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Abstract: This paper presents the findings of a large-scale study on antibiotic resistance in bacteria
found in farm animal feces across Russia. The study included 6578 samples of farm animal manure
from 13 regions in Russia, with the help of citizen scientists. Molecular and microbiological methods
were used to analyze 1111 samples of E. coli. The microbiological analysis focused on culturing
the microorganisms present in the fecal samples on selective media for E. coli and evaluating the
sensitivity of the bacteria to different antibiotics, including ampicillin, tetracycline, chloramphenicol,
cefotaxime, and ciprofloxacin. The molecular analysis involved isolating the genomic DNA of the
bacteria and conducting PCR assays to detect the vanA, vanB, and mcr-1 antibiotic resistance genes.
The results demonstrated significant differences in antibiotic sensitivity of the samples that are
morphologically identical to E. coli from different regions. For example, 98.0% and 82.5% of E. coli and
other fecal bacterial isolates from the Omsk and Vologda regions lacked antibiotic resistance genes,
while 97.7% of samples from the Voronezh region possessed three resistance genes simultaneously.
The phenotypic antibiotic sensitivity test also revealed regional differences. For instance, 98.1% of
fecal bacterial samples from cattle in the Udmurt Republic were sensitive to all five antibiotics tested,
whereas 92.8% of samples from the Voronezh region showed resistance to all five antibiotics. The
high level of antibiotic resistance observed may be attributed to their use in farming practices. The
distinctive feature of our research is that comprehensive geographical coverage was achieved by
using a citizen science platform. Citizen scientists, specifically students from colleges and universities,
were responsible for the collection and initial analysis of samples. The project attracted 3096 student
participants, enabling the collection and analysis of a significant number of samples from various
locations in Russia.

Keywords: citizen science; crowdsourcing; commensal bacteria; antibiotic resistance; antibiotic
resistance genes; colistin; mcr-1; vanA; vanB; vancomycin; ampicillin; tetracycline; chloramphenicol;
cefotaxime; ciprofloxacin

1. Introduction

Antibiotics have proven effective in both human and veterinary medicine, but the
inappropriate use of these medications results in the emergence of antibiotic-resistant
bacteria [1–3]. Livestock production is considered a major factor in the spread of antibiotic
resistance genes in the environment. Antibiotic resistance genes have the potential to spread
among animals, the environment, and humans through vertical gene transfer caused by
the rapid growth of host bacteria or through horizontal gene transfer facilitated by mobile
genetic elements [4]. The international community recognizes the gravity of the situation
regarding the development of resistance to antibiotics, especially reserved antibiotics. It
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is possible for resistance genes to propagate on a global scale, including in regions that
are already burdened with high levels of antimicrobial resistance. The emergence of
multidrug-resistant bacteria can give rise to a grave public health concern [5].

The countries that have the highest proportion of global antibiotic consumption in
livestock are China, the USA, Brazil, India, and Germany [6]. Most middle- and low-income
countries lack a clear legislative framework for the use of antimicrobials in livestock [7].
The use of antibiotics in Russian agriculture is poorly regulated. Unfortunately, agricultural
producers are not held accountable for the uncontrolled use of antibiotics. There is no
system for assessing the need to use antibiotics in either livestock or crop production, and
there is no control over the decisions of veterinarians and agronomists [8]. In total, several
thousand different natural and synthetic substances are known to be used as antibiotics,
while only a few types of antibiotics are monitored in Russia [9]. The All-Russian State
Center for Quality and Standardization of Animal Drugs and Feed (VGNKI) often finds
antibiotics in feed for farm animals, although this is prohibited. Research into the prevalence
of antibiotic-resistant microorganisms in Russia is practically non-existent.

Several studies conducted in different countries described antimicrobials in livestock
and reported resistance to ampicillin, tetracycline, and streptomycin [10]. The elevated level
of resistance to tetracycline and ampicillin can be attributed to the extensive historical usage
of these antimicrobials for therapeutic and prophylactic purposes [11]. A low percentage
(<20%) of E. coli isolates resistant to at least one antimicrobial have been reported in cattle
feces in countries such as the United States, Germany, and Denmark [12]. The widespread
use of beta-lactams, aminoglycosides, fluoroquinolones, and macrolides has led to the
antimicrobial resistance in Vietnam [13]. Resistance to at least one antibiotic was found in
isolates of E. coli from 48% of calves in Sweden [14].

