; Werman, M.; Sukenik, A. The cyanobacterial toxin cylindrospermopsin inhibits pyrimidine nucleotide synthesis and alters cholesterol distribution in mice. Toxicol. Sci. 2004, 82, 620–627. [Google Scholar] [CrossRef]
- Matsunaga, S.; Moore, R.E.; Niemczura, W.P.; Wayne, W.; Carmichael, W.W. Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. J. Am. Chem. Soc. 1989, 111, 8021–8023. [Google Scholar] [CrossRef]
Cyanotoxin | Retention Time (min) | Single Ion Monitoring (m z−1) |
---|---|---|
Anatoxin-a | 4.06 | 166 [M + H]+ |
Cylindrospermopsin | 5.50 | 416 [M + H]+ |
Microcystin DMRR | 14.55 | 512 [M + 2H]+2 |
Microcystin RR | 14.95 | 520 [M + 2H]+2 |
Microcystin DMLR | 18.70 | 982 [M + H]+ |
Microcystin YR | 19.04 | 1046 [M + H]+ |
Microcystin LR | 19.25 | 996 [M + H]+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đorđević, N.B.; Vukajlović, J.T.; Milošević-Đorđević, O.; Mihailović, V.B.; Srećković, N.Z.; Rakonjac, A.B.; Simić, S.B. Evaluation of Genotoxic and Hemolytic Effects of Aphanizomenon flos-aquae and Microcystis aeruginosa Biomass Extracts on Human Blood Cells In Vitro. Microorganisms 2024, 12, 2208. https://doi.org/10.3390/microorganisms12112208
Đorđević NB, Vukajlović JT, Milošević-Đorđević O, Mihailović VB, Srećković NZ, Rakonjac AB, Simić SB. Evaluation of Genotoxic and Hemolytic Effects of Aphanizomenon flos-aquae and Microcystis aeruginosa Biomass Extracts on Human Blood Cells In Vitro. Microorganisms. 2024; 12(11):2208. https://doi.org/10.3390/microorganisms12112208
Chicago/Turabian StyleĐorđević, Nevena B., Jovana Tubić Vukajlović, Olivera Milošević-Đorđević, Vladimir B. Mihailović, Nikola Z. Srećković, Aleksandra B. Rakonjac, and Snežana B. Simić. 2024. "Evaluation of Genotoxic and Hemolytic Effects of Aphanizomenon flos-aquae and Microcystis aeruginosa Biomass Extracts on Human Blood Cells In Vitro" Microorganisms 12, no. 11: 2208. https://doi.org/10.3390/microorganisms12112208
APA StyleĐorđević, N. B., Vukajlović, J. T., Milošević-Đorđević, O., Mihailović, V. B., Srećković, N. Z., Rakonjac, A. B., & Simić, S. B. (2024). Evaluation of Genotoxic and Hemolytic Effects of Aphanizomenon flos-aquae and Microcystis aeruginosa Biomass Extracts on Human Blood Cells In Vitro. Microorganisms, 12(11), 2208. https://doi.org/10.3390/microorganisms12112208