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Abstract: Rhizosphere microorganisms are crucial for enhancing plant stress resistance. Current
studies have shown that Arbuscular mycorrhizal fungi (AMF) can facilitate vegetation recovery in
heavy metal-contaminated soils through interactions with rhizosphere microbiota. However, the
mechanisms by which AMF influences rhizosphere microbiota and plant growth under cadmium
(Cd) stress remain unclear. In this study, Lolium perenne L. was inoculated with AMF (Rhizophagus
irregularis) and grown in soils supplemented with Cd (0 mg kg−1, Cd0; 100 mg kg−1, Cd100). Plant
biomass, antioxidant enzyme activities, peroxide content, Cd uptake, and rhizosphere bacterial
community composition were evaluated. AMF inoculation reduced Cd influx in aboveground tissues,
enhanced nutrient availability in the rhizosphere, and mitigated Cd biotoxicity. Additionally, AMF
inoculation improved the scavenging efficiency of reactive oxygen species and alleviated oxidative
stress in L. perenne, thereby mitigating biomass reduction. Moreover, AMF treatment increased leaf
and root biomass by 342.94% and 41.31%, respectively. Furthermore, under the same Cd concentration,
AMF inoculation increased bacterial diversity (as measured by the Shannon index) and reduced
bacterial enrichment (as indicated by the ACE index). AMF promoted the enrichment of certain
bacterial genera (e.g., Proteobacteria and Actinobacteria) in the Cd100 group. These findings suggest
that AMF regulated the composition of the rhizosphere bacterial community and promoted the
growth of potentially beneficial microorganisms, thereby enhancing the resistance of L. perenne to
Cd stress. Cd contamination in soil severely limits plant growth and threatens ecosystem stability,
highlighting the need to understand how AMF and rhizosphere microbes can enhance Cd tolerance
in L. perenne. Therefore, inoculating plants with AMF is a promising strategy for enhancing their
adaptability to Cd-contaminated soils.

Keywords: Arbuscular mycorrhizal fungi (AMF); Cd contamination; Rhizophagus irregularis (Ri);
Lolium perenne L.; 16s rRNA sequencing technology

1. Introduction

Heavy metal contamination, particularly from cadmium (Cd), poses significant global
environmental hazards [1]. Among heavy metals and metalloids, Cd exhibits the highest
percentage of soil samples (7.0%), exceeding the limit specified by the Ministry of Envi-
ronmental Protection [2]. Notably, Cd exhibits strong mobility in the biosphere, posing
significant risks to both soil and plants [3,4]. Cd, mainly existing in its divalent state, is
released into the environment from various sources, including human activities, industrial
emissions, volcanic eruptions, and other natural processes [5]. The high mobility of Cd in
soil facilitates easy absorption by plant roots, leading to rapid translocation throughout
the plant and significant accumulation in the aboveground parts of vegetation [6]. This
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accumulation can reduce plant biomass and lead to Cd buildup in plants [7]. Therefore,
addressing Cd pollution is crucial.

Arbuscular mycorrhizal fungi (AMF) can enhance plant adaptability to challenging
environmental conditions through both direct and indirect mechanisms. AMF directly forms
an extensive mycelial network around the roots of the host plant, creating a reciprocal exchange
system in which plant-derived carbon is traded for essential nutrients such as nitrogen and
phosphorus. This symbiosis enables AMF to utilize 4% to 20% of the total photosynthetic
output of plants to facilitate their metabolic processes, thereby promoting plant growth and
development in a positive feedback loop [8]. To indirectly mitigate heavy metal toxicity, AMF
release specific effector proteins and peptides that reduce the mobility and bioavailability
of heavy metals in the soil. This process modulates the uptake and distribution of heavy
metal ions in both plants and the surrounding environment [9,10]. AMF sequester significant
amounts of Cd within their spores and vesicles, thereby effectively reducing environmental
heavy metal concentrations, limiting Cd translocation from roots to aboveground tissues,
and alleviating heavy metal stress on plants [11]. Additionally, AMF enhance rhizosphere
community structure and diversity, strengthen interspecies interactions, and attract beneficial
microbiota to optimize nutrient acquisition from the soil, further promoting plant growth [12].

