Effect of Nd:YAG Laser Irradiation on the Growth of Oral Biofilm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- Candida spp. on Sabouraud Dextrose Broth agar (Biomaxima, Lublin, Poland) at 37 °C for 48 h in aerobic conditions.
- S. mutans on Brain Heart Infusion (BHI) agar (Biomaxima, Lublin, Poland) at 37 °C for 48 h under elevated CO2 levels.
- Planktonic Solutions of Cells—Appropriate amounts of microorganisms’ suspension (0.5 McFarland standard) were prepared: 100 µL of the suspension was combined with 900 µL of BHI broth with 5% sucrose (Biomaxima, Lublin, Poland) for C. albicans (C.a.), C. glabrata (C.g.), and S. mutans (S.m.) (see Table 1); 100 µL of each microorganism and 800 µL of BHI broth for the following combinations: C. albicans + S. mutans, C. glabrata + S. mutans, and C. albicans + C. glabrata (see Table 2). All the samples were treated with laser light while contained in a dark Eppendorf tube. Dark Eppendorf tubes were used to ensure that no external light could affect the material inside the tube. Additionally, the dark color of the tubes helps block some of the scattered PBM light, preventing it from influencing other Eppendorf tubes that were not irradiated.
- 2.
- Biofilms—Experiments were conducted using two biofilm models: single-species and dual-species. The biofilm formation method involved the use of flat-bottom 96-well polystyrene plates (FL Medical, Equimed, Krakow, Poland). Aliquots of 100 µL of microorganism suspension, with a density of 0.5 according to the McFarland standard, were added to each well of the titration plate, along with 150 µL of liquid BHI broth with 5% sucrose (Biomaxima, Lublin, Poland), resulting in a final volume of 250 µL for single-species suspensions (Table 3).
2.2. Laser Application
- Group 1 (G-T1): Power 0.48 W, irradiance 0.5 W/cm2, fluence 50 mJ/cm2, frequency 10 Hz, spot diameter 11 mm, spot area 0.95 cm2, total dose 29 J, irradiation time 60 s, and a Micro Short Pulse (MSP) of 150 µs. These parameters are recommended by the manufacturer for wound healing.
- Group 2 (G-T2): Power 1.62 W, irradiance 1.75 W/cm2, fluence 58 mJ/cm2, frequency 30 Hz, spot diameter 11 mm, spot area 0.95 cm2, total dose 100 J, and irradiation time 60 s, with MSP 150 µs. These parameters are recommended by the manufacturer for pain relief (analgesic effect).
- Group 3 (control): Non-irradiated samples.
2.3. Microorganism Quantification
2.3.1. Reduction in CFU/mL Colony-Forming Units Under the Influence of Laser Effect Immediately After Application
2.3.2. Reduction in CFU/mL Colony-Forming Units Under the Influence of Laser Effect 24 h After Application
2.3.3. Evaluation of the Laser Effect on the Eradication of Single- and Dual-Species Biofilm (Quantitative Method—Reduction in CFU/mL Values)
2.3.4. Evaluation of the Laser Effect on Biofilm Biomass: Crystal Violet Method
2.4. Statistical Analysis
3. Results
3.1. Microorganism Reduction in Single-Species Planktonic Cultures
3.2. Microorganism Reduction in Single-Species Biofilm Cultures
3.3. Microorganism Reduction in Two-Species Planktonic Cultures
