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Abstract: Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often
leading to the bioavailability of metabolically important mineral elements such as nitrogen (N),
phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth
promotion include mycorrhizal fungi, associative diazotrophs, and the N2-fixing rhizobia belonging to
the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface
area of soil-root interface for optimum nutrient uptake by plants. However, when transformed into
bacteroids inside root nodules, rhizobia also convert N2 gas in air into ammonia for use by the bacteria
and their host plant. Thus, nodulated legumes can meet a high proportion of their N requirements
from N2 fixation. The percentage of legume N derived from atmospheric N2 fixation varies with crop
species and genotype, with reported values ranging from 50–97%, 24–67%, 66–86% 27–92%, 50–92%,
and 40–75% for soybean (Gycine max), groundnut (Arachis hypogea), mung bean (Vigna radiata), pigeon
pea (Cajanus cajan), cowpea (Vigna unguiculata), and Kersting’s groundnut (Macrotyloma geocarpum),
respectively. This suggests that N2-fixing legumes require little or no N fertilizer for growth and
grain yield when grown under field conditions. Even cereals and other species obtain a substantial
proportion of their N nutrition from associative and endophytic N2-fixing bacteria. For example,
about 12–33% of maize N requirement can be obtained from their association with Pseudomonas,
Hebaspirillum, Azospirillum, and Brevundioronas, while cucumber can obtain 12.9–20.9% from its
interaction with Paenebacillus beijingensis BJ-18. Exploiting the plant growth-promoting traits of soil
microbes for increased crop productivity without any negative impact on the environment is the basis
of green agriculture which is done through the use of biofertilizers. Either alone or in combination
with other synergistic rhizobacteria, rhizobia and arbuscular mycorrhizal (AM) fungi have been
widely used in agriculture, often increasing crop yields but with occasional failures due to the use
of poor-quality inoculants, and wrong application techniques. This review explores the literature
regarding the plant growth-promoting traits of soil microbes, and also highlights the bottle-necks in
tapping this potential for sustainable agriculture.

Keywords: plant growth-promoting rhizobacteria; plant-microbe interactions; microbial inoculants;
root exudates

1. Introduction

With the world’s human population projected to reach over 9 billion by 2050, there is
a need for increased agricultural productivity to ensure food and nutritional security [1–3].
However, decreasing crop yields due to drought, soil nutrient depletion, pests, and diseases
have further threatened global food security [4]. Although the use of chemical fertilizers
has been credited for today’s global food and nutritional sufficiency, this has happened
at a huge cost to the environment [5]. There is therefore a need to explore greener tech-
nologies for greater crop production, especially with a focus on tapping the diverse soil
microbes for increased agricultural productivity while minimizing adverse environmental
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effects [6–8]. Microbes such as bacteria and fungi are abundant in soils and possess several
traits for improving soil structure and plant growth promotion through nutrient cycling,
thus enhancing crop yields [9–11]. The mineralization of soil organic matter by soil mi-
crobes traditionally increases the bioavailability of nutrient elements such as nitrogen (N),
phosphorus (P), potassium (K), and iron (Fe) for uptake by plants [12].

Nitrogen and phosphorus are important nutrient elements known to limit plant growth
and therefore require innovative agronomic management to ensure their availability in
the rhizosphere for plant uptake in cropping systems [13]. For instance, although N is the
most limiting nutrient for plant growth, globally its recovery rate from fertilizers applied
to crops is often below 50% due to losses associated with volatilization, leaching, and
denitrification [14]. From the early 1890s, when Winogradsky suggested the possible role
of the nitrifying bacteria Nitrosomonas in agriculture [15], several species of that genus and
those of Nitrobacter are reported to be nitrifiers [16,17]. While nitrification (the conversion
of ammonium to nitrate) generally increases the availability of nitrate for plant uptake, it
also produces nitrous oxide (N2O), which causes global warming [5]. Additionally, nitrates
are easily lost via leaching, thus decreasing nitrogen use efficiency in cropping systems
and contributing to groundwater contamination [18]. However, the use of nitrification
inhibitors such as 3,4-dimethylpyrazole phosphate can reduce both leaching and nitrous
oxide emission in agricultural soils [19]. Furthermore, P use in cropping systems is chemi-
cally based and therefore not sustainable. However, the alternative to chemical P fertilizer
is rock phosphate, which is declining in reserves [20]. Yet, P is an important component
of macromolecules such as adenosine triphosphate (ATP) and ribulose1,5-bisphosphate
(RuBP). Therefore, P deficiency in soils can negatively affect plant metabolic processes,
including photosynthesis, and thus impair plant growth and grain yield [21].