The two most important reserve antibiotics are colistin and vancomycin, and the
detection of resistance to these antibiotics poses a serious public health threat. Colistin
has been widely used in veterinary medicine in Asian, European, and North American
countries, with its human use being limited due to its neuro- and nephrotoxicity [15–17].
However, the emergence of multidrug-resistant Gram-negative bacteria (such as Enterobac-
teriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii) has led to the increased use
of colistin as an antibiotic of last resort [18]. The colistin resistance gene (mcr-1), which
confers plasmid-mediated colistin resistance, was first discovered in China in 2015 and in
Korea in 2016 [17,19]. Then, the mcr-1 gene was identified in diverse bacterial species in
over 50 countries [20]. Following the first discovery of the colistin resistance gene mcr-1,
four additional mcr genes were described: mcr-2 [21], mcr-3 [22], mcr-4 [23], and mcr-5 [24].
The mcr genes are more commonly found in animal fecal isolates. However, numerous
instances of human infection have been reported caused by strains carrying mcr-1, mcr-3, or
mcr-4 [25–27].

The resistance to vancomycin is associated with two types of gene clusters, designated
vanA and vanB [28]. Vancomycin-resistant enterococci strains were first isolated in the
late 1970s and have subsequently exhibited rapid worldwide dissemination [29]. The first
documented clinical infection caused by vancomycin-resistant S. aureus was reported in
Japan in May 1996 [30]. Later, vancomycin-resistant S. aureus strains were isolated in the
United States, Australia, Europe, and other Asian countries [31].

Two main approaches are used to detect antibiotic resistance in farm animal fecal
microorganisms: molecular (detection of antibiotic resistance genes based on PCR and
sequencing) and microbiological (phenotypic detection of antibiotic resistance). Although
culture-based methods are reference methods [32,33], they are time-consuming, more
labor-intensive, and less cost-effective [34]. For example, the rapid automated GeneXpert
vanA/vanB assay [33,35] provides results in less than an hour, while culture methods can
take several days [36,37]. Another limitation of microbiological detection of vancomycin
resistance genes is the difficulty in differentiating vanA and vanB genes: the vanA gene
confers resistance to vancomycin and teicoplanin, whereas the vanB gene confers variable
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resistance to vancomycin, but susceptibility to teicoplanin [38]. In addition, according to
CLSI guidelines, the disk diffusion method cannot reflect colistin resistance [39].

This study is distinguished by the active participation of citizen scientists in obtaining
experimental results, with one objective of the study being to impart training in molec-
ular biology and microbiology to students. Therefore, the crowdsourcing approach to
determining antibiotic resistance in bacteria combined both approaches.

Despite the frequent use of antibiotics in veterinary medicine, there has been a lack
of practical studies on the prevalence of antibiotic resistance in intestinal bacterial isolates
from farm animals in Russia. In addition, the scope of research on microbial communities
related to farm animals is usually restricted to the study of a single farm. The lack of
large-scale studies on farm microbial communities in Russia can be attributed to the limited
number of researchers, logistical challenges, and the high cost [40,41].

Overcoming the barriers discussed above is made possible by the involvement of
citizen scientists. Citizen scientists team up to solve a scientific problem in communities
guided by researchers [42]. It was our anticipation that using citizen science tools would
enable us to gather a substantial number of samples and conduct their initial analysis,
ultimately contributing to a comprehensive examination of the fecal microbiome of farm
animals in Russia. In this study, the citizen science tools were used to collect 6578 samples of
farm animal manure from 13 regions of Russia. Bacterial strains were isolated from animal
fecal samples. Antibiotic resistance (ampicillin, tetracycline, chloramphenicol, cefotaxime,
and ciprofloxacin) and prevalence of colistin (mcr-1) and vancomycin (vanA and vanB)
resistance genes were analyzed for 1111 samples that were identified as E. coli. The research
program involved the participation of 27 mentors and 3,096 college and university students.
Involvement of citizen scientists became possible through the methods developed by
scientists of Gorbatov Federal Research Center for Food Systems (Moscow, Russia), clear
description of requirements for sample collection, metadata entry, and results analysis.
Special kits with all the necessary reagents to conduct experiments in a crowdsourced
format were developed. An educational program was developed to attract mentors to the
project. This program provided training for mentors to conduct the collection of research
material and its analysis with the students.

2. Materials and Methods
2.1. Citizen Science Recruitment and Mentor Training

This study was implemented in a network format, with scientific supervisors of
the project (professional scientists) supervising the work of mentors and the mentors
supervising the work of students. At the initial stage, “reference sites” were created based
on educational institutions: colleges and universities having the necessary laboratory and
educational infrastructure to participate in the research program. An arrangement was
made to engage universities and colleges through invitation letters in the study. The
outcome of this process led to the selection of 18 educational institutions situated across
13 regions in Russia. At each of the reference sites, a systematic approach was employed
to arrange the collection, storage, accounting, analysis, and transportation of samples,
followed by a meticulous review of metadata accuracy. One of the primary purposes of
these sites was to involve students in conducting research. The study attracted a significant
number of participants and mentors from agricultural and agricultural colleges, as access
to agricultural facilities was a mandatory requirement.