3.4. Microorganism Reduction in Two-Species Biofilm Cultures
3.5. Microorganism Reduction in Single- and Two-Species Biofilm Cultures (Crystal Violet Method)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Huang, S.; Du, J.; Wu, M.; Huang, X. Current and prospective therapeutic strategies: Tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm. Front. Cell Infect. Microbiol. 2023, 13, 1106231. [Google Scholar] [CrossRef] [PubMed]
- Arweiler, N.B.; Netuschil, L. The Oral Microbiota. Adv. Exp. Med. Biol. 2016, 902, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, J.; Yang, J.; Gao, X.; Dong, L.; Zheng, X.; Sun, L.; Xia, B.; Zhao, N.; Ma, Z.; et al. Streptococcus mutans-associated bacteria in dental plaque of severe early childhood caries. J. Oral Microbiol. 2022, 14, 2046309. [Google Scholar] [CrossRef] [PubMed]
- Brunke, S.; Hube, B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol. 2013, 15, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.A.O.; Williams, D.W. Diagnosis and management of oral candidosis. Br. Dent. J. 2017, 223, 675–681. [Google Scholar] [CrossRef]
- Bachtiar, E.W.; Bachtiar, B.M. Relationship between Candida albicans and Streptococcus mutans in early childhood caries, evaluated by quantitative PCR. F1000Research 2018, 7, 1645. [Google Scholar] [CrossRef]
- Lafuente-Ibáñez de Mendoza, I.; Cayero-Garay, A.; Quindós-Andrés, G.; Aguirre-Urizar, J.M. A systematic review on the implication of Candida in peri-implantitis. Int. J. Implant Dent. 2021, 7, 73. [Google Scholar] [CrossRef]
- Kanwar, I.; Sah, A.K.; Suresh, P.K. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies. Curr. Pharm. Des. 2017, 23, 2084–2095. [Google Scholar] [CrossRef]
- Baroni, A.; De Filippis, A.; Oliviero, G.; Fusco, A.; Perfetto, B.; Buommino, E.; Donnarumma, G. Effect of 1064-nm Q-switched Nd:YAG laser on invasiveness and innate immune response in keratinocytes infected with Candida albicans. Lasers Med. Sci. 2018, 33, 941–948, Erratum in Lasers Med. Sci. 2018, 33, 691. [Google Scholar] [CrossRef] [PubMed]
- Wiench, R.; Skaba, D.; Matys, J.; Grzech-Leśniak, K. Efficacy of Toluidine Blue-Mediated Antimicrobial Photodynamic Therapy on Candida spp. A Systematic Review. Antibiotics 2021, 10, 349. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K. Making Use of Lasers in Periodontal Treatment: A New Gold Standard? Photomed. Laser Surg. 2017, 35, 513–514. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K.; Matys, J.; Dominiak, M. Comparison of the clinical and microbiological effects of antibiotic therapy in periodontal pockets following laser treatment: An in vivo study. Adv. Clin. Exp. Med. 2018, 27, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Grzech-Leśniak, K.; Matys, J. The Effect of Er:YAG Lasers on the Reduction of Aerosol Formation for Dental Workers. Materials 2021, 14, 2857. [Google Scholar] [CrossRef] [PubMed]
- Matys, J.; Grzech-Leśniak, K.; Flieger, R.; Dominiak, M. Assessment of an Impact of a Diode Laser Mode with Wavelength of 980 nm on a Temperature Rise Measured by Means of k-02 Thermocouple: Preliminary Results. Dent. Med. Probl. 2016, 53, 345–351. [Google Scholar] [CrossRef]