Lolium perenne L. is a vital pasture and forage species commonly found in temperate
regions and native to Europe and was introduced into China as a lawn grass in the 1930s [13].
The L. perenne used in this study is a high-quality cool-season turfgrass variety that is widely
cultivated in urban areas of temperate and cool climate regions in China, including the
northeast, southwest, and eastern regions [14]. L. perenne, a perennial monocot in the
Poaceae family, is highly valued for its ease of cultivation, high biomass yield, excellent
regenerative capacity, and strong resistance to pests and diseases [15]. The economic
and ecological significance of L. perenne is well recognized, particularly for its role as a
vital turfgrass and green manure crop [16]. Notably, ryegrass exhibits a high tolerance to
heavy metals and can accumulate these contaminants, making it an ideal candidate for
phytoremediation, particularly in turf management on golf courses and in heavy-metal
polluted areas [17,18].

This study investigated the effectiveness of AMF, specifically Rhizophagus irregularis,
in mitigating plant growth inhibition in heavy metal-contaminated soils [19]. Previous
studies have shown that Rhizophagus irregularis reduces the toxicity of Cd in the soil, thereby
altering the rhizosphere soil microbial community, alleviating Cd-induced damage to rice,
and enhancing plant tolerance to heavy metal stress. In this study, pot experiments were
conducted to artificially inoculate Rhizophagus irregularis to evaluate its potential impact
on the rhizosphere microbial community and its ability to reduce Cd toxicity in L. perenne.
Plant growth and ectopic Cd accumulation were measured to assess the responses of the
rhizosphere microbial community.

2. Materials and Methods
2.1. Experimental Design

The experimental soil was collected from farmland in Qiqihar City at a depth of
20–40 cm. The soil had an organic matter content of 33.9 g/kg, total nitrogen of 2.97 g/kg,
hydrolyzed nitrogen of 73.5 g/kg, available phosphorus (AP) content of 5.06–9.38 g/kg,
and a pH of 6.2. The soil was sieved through a 2 mm mesh and then mixed with river sand
in a 1:1 (v) ratio. Cd treatment concentrations in the culture matrix were set at 0 mg/kg
(Cd0) and 100 mg/kg (Cd100) using CdCl2·2.5H2O. To achieve a final Cd concentration of
100 mg/kg, 223.46 mg of CdCl2·2.5H2O was dissolved in 1.20 L of autoclaved 1/4 Hoagland
solution (autoclaved at 121 ◦C for 2 h). The cadmium-free group (control) was treated with
an equivalent volume of Hoagland solution without the addition of CdCl2·2.5H2O. Water
was circulated three times to stabilize the matrix. The culture matrix was then transferred
into plastic pots (12.5 cm in diameter and 11.5 cm in height), each containing 1000 g of the
matrix. Subsequently, inactivated and activated AMF (Rhizophagus irregularis) inoculum
(provided by the College of Landscape Architecture, Yangtze University) was added at a
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rate of 50 g per pot. Fifty L. perenne seeds were planted in each pot. After germination, the
seedlings were thinned to 10 plants per pot.

Plants were grown for 55 days under greenhouse conditions at 28/22 ◦C (day/night),
with a photon flux density of 350 µmol m−2 s−1 (natural sunlight combined with cool
white fluorescent light for 16 h per day) and relative humidity of 80–85%. To maintain soil
moisture at 80% of the soil water-holding capacity, plants were regularly irrigated with
deionized water. A 1/4 strength Hoagland solution was applied weekly to ensure adequate
nutrient supply. After 55 days of growth, the whole leaves, roots, and rhizosphere soil
of L. perenne samples were collected from all four treatments. Fresh biomass and plant
height were measured, and net increases in growth and height were determined. For each
treatment, five sample replicates were taken, with a subsample of fresh material from each
plant part collected, frozen in liquid nitrogen, and stored at −80 ◦C for later analysis. The
remaining samples were dried at 60 ◦C for 72 h until they reached a constant weight. Once
dried, the samples were ground into powder using a mini-vegetation disintegrator (FZ102;
Tianjin City Test Instrument Co., Ltd., Tianjin, China). Vermiculite that remained attached
to the root segments after gentle shaking was classified as rhizosphere sediment, air-dried,
and passed through a 10-mesh sieve [20].