An alternative to the use of synthetic P fertilizers in agriculture and the problem
of declining rock phosphate reserves globally is to tap P-solubilizing soil microbes in
cropping systems for enhanced P nutrition by crop species. In contrast to the popular
view, there is abundant P in agricultural soils, however, most of it is unavailable to crop
plants, as it is bound to Ca, Al, and clay micelles. Various studies (including some from
our laboratory) have identified P-solubilizing rhizobia from cowpea, soybean, common
bean, Bambara groundnut, etc., that can promote P nutrition in grain legumes [10,22–24].
Bradyrhizobium sp. TUTNou71 isolated from Bambara groundnut in Mali showed 5-fold
more P-solubilizing ability than Bradyrhizobium sp. TUTNou73 obtained from the same site,
indicating that rhizobia can differ in their P-solubilization efficiency. Similarly, phosphate
solubilization varied among soybean rhizobial strains in India, with some isolates showing
up to 3-fold higher efficiency [23]. Wekesa et al. [24] also assessed P-solubilization in
two common bean rhizobial isolates in Kenya and found marked variation in the trait.
Out of 21 cowpea Bradyrhizobium isolates from South Africa, only two isolates possessed
phosphate-solubilizing ability with near-similar efficiency [22]. These findings suggest
the need for identifying high P-solubilizing rhizobia for use as inoculants in cropping
systems, especially in degraded soils. However, little is known of P-solubilizing bacteria
from cereal crops. Thus, future studies should focus on identifying soil microbes with high
P-solubilizing ability for use on cereals.

So far, however, a diverse group of bacteria is known to exhibit plant growth-promoting
traits, which include species of the genera Bacillus, Enterobacter, and Azospirillum as well as
rhizobia belonging to the α, β, and γ classes of the Proteobacteria [25,26]. The mechanisms
of plant growth promotion by soil microbes can range from N2 fixation and phosphate sol-
ubilization to the synthesis and release of molecules such as siderophores and auxins [26].
Rhizobia are also known to secrete metabolites such as lumichrome, organic acids, vitamins
such as riboflavin, and lipo-chito-oligosaccharides (Nod factors) that promote seedling
development in legumes [27]. The N-fixed in root nodules are used directly by the bacterial
cells for their N nutrition while the surplus is excreted into host plant cells in exchange
for photosynthate [28]. The efficiency of the symbiosis can vary with bacterial strain, crop
genotype, genotype/strain compatibility, as well as other abiotic factors [29,30]. The sym-
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biotic process can be enhanced by inoculating legumes with elite rhizobial strains or a
cocktail of microbes that include non-rhizobial promoters of plant growth [31].

This review discusses the role and mechanisms of plant growth promotion by diverse
soil microbes and highlights their potential utilization in nutrient cycling and plant growth
promotion, with focus on both N2-fixing rhizobia and plant-AM fungi interactions as
biofertilizers for increased crop production. The prospects of microbes in the biofortification
of crops for improved human nutrition and the challenges to their wider utilization in
agriculture are also discussed.

2. Overview of Plant–Bacterial Interactions in the Rhizosphere

The term rhizosphere is used to describe the zone of soil that surrounds plant roots.
It is usually characterized by a high diversity of bacterial genera and species [32,33] that
promote plant growth and adaptation [34]. The synthesis and release of various metabolites
by rhizobacteria [27] and their role in the improvement of plant performance has been
reviewed by earlier reports [35]. These rhizobacteria comprise species that either enter into
intricate symbiotic associations with plants or that exert indirect plant growth promotion via
the rhizodeposition of metabolites to enhance the availability of important nutrient elements
for plant uptake [36]. Symbiotic rhizobia are, for example, characterized by their ability
to colonize root hairs of legumes and induce the formation of nodules which are factories
where N2 is reduced to NH3 by bacteroids and exchanged for plant photosynthate [37].
Rhizobia are therefore the most important soil bacteria in agriculture due to their significant
N contribution to cropping systems and natural ecosystems when in association with
members of the Leguminosae [38,39].