- Arnabat-Dominguez, J.; Vecchio, A.D.; Todea, C.; Grzech-Leśniak, K.; Vescovi, P.; Romeo, U.; Nammour, S. Laser dentistry in daily practice during the COVID-19 pandemic: Benefits, risks and recommendations for safe treatments. Adv. Clin. Exp. Med. 2021, 30, 119–125. [Google Scholar] [CrossRef]
- Golob Deeb, J.; Reddy, N.; Kitten, T.; Carrico, C.K.; Grzech-Leśniak, K. Viability of bacteria associated with root caries after Nd:YAG laser application in combination with various antimicrobial agents: An in vitro study. Dent. Med. Probl. 2023, 60, 649–655. [Google Scholar] [CrossRef]
- Nammour, S.; El Mobadder, M.; Maalouf, E.; Namour, M.; Namour, A.; Rey, G.; Matamba, P.; Matys, J.; Zeinoun, T.; Grzech-Leśniak, K. Clinical Evaluation of Diode (980 nm) Laser-Assisted Nonsurgical Periodontal Pocket Therapy: A Randomized Comparative Clinical Trial and Bacteriological Study. Photobiomodul Photomed. Laser Surg. 2021, 39, 10–22. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K.; Matys, J.; Jurczyszyn, K.; Ziółkowski, P.; Dominiak, M.; Brugnera Junior, A., Jr.; Romeo, U. Histological and Thermometric Examination of Soft Tissue De-Epithelialization Using Digitally Controlled Er:YAG Laser Handpiece: An Ex Vivo Study. Photomed. Laser Surg. 2018, 36, 313–319. [Google Scholar] [CrossRef]
- Golob Deeb, J.; Smith, J.; Belvin, B.R.; Lewis, J.; Grzech-Leśniak, K. Er:YAG Laser Irradiation Reduces Microbial Viability When Used in Combination with Irrigation with Sodium Hypochlorite, Chlorhexidine, and Hydrogen Peroxide. Microorganisms 2019, 7, 612. [Google Scholar] [CrossRef]
- Grönqvist, A.; Wiström, J.; Axner, O.; Monsen, T.J. Bactericidal effect of pulsed 1,064 nm Nd:YAG laser light on Staphylococcus epidermidis is of photothermal origin: An in vitro study. Lasers Surg. Med. 2000, 27, 336–340. [Google Scholar] [CrossRef]
- McCawley, T.K.; McCawley, M.N.; Rams, T.E. Immediate effect of Nd:YAG laser monotherapy on subgingival periodontal pathogens: A pilot clinical study. J. Periodontal Implant. Sci. 2022, 52, 77–87. [Google Scholar] [CrossRef]
- El Mobadder, M.; Nammour, S.; Namour, M.; Namour, A.; Grzech-Leśniak, K. Disinfection Potential of 980 nm Diode Laser and Hydrogen Peroxide (3%) in “Critical Probing Depths” Periodontal Pockets: Retrospective Study. Life 2022, 12, 370. [Google Scholar] [CrossRef]
- Grzech-Leśniak, K.; Belvin, B.R.; Lewis, J.P.; Golob Deeb, J. Treatment with Nd:YAG Laser Irradiation Combined with Sodium Hypochlorite or Hydrogen Peroxide Irrigation on Periodontal Pathogens: An In Vitro Study. Photobiomodul Photomed. Laser Surg. 2021, 39, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Yuanhong, L.; Zhongcheng, L.; Mengqi, L.; Daonan, S.; Shu, Z.; Shu, M. Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans. Hua Xi Kou Qiang Yi Xue Za Zhi 2016, 34, 579–583. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Grzech-Leśniak, K.; Nowicka, J.; Pajączkowska, M.; Matys, J.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Dobrzyński, M.; Dominiak, M. Effects of Nd:YAG laser irradiation on the growth of Candida albicans and Streptococcus mutans: In vitro study. Lasers Med. Sci. 2019, 34, 129–137. [Google Scholar] [CrossRef]