2.2. Testing of the Antioxidant System

Fresh 0.1 g samples of L. perenne leaf or root tissues were ground into a fine powder
using liquid nitrogen, then homogenized at 4 ◦C with 1 mL of extraction buffer from
reagent kits. The levels of malondialdehyde (MDA), oxygen-free radicals (OFR), and the
activities of Catalase (CAT) and Peroxidase (POD) were measured using commercial assay
kits (Suzhou Comin Biotechnology Co., Ltd., Suzhou, China) [22].

2.3. Physiological Parameter Measurement

Leaf, stem, and root samples (0.5 g) were dried, weighed, and then subjected to wet
digestion with a mixture of HNO3 and HClO4 (4:1, v/v) [23]. Cadmium (Cd) concentra-
tion was measured using atomic absorption spectrophotometry (AAS; ZA-3000, Hitachi,
Chiyoda-ku, Tokyo, Japan). Quality control was performed using seaweed (GBW 10023,
Institute of Geophysical and Geochemical Exploration, Langfang, China) as the standard
reference material, with accuracy within 100 ± 20% [24].

Five grams of rhizosphere sediments were mixed with 40 mL of diethylenetriamine-
pentaacetic acid (DTPA) extraction solution (0.1 M triethanolamine, 10 mM CaCl2, 5 mM
DTPA, pH 7.3), shaken at 180 rpm for 2 h, and then centrifuged at 5000× g for 10 min. The
supernatant was collected and filtered and the DTPA-extractable cadmium (Cd) concentra-
tion was determined as previously described (n = 5). Metal concentrations in plant tissues
and soils were used to calculate the translocation factor (TF) and bioconcentration factor
(BCF) [25]. The formula is as follows:

BCF = (Cd in plant/Cd in substrate)

TF = (Cd in shoots/Cd in roots)

According to the China National Standards (GB 5009.91–2017, GB 5009.241–2017) [26,27],
1 g of powdered tissue samples (leaves and roots) from each treatment was weighed and
wet digested with a HNO3:HClO4 (9:1, v/v) mixture [28]. Nutritional elements, including
potassium (K) and magnesium (Mg), were analyzed by atomic absorption spectrophotometry
(n = 5) [29]. Nitrogen (N) and phosphorus (P) concentrations in dried soil were also measured.
Ammonium nitrogen (AN) and nitrate nitrogen (NN) were extracted from plant tissues using
the Bremner micro-Kjeldahl method, while phosphorus was extracted by wet oxidation with
nitric acid and perchloric acid [30]. Total phosphorus was determined spectrophotometrically
at 420 nm using the molybdate and acid per-sulfate digestion method.
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2.4. 16S rRNA Sequencing

In this experiment, microbial DNA from rhizosphere soil was extracted using the
FastDNA SPIN Kit for Soil (Qbiogene Inc., Carlsbad, CA, USA) following the manufac-
turer’s protocol [31]. Soil microbial sequencing was performed by Majorbio Biopharm
Technology (Shanghai, China). DNA quality and concentration were assessed by 1.0%
agarose gel electrophoresis and using a NanoDrop ND-2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). The extracted DNA was stored at −80 ◦C for fu-
ture use.

The targeted microbial regions for sequencing were 515F (GTGYCAGCMGCCGC-
GGTAA) and 907R (CCGTCAATTCMTTTRAGT), amplified using the ABI GeneAmp 9700
PCR thermal cycler (ABI, Foster City, CA, USA) [32]. After preliminary tests, PCR ampli-
fication was carried out with TransGen AP221-02: TransStart FastPfu DNA Polymerase
in a 20 µL reaction volume [33]. The PCR conditions were initial denaturation at 95 ◦C
for 3 min, followed by 27 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for
30 s, extension at 72 ◦C for 45 s, and a final extension at 72 ◦C for 10 min, with the process
ending at 4 ◦C. Each soil sample was processed in triplicate.

PCR products were extracted from a 2% agarose gel, pooled by sample, and re-
analyzed by gel electrophoresis. The products were purified using the AxyPrep™ DNA Gel
Extraction Kit (Axygen, Union City, CA, USA) [34]. Quantification was performed using
the QuantiFluor ST Blue fluorescence quantification system (Promega, Madison, WI, USA)
based on initial electrophoresis results. Paired-end (PE) reads were sequenced by Illumina
(San Diego, CA, USA), spliced, and subjected to quality control and filtering [34].