Besides rhizobia, bacterial species belonging to the genera Bacillus, Enterobacter, Pseu-
domonas, Azospirillum, and several others are also abundant in the rhizosphere of plants
and contribute to plant growth promotion. However, the mechanisms of plant growth pro-
motion by these rhizobacteria can vary widely, ranging from the production of metabolites
such as siderophores, riboflavin, lumichrome, cytokinin, and indole-3-acetic acid to the
secretion of various volatile organic compounds, which are all involved in altering plant
functioning for improved performance [35] (Figure 1). The production of phytase enzyme
by Bacillus amyloliquefaciens FZB45, for example, has been reported to promote cabbage
growth via improved P nutrition in soils supplemented with phytate [40]. In addition to its
plant growth promotion via phosphate solubilization and IAA synthesis, Bacillus sp. TZ5 is
also capable of bioremediation of cadmium in soils [41]. While rhizobia can exert a direct
influence on legume plants through symbiotic N supply, they also promote the growth
of non-leguminous plant species via indirect mechanisms [42]. Several non-rhizobial rhi-
zobacteria have been reported to be opportunistic endophytes in root nodules of legumes
where they exhibit plant growth-promoting effects [43]. The types and functions of various
metabolites employed by bacteria for plant growth promotion have been comprehensively
reviewed [35]. Understanding the mechanisms of action of these beneficial rhizobacteria is
critical for manipulating them for use as biofertilizers, whether single strain or a cocktail of
synergistic bacteria that can improve plant fitness and growth performance [4,12].
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Figure 1. Mechanisms of plant growth promotion by beneficial soil microbes. Rhizodeposition of
organic compounds in seed and root exudates is important in shaping soil microbial community
structure and activities.

3. Beneficial Soil Microbes and Plant Growth in Adverse Environments

The rhizosphere of plants generally consists of a cosmopolitan group of microorgan-
isms that exert significant influence on plant fitness and performance [44]. The interaction
between plants and microbial communities such as bacteria or fungi can yield beneficial
or detrimental outcomes for one or both partners [45,46]. Plants have therefore evolved
multiple mechanisms in their interactions with both beneficial and pathogenic microbes
within the soil environment. Through the secretion of seed or root exudates which contain
a myriad of compounds, plants are able to shape the composition of rhizosphere microbial
communities by recruiting those that are beneficial in their interactions while avoiding
antagonistic microbes and pathogens [33,47–50].

Plant root exudates are reported to comprise both low molecular weight compounds
(e.g., amino acids, phenolics, and sugars) and high molecular weight macromolecules
(e.g., proteins and polysaccharides), which are involved in plant growth promotion and
defence [51] (Figure 1). Active rhizodeposition of specific molecules by plant roots generally
aims to mobilize microbes capable of alleviating the effects of environmental stresses [52].
The secretion of malic acid by Arabidopsis thaliana L. is reported to favour the recruitment
of Bacillus subtilis in response to foliar infection by pathogenic Pseudomonas syringae [53].
Furthermore, Bacillus amyloliquefaciens was also found to suppress the growth of phy-
topathogens, while stimulating plant growth via the synthesis and release of volatile
organic compounds such as 2,3-butanedione, 3-hydroxy-2-butanone, 2-propanone, and
2-methylpyridine in a dose-dependent manner [54].

Deficiencies in soil nutrients can also stimulate rhizosphere build-up of specific mi-
crobes in order to mitigate such stresses [55]. For example, legumes growing in low-N
soils tend to release flavonoid compounds that can chemo-attract beneficial microbes and
induce nod-genes in symbiotic soil rhizobia, leading to nodule formation and N2 fixation
in order to alleviate the negative effect of low endogenous soil N on plant growth [37].
Conversely, an increase in N supply to legumes is known to reduce their dependence on
symbiotic N for their N nutrition through a decrease in the nitrogenase activity of root
nodules [56]. The reduced nitrogenase activity is often attributed to nitrite accumulation
from nitrate-reduction, a product that can form nitrosyl-haemoglobin and thus reduce
O2 diffusion to respiring bacteroids [57,58]. Similarly, in low nutrient soils, mycorrhizal
symbiosis can mobilize N, P, Fe, Mn, and Zn for improved plant growth and reproductive
performance [59,60]. Microbial interactions with plants can also modify soil structure,
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leading to increased nutrient availability and uptake, and hence improved plant growth.
Plant-microbe interactions are therefore a source of complex mechanisms that have evolved
to promote the fitness of both partners under adverse environmental conditions [52].

4. Evolution of the Legume-Rhizobia Symbiosis for Promoting Plant Growth

Of the diverse rhizobacteria found in plant rhizospheres, rhizobia are a special group
that has evolved the ability to convert atmospheric N2 to NH3 via the acquisition of nodula-
tion and symbiotic genes from other soil bacteria [61]. From supplying fixed N to their host
plants, symbiotic rhizobia have a direct effect on plant growth promotion. The symbiotic
mutualism between legumes and rhizobia involves the exchange of molecular signals
between the two partners [62,63]. In this process, flavonoids released by legume roots
or seeds as exudates play a key role in the signal exchange between legumes and their
microsymbionts [64,65]. As a first step, these flavonoid signals act as chemoattractants in a
concentration-dependent manner, leading to recruitment of compatible rhizobia to legume
root hairs in the rhizosphere [66]. Because these flavonoids are signals, they are required in
much lower nanomolar or micromolar concentrations to induce the expression of nodula-
tion (nod) genes in compatible symbiotic rhizobia, leading to the synthesis and secretion of
lipo-chito-oligosaccharide molecules or Nod factors by the microsymbiont [67–70]. How-
ever, non-flavonoid compounds such as betaines and aldonic acids can also act as nod-gene
inducers in alfalfa and lupin rhizobia but usually at relatively higher concentrations when
compared to flavonoids [51,66].