- Maden, M.; Görgül, G.; Sultan, M.N.; Akça, G.; Er, O. Determination of the effect of Nd:YAG laser irradiation through dentinal tubules on several oral pathogens. Lasers Med. Sci. 2013, 28, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Kasić, S.; Knezović, M.; Beader, N.; Gabrić, D.; Malčić, A.I.; Baraba, A. Efficacy of Three Different Lasers on Eradication of Enterococcus faecalis and Candida albicans Biofilms in Root Canal System. Photomed. Laser Surg. 2017, 35, 372–377. [Google Scholar] [CrossRef]
- Krespi, Y.P.; Stoodley, P.; Hall-Stoodley, L. Laser disruption of biofilm. Laryngoscope 2008, 118, 1168–1173. [Google Scholar] [CrossRef]
- de Paula Eduardo, C.; de Freitas, P.M.; Esteves-Oliveira, M.; Aranha, A.C.; Ramalho, K.M.; Simões, A.; Bello-Silva, M.S.; Tunér, J. Laser phototherapy in the treatment of periodontal disease. A review. Lasers Med. Sci. 2010, 25, 781–792. [Google Scholar] [CrossRef]
- Ge, M.K.; He, W.L.; Chen, J.; Wen, C.; Yin, X.; Hu, Z.A.; Liu, Z.P.; Zou, S.J. Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: A systematic review and meta-analysis. Lasers Med. Sci. 2015, 30, 1609–1618. [Google Scholar] [CrossRef]
- Ren, C.; McGrath, C.; Yang, Y. The effectiveness of low-level diode laser therapy on orthodontic pain management: A systematic review and meta-analysis. Lasers Med. Sci. 2015, 30, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Okamoto, M.R.; Yamamoto, K.; Tsurumoto, A.; Yoshino, Y.; Iwabuchi, H.; Saito, I.; Maeda, N.; Nakagawa, Y. The Candida species that are important for the development of atrophic glossitis in xerostomia patients. BMC Oral. Health 2017, 17, 153. [Google Scholar] [CrossRef] [PubMed]
- Jao, Y.; Ding, S.J.; Chen, C.C. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J. Dent. Sci. 2023, 18, 1453–1466. [Google Scholar] [CrossRef]
- Namour, M.; Verspecht, T.; El Mobadder, M.; Teughels, W.; Peremans, A.; Nammour, S.; Rompen, E. Q-Switch Nd:YAG Laser-Assisted Elimination of Multi-Species Biofilm on Titanium Surfaces. Materials 2020, 13, 1573. [Google Scholar] [CrossRef] [PubMed]
- Risović, D.; Maver-Biśćanin, M.; Mravak-Stipetić, M.; Bukovski, S.; Bišćanin, A. Quantitative investigation of efficiency of ultraviolet and visible light in eradication of Candida albicans in vitro. Photomed. Laser Surg. 2014, 32, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.P.; da Silva, F.C.; Viana, M.S.; Meira, G.A. In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue. Lasers Med. Sci. 2016, 31, 27–32. [Google Scholar] [CrossRef]
- Valm, A.M. The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease. J. Mol. Biol. 2019, 431, 2957–2969. [Google Scholar] [CrossRef]
Single Species | Suspension * | Substrate ** |
---|---|---|
Candida albicans | 100 µL | 900 µL |
Candida glabrata | 100 µL | 900 µL |