2.5. Statistical Analysis

The significant differences between groups were evaluated using one-way analysis
of variance [35]. Principal coordinate analysis (PCoA) was conducted based on the Bray-
Curtis dissimilarity to assess relationships among groups using operational taxonomic units
(OTUs). The resulting spatial relationships were visualized using the “vegan” package
(v2.4.3) in R [36]. Differential analyses of microbial phyla and species were performed using
the “kruskal. test” function from the “stats 4.48” package [37]. Co-occurrence network
analysis for microbial data was performed with the “igraph 2.1.1” package in R to construct
networks using Spearman correlations [38], and networks were visualized in Gephi (version
0.10) [39]. Data visualization was performed with the “ggplot2 3.5.1” package to produce
high-quality graphics [40]. All statistical analyses were conducted in R version 3.6.2.

3. Results
3.1. AMF Colonization and Its Impact on Biomass, Nutrients, and Cadmium in Soil and Plant

The uninoculated treatment groups did not exhibit AMF colonization. However, the
inoculated groups exhibited colonization rates ranging from 83.23% to 92.83%. Notably, no
significant difference was observed between the colonization rates of the AMCd0 (85.7%)
and AMCd100 groups (90.12%) (p > 0.05) (Figure 1A). In the NMCd0 and NMCd100 groups,
exposure to Cd100 significantly reduced the shoot fresh weight, root fresh weight, and
plant height of L. perenne by 342.94%, 41.31%, and 23.21%, respectively, compared with
those of Cd0 (p < 0.05) (Figure 1B–D). In the Cd100 treatment group, inoculation with
AMCd100 significantly increased plant height and root fresh weight by 4.12% and 15.09%,
respectively, compared with those of NMCd100. Moreover, AMCd100 significantly affected
the aboveground fresh weight of the plant by 508.79% (p < 0.05) (Figure 1B–D).
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compared to the NCd0 group (p < 0.05). In the NMCd100 and AMCd100 groups, AMF 
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Figure 1. Growth and infection of L. perenne under different soil treatments. (A) Infection rate,
(B) Plant height, (C) Shoot fresh weight, and (D) Root fresh weight of L. perenne per pot. Data are
presented as Mean ± SEM, n = 5. AM and NM represent with and without AMF inoculation, respec-
tively. Cd0 indicates no cadmium, while Cd100 represents 100 mg/kg Cd. Statistical significance was
determined by one-way ANOVA, with significance indicated by different letters.

Different treatments influenced nutrient content in the rhizosphere soil of L. perenne
(Figure 2A). The Cd treatment significantly reduced AP by 7.82% in the NCd100 group
compared to the NCd0 group (p < 0.05). In the NMCd100 and AMCd100 groups, AMF
inoculation significantly increased soil carbon (C) by 2.48%, AP by 4.47%, ammonium
nitrogen (AN) by 8.78%, and nitrate nitrogen (NN) by 47.68% (p < 0.05). This suggests that
AMF inoculation improved nutrient availability even under Cd contamination.
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Figure 2. Nutrient content in rhizosphere soil and cadmium (Cd) levels in plants under different
treatments. (A) C content, ammonia nitrogen (AN), nitrate nitrogen (NN), potassium (K), and
magnesium (Mg) in rhizosphere soil. (B) Accumulation of Cd in different plant tissues under various
treatments, along with bioconcentration factors (BCFs) and translocation factors (TFs). AM and
NM represent with and without AMF inoculation, respectively. Cd0 indicates no Cd, while Cd100
represents 100 mg/kg Cd. Data are presented as mean ± SEM, n = 5 biological replicates. Statistical
significance was determined by one-way ANOVA: * p < 0.05, ** p < 0.01.
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Inoculation with AMCd100 increased the Cd content in the roots and rhizosphere
soil by 69.69% and 24.45%, respectively, but reduced leaf Cd content by 12.89% (p < 0.05)
(Figure 2B). To evaluate Cd transport and enrichment, the bioconcentration factor (BCF)
and translocation factor (TF) were calculated (Figure 2B). Compared with NMCd100, AMF
inoculation (AMCd100) significantly increased BCF by 20.98% and reduced TF by 48.67%
(p < 0.05).