Host plant perception of the rhizobial nod factors is reported to induce cellular re-
sponses, including calcium (Ca2+) spiking at the root hair tip followed by root hair curling or
deformation, a process that results in rhizobia being engulfed in the curled root tip, leading
to the formation of a plant cell wall-derived infection thread that houses the bacteria [68,71].
Bacterial cells induce mitotic division of cortical cells within the infection thread, to form a
nodule primordium [72]. Rhizobia released into the plant cell cytoplasm often differentiate
into N2-fixing bacteroids, enclosed in plant-derived membranes or symbiosomes [66]. The
N2-fixing nitrogenase in bacteroids is the enzyme responsible for reducing N2 to NH3.
The joint synthesis of leghaemoglobin by the legume and rhizobial partners ensures a
low O2 (5–30 nM) environment within the symbiosomes, which is a prerequisite for ni-
trogenase activity [66,73]. N2 fixation is reported to commence from 11–15 days after
nodule formation after which the plant starts to benefit from the fixed N from root nodules
while in return providing the bacteroids with protection, nutrients, and photosynthate
for their growth [66,74]. Additionally, the rhizobial bacteria are also reported to mitigate
plant adaptation to environmental stresses such as drought, salinity, pH, and heavy metal
contamination [75]. Rhizobial production of siderophores [76], solubilization of phosphate,
and synthesis of indole acetic acid all promote growth even in non-legumes [77]. With cli-
mate change, the ecological significance of rhizobia has increased significantly with greater
interest in exploiting the legume/rhizobia symbiosis for sustainable crop production using
commercial inoculants [4].

5. Microbes in Crop Biofortification

Malnutrition and micronutrient deficiency are high in Africa, highlighting the need
for biofortification of food crops with nutrient elements, especially the micronutrients
Iron (Fe), Zinc (Zn), Copper (Cu), and Selenium (Se) for human nutrition/health [78,79].
Mineral density in crops is determined by their concentrations in the soil. Where soils are
inherently low in nutrients, especially in Africa, fertilizer application is used to increase
uptake and accumulation by crop plants, an approach that raises production costs [80,81].
However, beneficial soil microbes are known to promote the bioavailability of dietarily
important micronutrients in the rhizosphere of crop plants, thereby naturally promoting
sustainable and cost-effective biofortification [79,82]. Soil microbes known for their role
in the biofortification of crops include bacterial and fungal species (Table 1). For example,
inoculating wheat with Bacillus sp. YAM2 significantly increased the levels of Se in kernels
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relative to uninoculated control [83], just as legume inoculation with rhizobia enhanced
Fe and Zn accumulation in shoots [84]. Nodulated legumes therefore appear to benefit
markedly from natural biofortification by symbiotic rhizobia, with potential benefits to
succeeding cereal crops rotated with legumes; for example, Lengwati et al. [85] found
higher concentrations of Fe, Zn, Mn, and Cu in the grains of maize plants that were planted
in rotation after different grain legumes [85].

Fungal species are also known for their role in promoting biofortification in plants
through the accumulation of nutrient elements in host plants. Inoculating chickpea with
arbuscular mycorrhizal (AM) fungi, for example, increased grain concentration of Fe and
Zn [86]. Inoculation of wheat with a mixture of the AM fungus Glomus claroideum and
selenobacteria (e.g., Stenotrophomonas sp. B19, Enterobacter sp. B16, Bacillus sp. R12, and
Pseudomonas sp. R8) also increased shoot and grain concentrations of Se, suggesting a
synergistic interaction of these microbes in crop biofortification [87–89]. With climate
change and its effect on the declining food and nutritional security globally, there is a need
to explore and exploit beneficial plant–microbe interactions for enhanced biofortification of
food crops in order to combat protein–calorie malnutrition and micronutrient deficiency
using microbial inoculants (Table 1).

Table 1. Examples of beneficial microbes and their roles in the biofortification of plant organs
with micronutrients.