Streptococcus mutans | 100 µL | 900 µL |
Two-Species Suspension | Suspension * | Substrate ** |
---|---|---|
Candida albicans Streptococcus mutans | 200 µL | 800 µL |
Candida glabrata Streptococcus mutans | 200 µL | 800 µL |
Candida albicans Candida glabrata | 200 µL | 800 µL |
Single-Species Biofilm | Suspension * | Substrate ** |
---|---|---|
Candida albicans | 100 µL | 150 µL |
Candida glabrata | 100 µL | 150 µL |
Streptococcus mutans | 100 µL | 150 µL |
Two-Species Biofilm | Suspension * | Substrate ** |
---|---|---|
Candida albicans Streptococcus mutans | 200 µL | 50 µL |
Candida glabrata Streptococcus mutans | 200 µL | 50 µL |
Candida albicans Candida glabrata | 200 µL | 50 µL |
Handpiece | Time | Bacteria | Reduction in %CFU/mL Mean (SD) | p-Value T1 vs. T2 | p-Value C.a. vs. C.g. vs. S.m. | p-Value DAI vs. 24AI | |
---|---|---|---|---|---|---|---|
T1 | T2 | ||||||
Genova | DAI | C. albicans | 53.5 (4.9) | 31.9 (4.2) | 0.043 * | C.a. vs. C.g. T1 0.059, T2 0.238 C.g. vs. S.m. T1 0.014 *, T2 0.228 C.a. vs. S.m. T1 0.040 *, T2 0.003 * | C. albicans T1 0.123, T2 0.687 C. glabrata T1 0.066, T2 0.077 S. mutans T1 0.277, T2 0.000 * |
C. glabrata | 38.9 (1.7) | 58.5 (22.1) | 0.339 | ||||
S. mutans | 84.6 (7.6) | 85.4 (1.0) | 0.897 | ||||
24AI | C. albicans | 43.2 (2.7) | 52.9 (7.6) | 0.232 | C.a. vs. C.g. T1 0.814, T2 0.034 * C.g. vs. S.m. T1 0.917, T2 0.000 * C.a. vs. S.m. T1 0.763, T2 0.000 * | ||
C. glabrata | 49.1 (30.8) | 81.6 (0.3) | 0.273 | ||||
S. mutans | 46.3 (12.4) | 0.0 (0.0) | 0.034 * |
Headpiece | Time | Bacteria | Reduction in %CFU/mL Mean (SD) | p-Value T1 vs. T2 | p-Value C.a. vs. C.g. vs. S.m. | |
---|---|---|---|---|---|---|
T1 | T2 | |||||
Genova | DAI | C. albicans | 68.4 (2.3) | 92.6 (3.3) | 0.013 * | C.a. vs. C.g. T1 0.758, T2 0.734 C.g. vs. S.m. T1 0.092, T2 0.812 C.a. vs. S.m. T1 0.016 *, T2 0.571 |
C. glabrata | 72.7 (17.3) | 94.3 (5.0) | 0.232 | |||
S. mutans | 33.1 (5.9) | 95.7 (5.7) | 0.008 * |
Handpiece | Time | Bacteria | Reduction in %CFU/mLMean (SD) | p-Value T1 vs. T2 | p-Value | p-Value DAI vs. 24AI | |
---|---|---|---|---|---|---|---|
T1 | T2 | ||||||
Genova C.g. + S.m. | DAI | C. glabrata | 38.0 (10.2) | 18.9 (0.8) | 0.118 | C.g. vs. S.m. T1 0.154, T2 0.002 * | C. glabrata T1 0.277, T2 0.001 * S. mutans T1 0.022 *, T2 0.001 * |
DAI | S. mutans | 65.3 (13.8) | 56.7 (2.3) | 0.476 | |||
24AI | C. glabrata | 14.3 (20.2) | 0.0 (0.0) | 0.423 | C.g. vs. S.m. T1 0.423, T2 1.000 | ||
24AI | S. mutans | 0.0 (0.0) | 0.0 (0.0) | 1.000 | |||
Genova C.a. + S.m. | DAI | C. albicans | 35.7 (2.5) | 84.1 (2.2) | 0.002 * | C.a. vs. S.m. T1 0.003 *, T2 0.513 | C. albicans T1 0.003 *, T2 0.030 * S. mutans T1 1.000, T2 0.001 * |
DAI | S. mutans | 0.0 (0.0) | 81.8 (3.4) | 0.001 * | |||
24AI | C. albicans | 0.0 (0.0) | 12.5 (17.7) | 1.000 | C.a. vs. S.m. T1 1.000, T2 1.000 | ||
24AI | S. mutans | 0.0 (0.0) | 0.0 (0.0) | 1.000 | |||
Genova C.a. + C.g. | DAI | C. albicans | 19.5 (7.4) | 40.7 (0.9) | 0.056 | C.a. vs. C.g. T1 0.053, T2 0.081 | C. albicans T1 0.157, T2 0.005 * C. glabrata T1 0.043 *, T2 0.038 * |