3.2. Reactive Oxygen Species (ROS) and Peroxidase Activities

Changes in plant antioxidant compounds and antioxidant enzyme activities were
examined under different Cd treatments, including malondialdehyde (MDA) content, H2O2
content, Peroxidase (POD) activity, and Catalase (CAT) activity (Figure 3). Cd treatment
(NMCd100) caused a significant increase in MDA and H2O2 contents by 55.57% and
113.12%, respectively, in the NMCd100 group compared with the NMCd0 group (p < 0.05)
(Figure 3). However, in the AMCd100 group, AMF inoculation significantly reduced the
MDA and H2O2 contents by 25.90% and 29.81%, respectively (p < 0.05) (Figure 3). The
activities of POD and CAT enzymes followed the same trend as the peroxidation products.
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aldehyde (MDA) content, (B) Hydrogen peroxide (H2O2) content, (C) Peroxidase (POD) activity,
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3.3. Microbial Composition in Rhizosphere Soil

The diversity analysis of the 12 samples revealed a total of 36 phyla, 106 classes,
237 orders, 388 families, 680 genera, 1313 species, and 3812 OTUs for bacterial taxonomic
annotation (Table A1). We examined community abundance at the phylum level across
different treatments, including uninoculated (NMCd0 and NMCd100) and AMF-inoculated
(AMCd0 and AMCd100) groups (Figure 4A). Proteobacteria, comprising 42.66–51.84% in
all treatment groups, was the dominant phylum, followed by Chloroflexi and Myxococcota.
Alpha diversity analysis revealed that AMF inoculation under Cd contamination altered the
richness and diversity of the rhizosphere microbial community in L. perenne (Figure 4B,C).
The Shannon index significantly increased by 22.51% in the AMCd100 group compared
with NMCd100 (p < 0.01). Conversely, the ACE index decreased significantly by 3.60%
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and 3.66% in the AMCd0 and AMCd100 groups, respectively, compared with NMCd100
(p < 0.01).
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Figure 4. Effects of Cadmium (Cd) concentration and Arbuscular mycorrhizal fungi (AMF) inocu-
lation on rhizosphere soil bacterial communities. (A) Community abundance at the phylum level
across different treatments. (B) the Shannon index. (C) the ACE index. AM and NM represent with
and without AMF inoculation, respectively. Cd0 indicates no Cd, while Cd100 represents 100 mg/kg
Cd. Statistical significance was determined by one-way ANOVA: * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 5 shows the PCoA results of the rhizosphere soil bacterial community under
different Cd treatments and AMF inoculation. The first two principal coordinates (PC1
and PC2) accounted for 20.32% and 18.90% of the total variation, respectively. Under
AMF inoculation, the AMCd0 and AMCd100 groups were separated from the NMCd0 and
NMCd100 groups along the Y-axis. Under Cd treatment, the NMCd0 and AMCd0 groups
were separated from the NMCd100 and AMCd100 groups along the X-axis (Figure 5).
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3.4. Rhizosphere Nutrient Efficiency and Plant Cadmium Uptake