In this study, crowdsourcing was employed for both sampling and experimenta-
tion purposes, specifically for isolating individual colonies and assessing their antibiotic
resistance using the proposed methodologies. Specially designed kits containing all the req-
uisite reagents for experiments were developed and distributed to the regions for research,
alongside a comprehensive training program for students and their mentors.

The mentors were assigned the following tasks:

1. To organize and supervise the research team for sample collection and investigation;
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2. To be familiar with the techniques of collecting, describing, storing, and transporting
specimens according to research areas;

3. To organize the transfer of samples to V. M. Gorbatov Federal Research Center for
Food Systems;

4. To organize the educational process based on the research activities of the program
participants, to analyze the results with the participants, and to record the results
under the requirements of educational institutions.

2.2. Sample Collection and Reagents

Special universal transportation kits were developed to collect manure samples. Two
types of kits “kit for microbiological examination of samples” and “kit for examination
of samples by PCR method” (MBU-Technology, Novosibirsk, Russia) were developed for
examination of these samples. Each transport kit was provided with an individual unique
number for sample labeling and instructions for use.

The protocol used in this work was developed specifically for this study. We relied on
data from the study of antibiotic resistance of E. coli strains in feces of cattle [43,44], wild
animals [45], and poultry [46,47].

The universal biological sample collection kit included the following:

1. Sample transportation medium;
2. Sample description questionnaire (species, age of the animal, life history of the animal,

medication intake, farm coordinates, etc.);
3. Sample collection instructions.

The mentors organized field trips for the trainees to farms for sample collection and
description. Fecal samples were collected from farm animals: cows, pigs, horses, and
poultry (chickens, ducks, turkeys, and geese). The students, under the guidance of mentors,
collected manure samples, filled out questionnaires about animal housing, and entered the
data into a common electronic database. Bacterial strains corresponding morphologically
and physiologically to E. coli were isolated from the fecal samples. The antibiotic resistance
of E. coli was then analyzed using molecular and microbiological methods. Under the
guidance of mentors, laboratory tests were conducted on the samples using one of the
proposed methods.

2.3. Molecular Analysis of Samples

Genomic DNA was isolated from E. coli samples obtained by microbiological methods
(see Section 2.4) by adding 100 µL of buffer containing 25 mM NaOH, 0.2 mM disodium
EDTA, pH 12, incubated for 15 min at 95 ◦C, and centrifuged for 10 min at 12,000× g to the
bacterial sample. The supernatant was neutralized by adding 200 µL of 40 mM Tris-HCl,
pH 5.

Antibiotic resistance of bacteria was analyzed by PCR using the developed kit “kit for
examination of samples by the PCR method” (MBU-Technology, Novosibirsk, Russia). The
samples were analyzed for the presence of antibiotic resistance genes vanA, vanB, and mcr-1.
The kit included instructions, pre-made reaction mixture containing one primer pair (vanA,
vanB, or mcr-1), Taq polymerase, positive and negative controls, molecular weight markers,
application buffer (1% SDS, 20 mM EDTA, pH 8.0, 30% glycerol and 0.005% bromophenol
blue), DNA extraction solutions (cell lysis buffer: 25 mM NaOH, 0.2 mM disodium EDTA,
pH 12, neutralization buffer: 40 mM Tris-HCl, pH 5), agarose, and TAE-50×. The primers
used are summarized in Table 1.

Table 1. Primers used in the study.

Genes Forward Primer Reverse Primer

mcr-1 5′-CGGTCAGTCCGTTTGTTC-3′ 5′-CTTGGTCGGTCTGTAGGG-3′

vanA 5′-GCCGGAAAAAGGCTCTGAA-3′ 5′-TTTTTTGCCGTTTCCTGTATCC-3′

vanB 5′-GATTTGATTGTCGGCGAAGTG-3′ 5′-TCCTGATGGATGCGGAAGA-3′
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The reaction mixture (14 µL) was supplemented with 1 µL of Taq polymerase and 5 µL
of isolated DNA. Positive and negative controls were used for each reaction. The reaction
was performed in an amplifier with the following parameters:

Stage 1: 95 ◦C for 15 min;
Stage 2: 35 cycles (95 ◦C for 10 s, 59 ◦C for 10 s, and 72 ◦C for 30 s).
The PCR products were separated in a 1.5% agarose gel, stained with ethidium bro-

mide, and visualized using a UV transilluminator or a commercial Gel-doc system.

2.4. Microbiological Analysis of Samples

The “kit for microbiological examination of samples” (MBU-Technology, Novosibirsk,
Russia) included instructions, endo-agar medium (Sredoff, St. Petersburg, Russia), nutrient
agar—dry nutritional supplement based on fish meal hydrolysate (GRM) (Sredoff, St.
Petersburg, Russia), Gram staining kit (Ekvus, St. Petersburg, Russia), antibiotic disks:
ampicillin, ciprofloxacin, chloramphenicol, tetracycline, cephataxime (Bio-Rad, Hercules,
CA, USA), test tube, and Petri dish with control strain E. coli ATCC922. Further antibiotic
sensitivity analysis was performed for E. coli isolated from farm animal fecal samples.