Microorganism (s) Treatment Application Experimental
Condition Crop Effect References

* Glomus mosseae
isolate 112 BEG

Single strain inoculation,
supplemented with
different levels of
nitrogen (N) and
phosphorus (P)

Glasshouse Lettuce

At low P level,
Mycorrhizal lettuce
plants accumulate greater
copper (Cu), iron (Fe),
zinc (Zn), and manganese
(Mn) at different N levels

[59]

Azospirillum brasilense
Ab-V6 Single strain inoculation Field Maize Increased grain Zn, Mn,

and Cu concentrations [90]

Providencia sp. PW5 +
N60P60K60

Applied as a single strain
together with N60P60K60

Field Wheat

Increased grain protein
content by
18.6%Increased grain
concentration of Fe, Mn,
and Cu

[91]

Acinetobacter sp. E6.2,
* Glomus claroideum
(synonym:
Claroideoglomus
claroideum); * Glomus
claroideum,
Enterobacter sp. B16

Single strain and dual
inoculation Glasshouse Wheat Increased grain selenium

(Se) concentration [87,89]

* Funneliformis
mosseae and *
Rhizophagus irregularis

Single strain and dual
inoculation Field Chickpea Increased grain Fe and

Zn content [86]

Bacillus sp. YAM2 Applied alone, or
together with selenate

Naturally lit wire
house Wheat

Increased Fe and Se
concentrations in stems
and Kernels

[83]

Bradyrhizobium
japonicum
strain WB74

Applied alone or with
5 mM KNO3

Glasshouse Soybean
Genotype-dependent
increase in shoot Mn, Zn,
and Fe concentrations

[84]

* Glomus mosseae (L.) +
Rhizobium
leguminosarum (L.)

Applied as a mixture and
supplemented with
different N and P rates

Field Pea Increased seed Fe, Cu, Zn,
and Mn concentrations [92]
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Table 1. Cont.

Microorganism (s) Treatment Application Experimental
Condition Crop Effect References

Sphingomonas sp.
SaMR12, Enterobacter
sp. SaCS20

Single strain inoculations
Glasshouse,
Hydroponic (in
growth chamber)

Rice Increased concentration
of Zn in shoot and grain [93]

Anabaena sp.+ *
Trichoderma viride

Biofilm formulation,
supplemented with N, P
and potassium (K)

Field Rice Increased grain Fe and
Zn concentration [94]

NB: * indicates arbuscular mycorrhizal fungi (AMF).

6. Exploitation of Microbial Inoculants in Agriculture

Microbes in agricultural and natural ecosystems are widely known for their role in
nutrient cycling, alteration of soil structure, and plant growth promotion via still-unknown
mechanisms [12]. The quest to sustainably increase crop yields while reducing agricultural
use of chemical fertilizers has stimulated greater interest in tapping beneficial microbes
for agriculture. However, their wider adoption and use would require formulation into
bioinoculants containing bacteria, fungi, or their combination that can function synergis-
tically to improve plant growth and increase grain yield [4] (Tables 2 and 3). N2-fixing
rhizobia either formulated alone or in combination with other beneficial rhizobacteria
and endophytes are reported to stimulate plant growth and increase yields under field
conditions [10,95–97]. In Africa, where most soils are inherently low in mineral nutri-
ents, especially N, inoculating cowpea with Bradyrhizobium strains markedly increased
grain yield in Ghana and Mozambique [98]. A similar study involving the inoculation
of cowpea and soybean in Ghana resulted in increased grain yield and cash income in a
location-dependent manner [95]. Field inoculation of common bean (Phaseolus vulgaris)
with Rhizobium tropici strain CIAT 899 and soybean with Bradyrhizobium japonicum strain
USDA 110 also increased grain yield and marginal dollar returns in Tanzania, with even
higher yields when supplemented with low phosphorus application [99]. Inoculating com-
mon beans with either Rhizobium sp. strain GT-9 or HB-429 also led to increased nodulation,
N2 fixation, and grain yield relative to the uninoculated control in Ethiopia [100]. However,
the most significant success story in the use of rhizobial inoculants has been the case of
Brazil, where the recommended use of elite strains is credited for the remarkable increases
in soybean grain yield and the reduced agricultural use of chemical N fertilizers [101,102].
Even where soils contained large populations of native rhizobia, soybean inoculation with
a mixture of B. elkanii SEMIA 587 and B. japonicum SEMIA 5080 was found to increase grain
yield over N fertilization and uninoculated control [103].