Species difference analysis revealed significant variations in microbial species at both
the phylum and genus levels in the rhizosphere of L. perenne (Figure 6). At the phylum level,
the relative abundance of dominant bacterial phyla significantly varied across treatments.
The relative abundances of Proteobacteria and Actinobacteria decreased by 2.733% and 2.048%,
respectively, in the AMCd0 group compared with the NMCd0 group. In contrast, the
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relative abundance of Actinobacteriota significantly increased by 50.20% in the AMCd100
group compared with the NMCd100 group owing to AMF inoculation. In treatment groups
without AMF inoculation, the relative abundance of Gemmatimonadota was 3.202% in the
NMCd100 group and 4.017% in the NMCd0 group (Figure 6).
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At the genus level, in groups without Cd treatment, the AMCd0 group exhibited
significantly lower relative abundances of Ramlibacter, Jatrophihabitans, possible_genus_04,
and Occallatibacter than the NMCd0 group (p < 0.05) (Figure 6). Notably, AMF inoculation
reduced the relative abundance of Ramlibacter by 20.34%. In contrast, the AMCd0 group
exhibited significantly higher relative abundances of Bacillus, Pullulanibacillus, Rhodovastum,
Paenibacillus, and Tumebacillus. Particularly, the AMCd0 group contained Tumebacillus, a
unique genus, accounting for 0.2943% of the total microbial community (p < 0.05) (Figure 6).
Under Cd treatment, the AMCd100 group exhibited a relative abundance of Phenylobac-
terium at 3.1%, representing a 2.3% increase compared with the NMCd100 group (p < 0.05)
(Figure 6). Similarly, the abundance of Jatrophihabitans increased by 1.1% in the AMCd100
group, reaching 1.5%, while the abundance of Aneurinibacillus decreased by 1.2%, from 1.9%
in the NMCd100 group to 0.7% (p < 0.05) (Figure 6). Additionally, the relative abundance
of Arthrobacter in the NMCd100 group increased by 1.5%, reaching 2.1%, compared with
the NMCd0 group (p < 0.05) (Figure 6). Furthermore, the abundance of Bradyrhizobium in-
creased by 1.2% in the NMCd100 group, reaching 1.9%, while the abundance of Sideroxydans
increased by 0.8%, from 0.5% in the NMCd0 group to 1.3% (p < 0.05) (Figure 6).

The LEfSe analysis revealed significant changes in the bacterial community compo-
sition in the rhizosphere under different treatments (Figure 7). Compared with AMCd0
and NMCd0, the AMCd0 group had significantly higher abundances of the bacterial phyla
Fibrobacterota and Firmicutes. In contrast, the NMCd0 group exhibited a higher abundance
of Acidobacteriota and Spirochaetota, indicating that bacterial communities responded dif-
ferently to AMF inoculation in the absence of Cd. A comparison between AMCd100 and
NMCd100 treatments revealed that AMCd100 had a significantly higher abundance of
Actinobacteriota and Verrucomicrobiota, while NMCd100 featured a higher abundance of Myx-
ococcota and Gemmatimonadota. This suggests that AMF inoculation promoted the growth of
beneficial microbes associated with stress tolerance, thereby altering bacterial composition
under high Cd stress. Moreover, the NMCd100 group exhibited higher enrichment of
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Actinobacteriota and Thermomonosporaceae, while NMCd0 had a higher abundance of Bacilli
and Clostridia. These findings indicate that Cd exposure significantly altered the microbial
community in the absence of AMF inoculation, potentially reducing microbial diversity
and favoring stress-tolerant taxa.
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Compared with the uninoculated group, the AMF-inoculated group had fewer nodes
and edges in the bacterial network, with 119 and 117 nodes in AMCd0 and AMCd100,
respectively (Figure 8A). However, at high Cd concentration (Cd100), the AMF-inoculated
group (AMCd100) exhibited a higher modularity coefficient and edge diameter (0.786 and
15) than the uninoculated group (NMCd100) (0.763 and 12). Proteobacteria and Actinobacteria
were significantly enriched in all four treatment groups. Particularly, AMCd100 exhibited
high abundances of Allorhizobium, Neorhizobium, Pararhizobium, -Rhizobium, Massilia, and
Phenylobacterium at 6.14, 5.28, and 4.81, respectively.

The Mantel test and Spearman correlations were used to examine the relationships
between soil factors and bacterial groups involved in Cd passivation, particularly focusing
on Cd, soil properties, and microorganisms (Figure 8B). Mantel correlation analysis was
performed to explore the potential relationships between various environmental factors and
rhizosphere bacterial communities. The results revealed a significant negative correlation
between Cd and the bacterial community (Mantel’s r > 0.6, p < 0.01), suggesting that Cd
contamination strongly disrupted the bacterial community structure. In contrast, carbon
(C) and phosphorus (P) exhibited positive and statistically significant correlations with the
bacterial community (p < 0.05), indicating that these soil nutrients may enhance bacterial
community composition and diversity. Although AMF featured a positive correlation with
the bacterial community, this relationship was not statistically significant (p > 0.05). Other
environmental factors, including potassium (K), magnesium (Mg), NN, and AN displayed
weaker and non-significant correlations with bacterial communities.
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Figure 8. Microbial community structure and network interactions under cadmium (Cd) stress. AM
and NM represent with and without AMF inoculation, respectively. Cd0 indicates no Cd, while
Cd100 represents 100 mg/kg Cd. (A) Co−occurrence network analysis of microbial communities
across treatment groups, with nodes representing taxa, color-coded by phylum, and node size in-
dicating connectivity. Key metrics (modularity and clustering coefficient) are summarized below.
(B) Correlation matrix showing relationships between environmental variables and bacterial com-
munity structure. Significant correlations (Mantel test, p < 0.05) are marked, with the color gradient
reflecting strength and direction. (C) Structural equation model (SEM) illustrating interactions among
Cd (content, translocation coefficient, and accumulation coefficient), soil nutrient content, plant
parameters (biomass and antioxidant index), bacterial metrics (OTU abundance and diversity), and
AMF (inoculation rate). Arrows indicate influence direction, with line thickness proportional to
path coefficients; positive relationships are in green, and negative relationships are in red. Statistical
significance was determined by one-way ANOVA: * p < 0.05; ** p < 0.01.