The citizen scientists initially seeded the material in meat peptone broth, which was
incubated for 18–20 h at 37 ◦C. Further analysis was performed by selecting colonies
corresponding to the typical morphology of E. coli: cells are usually rod-shaped, about
2.0 µm long and 0.25–1.0 µm in diameter [48,49]. On agar, E. coli forms large, thick,
grayish-white, moist, smooth, opaque or translucent colonies [50]. The bacteria were
analyzed by Gram staining followed by microscopy. The isolates obtained were prepared
for antibacterial susceptibility testing as follows: a daily pure culture of 2–3 colonies was
added to 5 mL of PBS and mixed, and the final concentration was adjusted to 0.5 units
according to the McFarland turbidity standard [51,52]. Next, the resulting suspension was
applied to the surface of Petri dishes over the GRM medium using a sterile cotton swab.
Then, the disks with antibacterial drugs were applied and incubated for 18–20 h at 37 ◦C.
Similar manipulations were performed with the control strain E. coli ATCC 25922. The
results were recorded by measuring the no-growth zone. First, the results of the control
strain were evaluated, and if the growth inhibition zones fell within the specified ranges,
the investigated isolates were counted. The results were interpreted according to CLSI
criteria (M100 ED34 [53]), 2024 (https://clsi.org/standards/ 30 August 2024). The criteria
included the presence or absence of the no-growth zone, which indicates the presence or
absence of antibiotic resistance of the tested bacterial strain [54]. All subsequent studies
examined only bacteria related to E. coli.

2.5. Analysis of Data Collected by Citizen Scientists

Under the guidance of mentors, volunteers entered the collected data into a joint
database, and the data were finally analyzed in Microsoft Excel 2016. The data on antibiotic
resistance of microorganisms associated with cattle and small farm animals for each region
were analyzed. The qualitative data collected from the interviews were analyzed using a
general inductive approach [55] to identify recurring and significant themes.

2.6. Statistical Analysis

The farm data (geographical location), farm animal data (animal type, housing con-
ditions, sex, age, drug intake), and the analysis results were put into a Microsoft Excel
spreadsheet. Next, descriptive statistics on animal housing and the prevalence of antimicro-
bial resistance or insensitivity were prepared. For each region and for each animal species,
the resistance or insensitivity status of isolates to each antibiotic was determined.

Multivariate analysis was performed separately for each of the Russian regions for
animal data and bacterial antimicrobial susceptibility testing results. The analysis was
performed to identify the most important variables that explained variation in the dataset.
The dataset comprised 38 data variables that were organized into 6 groups based on relat-
edness as follows: (1) farm animal species information; (2) herd information: farm location,

https://clsi.org/standards/
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breed distribution, herd size, pasture type, and animal housing conditions; (3) sampled
animals’ life history and treatment history: method of fecal sample collection, date of fecal
sample collection, whether the animal was treated with antimicrobials, and antimicrobials
used for treatment; (4) analysis of antimicrobial resistance genes; and (4) antimicrobial
susceptibility testing results. Variables within each group with loading weights ≥10 com-
ponents were kept for interpretation. When necessary, the Mann–Whitney U-test with a
significance level of 0.05 was used to test for statistical differences between independent
groups. Qualitative data co-collected from the interviews were analyzed using a general
inductive approach [56] to identify recurring and significant themes.

3. Results
3.1. Sample Collection and Analysis

The study was conducted using the citizen science tool. Figure 1 illustrates the
general outline of the experiment. Initially, “reference sites” were organized in educational
institutions: colleges and universities. The organization of sample collection, storage,
accounting, analysis, and transportation was conducted at each reference site, with an
additional step to verify the accuracy of the metadata completion. Under the supervision of
mentors, students conducted the collection and analysis of fecal samples from farm animals.
Two methods were used for the analysis of the samples: molecular and microbiological. The
molecular analysis involved the isolation of genomic DNA from the bacteria being tested,
followed by an examination for antibiotic resistance genes vanA, vanB, and mcr-1. The
microbiological analysis involved antibiotic sensitivity testing by inoculating the bacterial
culture in a “dense dash” onto the surface of a Petri dish and placing antibacterial disks on
the surface of the medium. Experts (professional scientists) then collected the results in a
single registry online for further analysis.
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Figure 1. The general scheme of the study achieved with the use of citizen science tool. A project
manager provides the general management of the project and training of mentors. Mentors train
students and supervise the collection and analysis of samples. Sampling was conducted at the
farm. Students and their mentors analyze the samples using one of the two proposed methods, and
professional scientists compile the results in a table for further analysis.