However, tapping the benefits of soil microbes should not be restricted to only legumes
and rhizobia. Inoculation of cereals such as maize and wheat with Azospirillum brasilense
and A. lipoferum has been shown to increase grain yield, an indication of the potential
for wider benefits of these rhizobacteria in agriculture [90]. Azospirilla are free-living
diazotrophs often associated with the roots of grasses and cereal crops and exhibiting plant
growth-promoting traits [104]. Efforts at tapping the benefits of diazotrophs have involved
their formulation into multi-strain inoculants containing rhizobia and other rhizobacteria
such as Azospirillum, Bacillus, and Pseudomonas [105]. An example is the inoculation of pea
plants with an ACC deaminase-producing Pseudomonas putida and Rhizobium leguminosarum,
which stimulated plant growth and increased grain yield [106]. Current efforts at tapping
soil microbes for increased agricultural yields would require identifying and evaluating
multi-strain inoculants in order to maximize their efficiency in a changing climate.
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Table 2. Examples of experiments reporting the beneficial effects of bacteria-based inoculation on plant performance under different experimental conditions.

Microorganism (s) Treatment Application Experiment Condition Crop Effect References

Azospirillum brasilense, A. lipoferum Sole inoculation as single strains Field Maize, Wheat Increased grain yield in maize and wheat [90]

Bacillus amyloliquefaciens FZB45

Applied alone at two rates, or
together with four levels of
phosphorus (P) in factorial
experiment

Growth chamber Cabbage Increased plant growth at higher rates of
phytate supply [40]

Bradyrhizobium sp. (strain CB 1809 +
strain CPAC 7), (strain 29 W +
SEMIA 587)

Applied as microbial consortium Field Soybean
Increased nodule occupancy
Increased grain yield
Increased grain N content

[107]

Bradyrhizobium sp. Applied alone, or together with
phosphorus (P) or nitrogen (N) Field Common bean, Soybean

Inoculation alone increased grain yield
Inoculation + P increased grain yield over
inoculation alone, and N or P alone

[99]

Bradyrhizobium sp. BR 3262 and
Bradyrhizobium sp. BR
3267

Sole inoculation as single strains Field Cowpea Increased nodulation and plant growth
Increased grain yield [95]

Bradyrhizobium strain USDA 110 Sole inoculation, supplemented
with P and organic manure Field Soybean

Increased nodulation
Increased plant growth
Increased rainwater use efficiency
Increased agronomic P use efficiency
Increased grain yield

[108]

Bradyrhizobium sp. (76 native
African isolates) Sole inoculation as single strains Glasshouse Bambara groundnut

Increased leaf chlorophyll concentration
over nitrate-feeding
Increased stomatal conductance
Increased photosynthetic rates
Increased plant growth

[10]

Bradyrhizobium sp. (40 native
African isolates) Sole inoculation as single strains Glasshouse Kersting’s groundnut

Increased leaf chlorophyll concentration
over nitrate-feeding
Increased stomatal conductance
Increased photosynthetic rates
Increased plant growth

[97]

Bradyrhizobium sp. (17 native
African isolates) Sole inoculation as single strains Glasshouse Cowpea

Increased leaf chlorophyll concentration
over nitrate-feeding
Increased stomatal conductance
Increased photosynthetic rates
Increased plant growth

[109]
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Table 2. Cont.

Microorganism (s) Treatment Application Experiment Condition Crop Effect References

Pseudomonas putida strain PSE3 +
Rhizobium leguminosarum strain RP2 Applied as microbial consortium Glasshouse Field pea

Increased nodulation and leghaemoglobin
content of nodules
Stimulates plant growth
Increased leaf chlorophyll content

[106]

Rhizobium leguminosarum strain RP2 Applied alone or together with
diammonium phosphate Glasshouse Field pea

Increased nodulation and leghaemoglobin
content of nodules
Stimulates plant growth

[106]

Rhizobium sp. strains HB-429 Applied alone, or together with
different P levels Field Common bean

Increased plant growth
Increased N-fixed
Increased grain yield

[100]

Table 3. Examples of experiments reporting the beneficial effects of fungi-based/fungi + bacteria-based inoculation on plant performance under different
experimental conditions.

Microorganism (s) Treatment Application Experiment Condition Crop Effect References

Aspergillus sp. NPF7 Sole inoculation Growth chamber Chickpea, Wheat

Stimulated germination
Increased plant growth via the synthesis of
phytohormones (e.g., Indole-3-acetic acid (IAA),
siderophore, gibberellic,
phosphate solubilization)

[110]

* Funneliformis mosseae,
* Rhizophagus irregularis

Single-strain inoculation or dual
inoculation Field Chickpea Increased plant growth

Increased grain yield [86]

* Glomus intraradices BEG 123
and * G. viscosum 126 Sole inoculation as single strains Glasshouse Olive Increased plant growth of two olive cultivars [111]

* G. deserticola,
* G. spp. (G. claroideum, G.
etunicatum, G. geosporum, G.
intraradices, G. mosseae)

Applied as a microbial mixture.
Field soil was also used as
a control

Glasshouse Maize Increased plant growth compared to control
(field soil) [112]

* Glomus sp. LPA21, Commercial
* Glomus sp. (AGC or Phytotec)

Inoculation at different rates of
1–5% (w/w) Glasshouse Grapevine, Pineapple Increased shoot and root growth relative to control [113]
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Table 3. Cont.