DAI | C. glabrata | 46.8 (5.6) | 54.0 (5.7) | 0.326 | |||
24AI | C. albicans | 33.4 (4.9) | 18.2 (2.1) | 0.056 | C.a. vs. C.g. T1 0.086, T2 0.776 | ||
24AI | C. glabrata | 7.4 (10.5) | 20.0 (7.8) | 0.305 |
Handpiece | Time | Bacteria | Reduction in %CFU/mL Mean (SD) | p-Value T1 vs. T2 | p-Value 24AI | |
---|---|---|---|---|---|---|
T1 | T2 | |||||
Genova C.g. + S.m. | DAI | C. glabrata | 69.5 (14.2) | 99.9 (0.0) | 0.094 | C. glabrata vs. S. mutans T1 0.277, T2 1.000 |
DAI | S. mutans | 95.3 (1.3) | 96.4 (4.9) | 0.781 | ||
Genova C.a. + S.m. | DAI | C. albicans | 64.7 (22.9) | 98.7 (0.3) | 0.171 | C. albicans vs. S. mutans T1 0.510, T2 0.031 * |
DAI | S. mutans | 80.4 (15.8) | 99.9 (0.1) | 0.222 | ||
Genova C.a. + C.g. | DAI | C. albicans | 95.6 (3.2) | 100.0 (0.0) | 0.187 | C. albicans vs. C. glabrata T1 0.032 *, T2 1.000 |
DAI | C. glabrata | 14.7 (20.8) | 100.0 (0.0) | 0.028 * |
Handpiece | Bacteria | Reduction in %CFU/mL | p-Value | |
---|---|---|---|---|
T1 (SD) | T2 (SD) | |||
Genova(G) | C. albicans | 12.2% (11.5) | 33.5% (9.8) | 0.184 |
C. glabrata | 30.4% (9.8) | 34.6% (12.4) | 0.741 | |
S. mutans | 34.4% (1.8) | 52.2% (1.0) | 0.007 * | |
ANOVA: p-value | 0.159 | 0.219 |
Handpiece | Bacteria | Reduction in %CFU/mL | p-Value | |
---|---|---|---|---|
T1 (SD) | T2 (SD) | |||
Genova (G) | C. albicans | 22.3% (7.9) | 33.4% (0.1) | 0.185 |
S. mutans | 18.4% (3.6) | 31.6% (0.0) | 0.035 * | |
ANOVA: p-value | 0.585 | 0.001 | ||
Genova (G) | C. glabrata | 28.1% (5.7) | 25.6% (0.0) | 0.605 |
S. mutans | 17.3% (0.2) | 22.1% (1.1) | 0.028 * | |
ANOVA: p-value | 0.117 | 0.049 | ||
Genova (G) | C. albicans | 28.2% (0.9) | 55.3% (0.0) | 0.001 * |
C. glabrata | 21.5% (30.4) | 41.3% (0.0) | 0.455 | |
ANOVA: p-value | 0.784 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzech-Leśniak, Z.; Szwach, J.; Lelonkiewicz, M.; Migas, K.; Pyrkosz, J.; Szwajkowski, M.; Kosidło, P.; Pajączkowska, M.; Wiench, R.; Matys, J.; et al. Effect of Nd:YAG Laser Irradiation on the Growth of Oral Biofilm. Microorganisms 2024, 12, 2231. https://doi.org/10.3390/microorganisms12112231
Grzech-Leśniak Z, Szwach J, Lelonkiewicz M, Migas K, Pyrkosz J, Szwajkowski M, Kosidło P, Pajączkowska M, Wiench R, Matys J, et al. Effect of Nd:YAG Laser Irradiation on the Growth of Oral Biofilm. Microorganisms. 2024; 12(11):2231. https://doi.org/10.3390/microorganisms12112231
Chicago/Turabian StyleGrzech-Leśniak, Zuzanna, Jagoda Szwach, Martyna Lelonkiewicz, Krzysztof Migas, Jakub Pyrkosz, Maciej Szwajkowski, Patrycja Kosidło, Magdalena Pajączkowska, Rafał Wiench, Jacek Matys, and et al. 2024. "Effect of Nd:YAG Laser Irradiation on the Growth of Oral Biofilm" Microorganisms 12, no. 11: 2231. https://doi.org/10.3390/microorganisms12112231
APA StyleGrzech-Leśniak, Z., Szwach, J., Lelonkiewicz, M., Migas, K., Pyrkosz, J., Szwajkowski, M., Kosidło, P., Pajączkowska, M., Wiench, R., Matys, J., Nowicka, J., & Grzech-Leśniak, K. (2024). Effect of Nd:YAG Laser Irradiation on the Growth of Oral Biofilm. Microorganisms, 12(11), 2231. https://doi.org/10.3390/microorganisms12112231