The project started by analyzing the conditions of farm animal housing, collecting
its anamnesis, and collecting manure samples for further research. In total, 6578 manure
samples were collected from 13 regions of Russia (Figure 2).
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Figure 2. Regions of Russia covered by the study. The red circle indicates the region participating in
the study, with the circle diameter proportional to the number of samples. The number of collected
samples is indicated in brackets. The Voronezh region is indicated by a green circle.

The molecular and microbiological methods were used to analyze 1111 samples of
E. coli from all regions of Russia (Table 2), with some regions showing preference for only
one method of analysis (e.g., Moscow region, Omsk region, etc.). Further analysis was
performed for the regions where over 10 samples were analyzed. Most of the samples
analyzed are bovine fecal microorganisms (Table 3).

Table 2. Number of samples collected and analyzed across different regions of Russia.

Region Samples
Collected, n

Samples Analyzed by
Molecular Methods, n

Samples Analyzed by
Microbiological Methods, n

Total Number of
Samples Analyzed, n

Bashkortostan 98 1 1
Krasnoyarsk region 572 115 102 217

Moscow region 330 28 28
Murmansk region 212
Novgorod region 144

Novosibirsk region 42 1 1
Omsk region 586 56 56
Oryol Region 103 13 13

Udmurt Republic 655 43 104 147
Saint Petersburg 132 1 1

Tomsk region 50
Vologda Region 334 274 23 297
Voronezh region 3320 161 192 353
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Table 3. Species diversity of farm animals that had their fecal samples analyzed.

Molecular Analysis

Region
Bos

taurus (cown),
n

Sus
domesticus (pig),

n

Poultry *,
n

Equus
caballus (horse),

n

Capra
hircus (goat),

n

Ovis
aries (sheep),

n

Other or
Not

Specified, n

Total,
n

Krasnoyarsk region 115 1 115
Omsk region 51 4 1 56

Udmurt Republic 38 2 4 1 43
Vologda Region 257 2 5 1 1 2 5 274
Voronezh region 88 22 13 20 9 3 6 161

Bсегo 549 26 23 25 11 6 11 649

Microbiological Analysis

Region Bos taurus
(cown), n

Sus
domesticus (pig),

n

Poultry *,
n

Equus
caballus (horse),

n

Capra
hircus (goat),

n

Ovis
aries (sheep),

n

Other or
Not

Specified, n

Total,
n

Krasnoyarsk region 102 102
Moscow region 28 28
Oryol Region 13 13

Udmurt Republic 103 1 104
Vologda Region 17 2 3 1 23
Voronezh region 69 87 17 9 4 1 3 192

Bсегo 332 87 20 9 4 4 4 462

* Poultry includes chicken, duck, turkey, and goose.

Most samples analyzed were cattle feces (881 samples, 79.3% of all samples). Analysis
was conducted on fecal samples of pigs (113 samples, 10.2%), poultry (43 samples, 3.9%),
horses (34 samples, 3.1%), and others. Some animals were fed vitamin and mineral sup-
plements, and some were treated with antibiotic therapy. Below, we report only on those
animals for which the fecal microbiome was analyzed (Table S1).

Among all animals, the cattle had the highest incidence of antibiotic use. A macrolide
group antibiotic was administered to 55 cows in the Udmurt Republic, while a tetracycline
antibiotic was given to 11 cows in the same region. The antibiotic drug “Tylosin” (active
substance Tylosin) is renowned as the most popular one in the macrolide group. The
most commonly used preparations for treating mastitis in cows include “Mastimax” and
“Masticef”. These preparations are a combination of multiple antibiotics and contain active
substances such as benzylpenicillin novocaine salt, dihydrostreptomycin sulfate, neomycin
sulfate, dioxidine, dexamethasone sodium phosphate, gentamicin sulfate, and cephalexin.

The subsequent phase involved the analysis of collected samples of farm animal fecal
microorganisms using molecular and microbiological methods, followed by a comparison of
the data obtained with information regarding the antibiotics administered to farm animals.
The following sections describe the results for those regions where at least 10 samples were
analyzed: cattle from seven regions and pigs, poultry, and horses from the Voronezh region.

3.2. Molecular Analysis

The microorganisms of farm animal feces were analyzed by PCR for resistance genes
to three antibiotics: vanA, vanB, and mcr-1. Figure 3 shows an example of microbiological
analysis for 10 bacterial strains. The length of the fragment corresponding to the vanA
gene is 267 nucleotide pairs, the vanB gene is 237 nucleotide pairs, and the mcr-1 gene is
253 nucleotide pairs.