Microorganism (s) Treatment Application Experiment Condition Crop Effect References

* Glomus intraradices, Rhizobium
tropici CIAT899 Dual inoculation Glasshouse Common bean

Increased nodulation
Promotes shoot and root growth compared to
control or single inoculants
Increased shoot N and P accumulation compared
to control or single inoculants

[114]

* Glomus fasciculatum +
Azotobacter chroococcum +
Bacillus sp.

Applied as a microbial
consortium Field Wheat Increased plant growth

Increased grain yield [115]

* Glomus intraradices Single-strain inoculation at
different levels of salinity and P Field Pepper Mycorrhizal inoculation increased plant growth

at all salinity levels [116]

* G. mosseae, Bradyrhizobium sp.
BXYD3

Single strain inoculation or
co-inoculation; supplanted with
N, P, and potassium (K)

Field, Glasshouse Soybean Increased plant growth
Increased N and P content of plants [117]

Phoma sp. GAH7 Sole inoculation Glasshouse Cucumber Increased plant height
Increased plant weight [118]

* Rhizophagus irregularis DAOM
197198

Sole inoculation, Uninoculated
plots as control Field Potato Increased tuber yield [119]

* Trichoderma virens,
* Trichoderma atroviride Single strain inoculation Axenic conditions Arabidopsis Stimulates lateral root growth

Increased biomass accumulation [120]

NB: * indicate arbuscular mycorrhizal fungi (AMF).
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7. Constraints to the Wider Exploitation of Microbial Inoculants

The past decades have seen significant research and commercial interest in the use of micro-
bial inoculants as eco-friendly technologies for sustainable crop productivity [95,100–102,121].
As a result, large amounts of data have been generated to aid our understanding of how
beneficial soil microbes such as bacteria and fungi occupy centre stage in the maintenance
of plant fitness and productivity. The potential positive impact of microbial inoculants as
components of sustainable crop production systems was recently reviewed by Shahwar
et al. [122]. Despite some of the successes in increasing crop yields using biostimulants
from soil microbes, their wider adoption is constrained by several factors [123].

7.1. Biotic and Abiotic Factors

Firstly, the inherent susceptibility of biological processes to biotic and abiotic stresses
often causes inconsistent outcomes from the use of the same inoculant over time and,
space, which is a major obstacle to the adoption of these green technologies [124]. With
rhizobial inoculants for example, the presence of large populations of ineffective but highly
competitive native strains can cause the failure of highly effective inoculant strains to
nodulate the host plant [123]. This challenge is compounded by the fact that, even in
the same environment, inoculation response can vary with legume genotype [96]. For
example, despite the known plant growth-promoting effect of Azospirillum sp., its co-
inoculation failed to increase soybean yields in Mozambican soils, prompting the need for
further research to harness the benefits of these plant–bacterial interactions in changing
environments [11]. Moreover, tapping the multiple beneficial traits of diverse microbes
through their formulation into a multi-strain inoculant sometimes fails due to possible
incompatibility among the different components [125]. For instance, the co-inoculation of
Phoma sp. GS8-2 or GS8-3 with the AM fungus Glomus mosseae decreased the level of disease
resistance conferred by single strain inoculation with either Phoma isolate [126]. Thus, the
formulation of many microbes into a single inoculant often requires an understanding of
their mechanisms of action in order to select those that present synergistic interactions
to aid overall plant growth and productivity. The fact that the persistence of AM fungal
inoculants in soils can be location-specific is a major setback in predicting the performance
of such inoculants in the field [127], suggesting a need to explore soils for effective native
strains that can be harnessed for increased plant performance [111].

7.2. Quality Control Issues

Nevertheless, the quality of the formulation can also be a factor hindering inoculant
performance in the field [128]. In the absence of quality control, the proliferation of poor-
quality inoculants containing fewer than optimum bacterial cells can lead to inoculation
failure, and thus deter farmers’ adoption due to poor performance [123]. Quality controls
are therefore often instituted and standards can vary among countries [128], as found in
Spain and France, which have regulations for safeguarding the quality of biofertilizers used
by farmers [129]. Canada and Australia are also producing rhizobial inoculants that contain
recommended numbers of viable cells and are free of contaminants [123,130]. Furthermore,
the identification of inoculant strains that are suited for multiple environments is also a
challenge, prompting more research aimed at producing multi-strain inoculants for use in
different environments [31].