We used structural equation modeling (SEM) to analyze the effects of AMF on plant
growth, soil nutrition, and Cd uptake and translocation (Figure 8C). The SEM results
revealed that AMF inoculation, directly and indirectly, influenced both microbial com-
munity structure and diversity, which affected microbial functions, plant growth, and Cd
absorption and transport through changes in soil nutrients. Among these, the correlation
coefficient between AMF and bacteria was 0.89, and the correlation coefficient between
AMF and Cd absorption was −0.44.

4. Discussion

Cd is a highly toxic heavy metal with high mobility in soil, which poses a significant
risk of soil pollution, particularly in northeast China [41]. Cd accumulation can significantly
reduce soil nutrient content, thereby inhibiting plant growth. This study indicates that the
contents of key soil nutrients, including NN, AN, P, and K, significantly decreased under
Cd contamination. This reduction may be attributed to Cd binding with these nutrients,
forming stable chemical compounds that hinder plant absorption [42]. Additionally, Cd
can disrupt the protein structure of enzymes, further reducing the availability of vital
nutrients in the soil and leading to a decline in soil quality [43]. Conversely, under Cd
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contamination, the soil organic carbon content significantly increased owing to the secretion
of organic metabolites by plant roots, which promotes the growth and reproduction of
soil microorganisms [44]. These microorganisms enhanced the nutritional status of the
microenvironment, promoting the formation of complex microbial communities [44]. Yuan,
et al. [45] found that Cd-contaminated soils harbored Cd-resistant microbial communities.
These microorganisms utilized mechanisms such as biosorption and bioconcentration to
effectively remove large amounts of Cd from the soil. Moreover, the microorganisms can
transform Cd into non-toxic or less toxic forms [46]. Furthermore, the microorganisms
released organic matter during their metabolic processes, contributing to soil organic
matter accumulation and enhancing the soil microenvironment [47]. The toxic effects of
heavy metals can disrupt the metabolic activities and growth regulation of plants, which
affects their growth rate and seedling development [48]. Research has shown that high Cd
concentrations in soil can hinder plant growth and reduce physiological functions [49].

This study found that AMF inoculation significantly reduced Cd content in the aerial
parts of L. perennial but increased Cd accumulation in the roots and rhizosphere soil, thereby
promoting plant growth. Cd exposure significantly increased MDA and H2O2 levels in
plants, leading to oxidative stress. The Cd-treated control group (NMCd100) exhibited
significantly higher MDA levels. However, the AMCd100 group had lower MDA levels,
indicating that AMF inoculation mitigated Cd-induced lipid peroxidation. Similarly, the Cd-
treated control group exhibited significantly higher H2O2 levels, but AMF-treated groups
had significantly lower H2O2 levels [50]. The extensive network of intra- and extraradical
hyphae formed by AMF directly sequestered Cd, which significantly limited its upward
translocation in plants [51]. Additionally, AMF produced glomalin-related soil protein, a
glycoprotein that binds and stabilizes metals, which facilitated Cd immobilization within
the rhizosphere soil and root tissues, thereby reducing its transfer to the shoots [52]. The
significant increase in BCF and decrease in TF further supported this mechanism. AMF
inoculation reduced Cd concentration in the aerial parts, increased biomass, and alleviated
oxidative stress, thereby effectively mitigating Cd toxicity in plants.