Tables S2 and S3 and Figure 4 contain a summary of all the results obtained, with
significant regional differences. For example, in the Omsk and Vologda regions, most of
the isolates under analysis lacked resistance genes to the antibiotics tested (98.0 and 82.5%,
respectively), and in the Voronezh region, on the contrary, numerous samples resistant to
three antibiotics simultaneously were detected (97.7% of samples).
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This study has found a significant number of isolates carrying only the mcr-1 gene
(33.9% of all samples in the region) among 549 PCR-analyzed bovine fecal samples in the
Krasnoyarsk region (Figure 4). Microbial resistance to colistin is a common phenomenon in
farm animal fecal bacterial isolates [17,57–59] correlated with the use of colistin in veterinary
medicine [57].

E. coli isolates containing vanA genes were identified in 8.2% of isolates in the Vologda
region, 63.2% of isolates in the Udmurt Republic, and 34.8% in the Krasnoyarsk region.
Similarly, vanB genes were found in 6.6% of isolates in the Vologda region, 31.6% of isolates
in the Udmurt Republic, and 13.9% in the Krasnoyarsk region. The occurrence of isolates
with both vanA and vanB genes detected simultaneously was rare, with only a few cases
observed (2.6% in the Vologda region and 0.9% in the Krasnoyarsk region).

Some studies have reported the increase in the number of multidrug-resistant bacteria
in recent years [60,61]. Of greatest concern is the Voronezh region, with 97.7% of cow fecal
isolates found to be resistant to three antibiotics tested at the same time. A similarly high
detection rate of resistance genes to three antibiotics was observed in the Krasnoyarsk
region (16.5%). The high detectability of antibiotic resistance genes may be attributed to
the widespread use of antibiotics in agricultural practice in these regions.

3.3. Microbiological Analysis

Microorganisms associated with farm animals were analyzed by microbiological meth-
ods for resistance to five antibiotics: ampicillin, tetracycline, chloramphenicol, cefotaxime,
and ciprofloxacin (see Figure 5). Phenotypic antibiotic susceptibility testing in the present
study revealed significant differences in the results depending on the region of study
(Figure 6, Table S4). It was found that 98.1% of fecal bacterial samples of cows from
the Udmurt Republic were susceptible to all five antibiotics analyzed. On the contrary,
numerous microorganisms associated with cows from the Voronezh region were mostly
resistant to five antibiotics simultaneously (92.8% of cow fecal bacteria samples). In the
Vologda and Krasnoyarsk regions, 100% of microorganisms were found to be resistant to
only one analyzed antibiotic. Within the Orel region, cattle fecal bacteria were resistant to
cefotaxime (61.5% of samples) or ciprofloxacin (34.5% of samples). In the Moscow region,
microorganisms showed resistance to both a single antibiotic and a combination of two to
five antibiotics (Figure 6A).
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ampicillin (1), tetracycline (2), chloramphenicol (3), cefotaxime (4), and ciprofloxacin (5).The results
of the analysis of bacterial samples from cattle feces are shown.

Microorganisms resistant to ampicillin, tetracycline, cefotaxime, ciprofloxacin, and
a combination of two or five antibiotics were found among bacteria in pig feces from
the Voronezh region (Figure 6B). This study detected microorganisms with no antibiotic
resistance, as well as those resistant to ampicillin, tetracycline, and a combination of two
or five antibiotics among the bacteria of poultry feces from the Voronezh region. The
most common were bacteria with multiple resistance (Figure 6B). Therefore, the Voronezh



Microorganisms 2024, 12, 2308 11 of 19

region of Russia is also categorized as the region demonstrating a significant prevalence of
antibiotic-resistant microorganisms associated with poultry and pigs.
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4. Discussion

Antibiotics are of great significance for maintaining farm animals, but their widespread
use threatens the spread of antibiotic resistance. The prevalence of antibiotic-resistant
bacteria and their antibiotic resistance genes is increasing due to the extensive use of
antibiotics [62]. The most probable pathway for the transmission of antibiotic resistance
involves the dissemination of antibiotic residues, antibiotic-resistant bacteria, and their
genetic elements originating from the fecal matter of farm animals [63]. According to
multiple studies, there is evidence suggesting that pastures [64], farm animal housing [65],
land near farms, and field soils could contain higher concentrations of antibiotic residues,
antibiotic-resistant bacteria, and antibiotic resistance genes [66–68].

It is a key objective of agricultural policy in numerous countries to control the spread
and impact of antibiotic-resistant pathogens on humans and animals. For example, Ger-
many has achieved a reduction in the prevalence of mcr-1 from 8.1% in 2011 to 0.5% in 2014
in bacterial isolates of chickens [69]. The spread of antibiotic-resistant bacteria should be
carefully monitored because of the high risk of pan-resistant pathogens in humans [70–72].
The use of citizen science-related tools allows researchers to organize the collection and
initial characterization of specimens by unskilled citizen scientists rather than traveling
to regions.