7.3. Limited Shelf Life

The shelf life of inoculants is equally important and critical for achieving inocu-
lation success, and it is thus a constraint to the adoption and utilization of microbial
inoculants [131], especially among rural farmers who may lack the appropriate storage
facilities. Factors affecting inoculant shelf life include the type of carrier used, temperature,
moisture, storage time, microbial strain, and their interactions [132,133]. For example,
the use of charcoal-soil mixture as a carrier by Gaind and Gaur [132] retained a greater
number of viable phosphate-solubilizing Pseudomonas cells than the use of paddy straw
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compost. Biradar and Santhosh [134] also found that the cell population and viability
of Pseudomonas fluorescens were greater when polyvinlypyrrolidone (PVP, 2%) was used
as cell protectant along with the use of adjuvants, surfactant, and preservative, resulting
in 1.76 × 1010 CFU/mL at 28 ◦C after 180 days. Amending a liquid Rhizobium sp. strain
MB1503 with 1% or 2% PVP produced a higher viable cell count which led to enhanced
plant growth and nitrogen content of mung bean (Vigna radiata L.) [135]. Given the cell
survival and shelf life constraints of inoculants, it is recommended to provide information
about the optimum storage and handling conditions on inoculant sachets [136].

8. Future Perspectives

For millennia, soil microbes have been known for their beneficial contribution to
agriculture and natural ecosystems, which has led to significant research into their diversity,
distribution, and mechanisms of action. Key areas for future research should include
(i) bioprospecting for rhizobial strains with high N2-fixing ability, (ii) identifying rhizobia
with multiple beneficial traits such as P-solubilization, IAA secretion, siderophores produc-
tion, drought, and salinity tolerance, as well as low pH resistance, to enable their use as
inoculants in multiple and diverse environments, (iii) exploring soil microbes with the abil-
ity to enhance the accumulation of dietarily important trace elements in both legume and
cereal crops, (iv) promoting the development of multi-strain and multi-species microbial
inoculants for use in harsh and difficult environments.

While research on the legume/rhizobia symbiosis has produced technologies that have
promoted crop productivity and restored vegetation to arid and degraded environments,
less has been done on tapping the associative symbiosis commonly found in cereal/microbe
interactions. Many tropical pasture grasses such as Digitaria decumbence Stent, often pro-
duce dark-green foliage reminiscent of nodulated legumes. Many associative N2-fixing
bacteria such as Herbaspirillum seropedicaea strain (ATCC) 35892, Pseudomonas jessenii strain
CIP105274 [137], Enterobacter doacae [138], Pseudomonas, Bacillus, Burkholderia, Pantoea [139],
and Klebsiella variicola [140] have been found in sorghum, water yam, wheat, sugarcane,
sweet potato, etc. Apparently, N2-fixing bacteria such as Pseudomonas, Hebaspirillum, Azospir-
illum, and Brevundioronas, can provide 12–33% of total N to maize [141], while Paenebacillus
beijingensis BJ-18 provided 12.9–20.9% to cucumber through biological N2 fixation [142].

With climate change and the effect of synthetic N in agriculture on global warming
from agricultural use, there is a renewed effort to exploit the cereal/microbe interaction. In
addition to providing biologically fixed N to plants, some of these associative diazotrophs
especially endophytes also promote plant growth via the synthesis and release of plant
hormones such as indole acetic acid, cytokinins, and gibberellins, which promote plant
growth via enhanced root branching and elongation, increased root hairs density and
greater absorption of water and nutrients [104,143]. The recent discovery that inoculating
cassava with a Curtobacterium endophyte respectively increased root, stem, and leaf biomass
by 17.6%, 12.6%, and 10.3% further stresses the need for intensified research into non-
rhizobial plant–microbe interactions; the observed increases in the biomass of cassava
plants were attributed to biological N2 fixation, secretion of indole-3-acetic acid and P-
solubilization [144]. Crop plants such as sugarcane, cassava, yam, taro, etc. that are a huge
reservoir of sugar and carbohydrates should be targeted in bioprospecting for N2-fixing
and plant growth-promoting endophytes, as they are an easy source of energy for N2
fixation and the biosynthesis of growth stimulating metabolites.

9. Concluding Remarks

The abundance of beneficial microbes in soils offers a great opportunity for developing
greener technologies to replace chemical-based crop production systems. The multiple roles
played by soil microbes in cropping systems and nature conservation require continued
research. The role of microbes in the biofortification of food crops should be pursued
vigorously to avoid food insecurity and hidden hunger, especially among poorer popula-
tions across the world. Tapping beneficial microbes for a transformed global agricultural
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system while eliminating chemically based approaches has a high of reducing agriculture’s
contribution to climate change.
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