Under Cd contamination, the rhizosphere soil microbial community at the phylum
level exhibited significant changes after inoculation with AMF (Figure 4). Notably, Acti-
nobacteriota emerged as the dominant phylum across all treatment groups, particularly
in the AMF-inoculated groups (AMCd0 asnd AMCd100), with a significant increase in
their relative abundance [8]. A previous study has revealed that a combination of actino-
mycetes and mucor can clean up contaminated soil, particularly zinc, lead, and manganese
compounds [52].

At the genus level, Phenylobacterium, Pullulanibacillus, Jatrophihabitans, and Marmoricola
were significantly enriched in the AMCd100 group. These genera may promote growth
mechanisms in plants, such as nutrient absorption and water balance, which can enhance
plant tolerance and promote root system development, potentially mitigating the effects of
Cd contamination [53]. However, microbial interaction can be complex, with the effects
on plants varying based on environmental factors and competitive or symbiotic relation-
ships [54]. Therefore, in applying beneficial microorganisms such as AMF to improve
plant adaptability to Cd contamination, it is crucial to consider various factors such as soil
conditions and plant varieties to achieve optimal outcomes [55]. For example, studies have
shown that different soil conditions can influence the effectiveness of AMF-plant interac-
tions in Cd-contaminated environments. In acidic soils, AMF can significantly enhance
the Cd tolerance of plants and reduce Cd accumulation in plant tissues, but this effect
may be weaker in alkaline soils [56]. Moreover, plant species exhibit varying levels of Cd
tolerance after AMF inoculation. For example, maize varieties differ in their Cd uptake
and utilization after treatment with AMF [57]. This highlights the importance of selecting
suitable plant species to enhance the effectiveness of AMF applications.

Symbiotic network analysis revealed that AMF inoculation (AMCd0 and NMCd100)
reshaped the rhizosphere microbial community. The results indicated that AMF inoculation
promoted an increase in plant-associated growth-promoting bacteria, which provided vital
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organic compounds to AMF. This interaction created a more favorable environment for
both the fungi and the plant. Consequently, the synergistic relationship between AMF
and rhizosphere microorganisms stimulated root growth in L. perenne, enhanced nutrient
uptake from the soil, and contributed to an overall improvement in plant growth rate and
quality [54,58].

Mental tests and SEM analysis revealed that plant physiological and soil nutritional
indicators significantly influenced the abundance and distribution of microbial species.
SEM results indicated the complex relationships between AMF infestation, soil nutrients,
bacterial communities, plant growth, and Cd uptake and transport. AMF inoculation
significantly promoted bacterial diversity and improved soil quality, thereby enhancing Cd
uptake by plants. However, AMF directly reduced Cd translocation through mechanisms
such as chelation or sequestration. Improved soil quality positively affected plant growth,
while bacterial communities had a minimal negative impact on plant growth owing to
resource competition [59]. Overall, AMF played a critical role in regulating both microbial
interactions and Cd dynamics, which aided in mitigating Cd contamination and improving
nutrient uptake.

The synergistic effects of AMF and rhizosphere microorganisms can significantly
enhance nutrient uptake, promote growth under adverse conditions, and improve the
tolerance of L. perenne to pollution.

5. Conclusions

This study indicated that AMF inoculation significantly enhanced the growth and
stress resistance of L. perenne in Cd-contaminated soils. AMF inoculation improved plant
biomass, promoted antioxidant enzyme activities, and regulated the composition of the
rhizosphere bacterial community. Additionally, AMF treatment increased nutrient availabil-
ity in the rhizosphere soil and reduced Cd toxicity in the aboveground parts of the plant,
thereby promoting Cd accumulation in the roots. Moreover, AMF facilitated the enrichment
of beneficial microorganisms, further enhancing plant resistance to Cd stress. These results
suggest that AMF inoculation is an effective method for improving plant adaptability
to Cd pollution. Further studies are needed to identify rhizobacterial species that are
more responsive to host plants for plant stability. Systematic studies are also required to
understand host–AMF compatibility and the mechanisms by which AMF contributes to
enhanced plant stability.
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Appendix A

Table A1. Overall display of the rhizospheric bacterial community of L. perenne.

Phylum Class Order Family Genus Species OTU

36 106 237 388 680 1313 3182
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