Here, we show that the resistance of E. coli isolates to antibiotics varied significantly
depending on the region. For example, E. coli isolates with vanA genes were found in
only 8.2% of isolates in the Vologda region, while vanA genes were found in 63.2% of
isolates in the Udmurt Republic. The mcr genes associated with colistin resistance are
widespread and have been described not only in cattle but also in pigs and poultry in
different countries [73–75]. In Germany, mcr-1 mediated colistin resistance in E. coli is
detected predominantly in poultry chains, whereas the detection rate in cattle and pig
isolates is much lower. These findings are in contrast to reports from Asian countries,
where mcr-1-positive isolates are frequently identified in pig chains [17,76]. In China, a low
prevalence of colistin-resistant E. coli was found in cattle (0.9%), but resistance among E. coli
isolated from chickens and pigs was high (14% among chickens and 24% among pigs) [59].

The prevalence of enterococci resistance to vancomycin and other glycopeptide an-
tibiotics has been extensively documented in numerous countries [77–79]. VanA is widely
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recognized as the prevailing resistance variant in numerous countries, excluding Australia
and Sweden. However, most vancomycin-resistant enterococci cases have been linked to
vanB [80–83]. The observation of E. faecium carrying both vanA and vanB was documented
in 1993 in the UK [84], with such strains still rarely reported [85–88].

It is possible that swine production may play an important role in the spread of colistin
resistance. For example, Enterobacteriaceae (mainly E. coli) isolates from pigs in Portugal
tested positive for the mcr-1 gene in 98% of cases [89]. In Ecuador, 41.9% of E. coli isolates
from chickens and pigs were reported to contain mcr-1 [90]. In Spain, the prevalence of
colistin-resistant E. coli in pigs was 76.9% [91]. In China, a high prevalence of E. coli carrying
mcr-1 genes was also found in pigs (79.2%) [92]. In Europe, the prevalence of mcr-1 genes
in pigs ranged from 0.5 to 13.5% [93].

In the current study, three antibiotic resistance genes were detected simultaneously in
100% of cases (vanA, vanB, and mcr-1) in the analyzed fecal bacterial samples of pigs, horse,
and poultry from the isolates obtained from the farms in Voronezh region. Hence, it can
be concluded that the situation in the Voronezh region with antibiotic-resistant bacteria is
extremely unfavorable, both on farms with cows and on farms of other types.

Analysis of microorganisms’ resistance to five antibiotics, i.e., ampicillin, tetracycline,
chloramphenicol, cefotaxime and ciprofloxacin, also revealed significant differences de-
pending on the region. The worst picture was observed in the Udmurt Republic and
Voronezh region, where 98.1% and 92.8% of fecal bacterial samples from cattle, respectively,
were resistant to all five analyzed antibiotics.

According to the European Medicines Agency [94], tetracyclines and penicillins (amox-
icillin, ampicillin, and metampicillin) dominated the market as the most popular antibiotics
used in livestock across 31 European countries from 2011 to 2018. Several countries, in-
cluding Brazil, Argentina, Indonesia, Iran, Japan, Russia, Indonesia, Iran, Japan, and the
USA, have formulated national strategies to address antimicrobial resistance. However,
not all nations have successfully implemented measures to monitor the excessive use of
antimicrobial agents [95].

Several countries have reported a high prevalence of tetracycline resistance among
E. coli isolates from cattle feces [96,97]. The widespread use of tetracycline in human and
veterinary medicine is attributed to its low cost, few side effects, and ability to stimulate
animal growth [98–101].

Low rates (less than 2%) of resistance to fluoroquinolones (including ciprofloxacin)
have been reported in Korea, Finland, Italy, and Sweden [102], with no cases reported in
Canada, France, Denmark, Germany, and Australia [103]. Given that fluoroquinolones are
of critical importance in human medicine, their use in veterinary medicine is reduced or
banned in several countries [104]. Chloramphenicol is prohibited for animal feed in some
countries, but it is still used in animal husbandry [105,106].

In Russia, these antibiotics continue to be actively used in agriculture. This may explain
the high levels of resistance of bacteria associated with cattle feces to these antibiotics. The
high proportion of strains with multidrug resistance may result from the widespread use
of antimicrobial combinations in this region [107].

E. coli resistant to one or several antibiotics were found among bacteria in pig feces from
the Voronezh region. In other countries, such as Korea [108–110], high levels of resistance
to some antibiotics (ampicillin, streptomycin, and tetracycline) have also been reported in
bacterial isolates from chickens and pigs. These results are consistent with tetracyclines,
penicillin, phenicol (florfenicol), and aminoglycosides being the most marketed antibiotics
for use in food animals in Korea [111]. An average of 29% of E. coli isolates collected from
healthy pigs were found to be resistant to ampicillin in Denmark in 2012 [112].

In Voronezh, resistance to a combination of antibiotics was also observed in E. coli of
poultry feces. This result is not unexpected. A high prevalence of E. coli isolates in broiler
chickens showing resistance to ampicillin (87%), tetracycline (95%), ciprofloxacin (91%)
and chloramphenicol (51%) has been reported in Brazil [113]. Resistance to tetracycline
(93%) and chloramphenicol (50%) in poultry products from China has been found to be
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similar, while ampicillin resistance (99%) was higher, according to a study [114]. Similar
findings have been documented in Mexico, where E. coli strains have exhibited significant
resistance to ampicillin (92%), cefotaxime (78%), and tetracycline (75%) [115]. Therefore,
the Voronezh region of Russia is also categorized as the region demonstrating a significant
prevalence of antibiotic-resistant microorganisms associated with poultry.

In general, the high resistance to antimicrobial drugs is easy to explain because they
are frequently used in farm animals, especially pigs and chickens [111]. Thus, the high level
of resistance observed in chicken and pig isolates may reflect the use of these antimicrobials
in poultry and pig farms.

The lack of correlation between documented antibiotic intake and resistant strains
can be explained by resistant strains being developed during antimicrobial treatment
and persisting for a long time in the intestinal tract of the animal after the treatment is
discontinued [116].

This study was conducted with the help of citizen scientists. Under the guidance of pro-
fessional scientists, citizen scientists unite to solve a multitude of scientific problems [42]. In
recent times, several initiatives have been put into place to offer freshman students research
opportunities [117,118]. The SEA-PHAGES Project, supported by the Howard Hughes
Medical Institute and backed by the Phage Hunters Science Education Alliance, stands
as the most successful discovery-oriented project in the United States [119–122]. Students
participating in the SEA-PHAGES project learn about research methods, experiment design,
and data interpretation. An outstanding feature of this project is its emphasis on enabling
students to contribute to scientific discovery.

Citizen science is recognized as a highly effective tool for improving the productivity
of screening processes. The availability of a comprehensive guide for non-professional
researchers to conduct experiments enables the utilization of crowdsourcing not only for
sampling but also for specific primary experiments [123]. Two different kits were designed
specifically for conducting the required experiments in order to explore the antibiotic
resistance of microorganisms found in farm animal feces.

In our project, the involvement of citizen scientists was based on networking, when the
project supervisor interacts with mentors and trains them. Mentors interact with students
and supervise their work. The participation of qualified mentors makes it possible to solve
several significant problems of “scientific volunteering.” These are ensuring the safety of
work, data verification, organizational difficulties of remote work with participants, change
in generations of students conducting research, continuation of successfully conducted
experiments of students, and others.

The purpose of involving citizen scientists in this project is to relieve scientists of the
burden of conducting routine laboratory research. To ensure the reliability of the results
obtained, the steps taken are as follows:

(1) We used simple, standardized methods for all participants.
(2) Positive and negative control samples were developed and submitted to the mentors.

These controls provided for all of the methods indicated that the analysis was correct.
(3) We invited mentors: university and college teachers who worked with citizen scientists

and monitored the quality of the work performed.
(4) Quality control and confirmation of the work performed by qualified scientists were

carried out at every stage.

The involvement of citizen scientists has some limitations. Unfortunately, not all
academic laboratories in colleges and universities are equipped to perform PCR; therefore,
not all samples were analyzed. Citizen scientists performed the analysis that was available
for their campus and laboratory. In addition, some participants collected more samples
than they could analyze with the reagents provided.

Another limitation of this study is the uneven sampling across regions and across
Russia. This problem can be addressed by selecting sample collection sites in advance
when planning research involving citizen scientists. We understand all the limitations
of this approach and see the merit of the study in the fact that student citizen scientists
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participated in an important study, learned microbiological and molecular methods, and
conducted research that is important for scientists.

The project generated considerable enthusiasm, resulting in a significant number of
participants and a significant number of samples collected and analyzed. The research
results show that citizen scientists can effectively collect and analyze samples using only
basic equipment. Citizen science is a promising field of scientific research. It allows citizen
scientists to participate in scientific research and address important questions, such as the
prevalence of antibiotic resistance in bacteria. Participation in citizen science projects like
the current one can help motivate people to use antibiotics wisely in the long term.

5. Conclusions

This paper presents our findings on the regional variations in antibiotic resistance
of E. coli associated with farm animals in Russia, highlighting the unique characteristics
of each region. Unfortunately, the analysis conducted by citizen scientists in this study
has primarily focused on bacteria from cattle feces, with a lack of comparable analysis
on bacteria associated with other farm animals throughout Russia. A sufficient number
of swine and poultry fecal samples were analyzed only in the Voronezh region. The
examination of antibiotic-resistant bacterial isolates from farm animal guts is of great
significance in the development of strategies aimed at mitigating antibiotic resistance in
bacteria. Thus, monitoring antimicrobial resistance of bacterial isolates from animals on a
regular basis may help to detect new antimicrobial resistance phenotypes in commensal
and pathogenic bacteria in the food chain.
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