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Abstract: Infections pose a risk for patients undergoing hematopoietic stem cell (HSC) transplants
due to their immunosuppression, making them susceptible to opportunistic infections. Therefore,
understanding the composition of the aerobiome in this area is vital. The aim of this study was to
characterize the aerobiome in an HSC transplant area, evaluating the impact of infrastructure and
health personnel operations on air contamination. The environmental parameters and aerobiome of
the HSC transplant area at Hospital Juárez de México were quantified over one year. Finally, a double-
entry Vester matrix was constructed to classify problems according to their degree of causality. The
abundance and taxonomic diversity of the aerobiome were dependent on seasonality, environmental
factors, and high-efficiency filtration. Gram-positive bacteria predominated, followed by fungi and
Gram-negative bacteria. ANOVA revealed significant differences in the bacterial aerobiome but not
in the fungal aerobiome among the transplant rooms. Clinically, fungi such as Aspergillus fumigatus,
Alternaria spp., Cladosporium spp., and Penicillium spp. were identified. ESKAPE bacteria typing
revealed clonal dispersion. Finally, the Vester matrix highlighted critical problems associated with
contamination due to the absence of HEPA filtration and non-adherence in patient management
practices. HEPA filtration and positive pressure are essential to improve the air quality and reduce
the microbiological load. However, the control areas will depend on patient management and routine
activities, such as entry protocols in controlled areas.

Keywords: aerobiome; fungi; bacteria; transplantation; hematopoietic stem cells

1. Introduction

Scientific and technological advances in the field of hematopoietic stem cell (HSC)
transplants have revolutionized the treatment of several oncohematological diseases, with
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acute lymphoblastic leukemia (ALL) being one of the most important because of its high
incidence in the pediatric and juvenile population in Latin America [1–3]. HSC transplanta-
tion is a multidisciplinary procedure that involves the participation of various healthcare
professionals, including hematologists, oncologists, geneticists, immunologists, and infec-
tologists, among others. Therefore, the success of a transplant will depend on the synergy
between each one of these disciplines; however, these procedures are inherently associated
with significant risks, including liver disease, cardiovascular disease, endocrine disorders,
graft-versus-host reactions, and opportunistic infections [4–7]. Regarding the latter, prior
to HSC transplantation, the patient undergoes ablation and, consequently, opportunistic in-
fections can easily occur, with bacterial sepsis, mycosis, and invasive pulmonary fungemia
being the most common [8–10].

Even when these procedures include prophylactic antimicrobial treatment before and
after transplantation, the presence of resistant microorganisms can occur and becomes more
clinically relevant due to antibiotic therapy failure [11–13]. In this context, the presence
of nosocomial antibiotic-resistant bacteria on surfaces and medical devices can lead to
cross-contamination events and thus increase the length of stay, morbidity, and mortality
due to infectious events.

In a previous study by our working group, we identified the clonal spread of the
ESKAPE bacteria in the adult intensive care unit (ICU) for COVID-19 patients [14]. In
this work, we showed and discussed the problematic and negative impact of the presence
of antibiotic-resistant microbiological contamination in patients with respiratory support.
In contrast, regarding the microbiological control of HSC transplantation rooms, beyond
surfaces and medical devices, air becomes relevant as it is the vehicle for the dispersal of
microorganisms in patients who receive a transplant [15–17].

The aerobiome in such rooms is a critical factor, yet it has been underestimated as an
“invisible” biological entity. The air surrounding a patient who has received a transplant
is a complex mixture of viable and non-viable particles; within the viable particles are
microorganisms, such as fungal spores and bacteria, which can play a determining role
in the acquisition of post-transplant infections [18–21]. The negative impact of non-viable
particulate matter (PM), specifically PM2.5 in transplant areas, has been rarely studied, and
the findings that have been generated have not shown clear evidence to support its rela-
tionship with the clinical worsening of transplant patients [22]. Nevertheless, their role as
drivers of chronic degenerative diseases in other settings has already been reported [23,24].

The detailed seasonal characterization of the cultivable bacterial and fungal aerobiome
and PM in transplant areas has become a key priority, as it provides information for the
implementation of effective infection control strategies. The strengthening of patient safety
during their hospital stays to reduce morbidity and mortality highlights the need for
continuous improvement in the infrastructure of such wards. The aim of this study was
the seasonal characterization of the bacterial and fungal aerobiome and PM in the HSC
transplantation rooms of Hospital Juárez de México (HJM), a tertiary hospital located in
the north of Mexico City. Implications for the seasonal presence of bacteria, fungi, and
clones of the ESKAPE bacteria in the aerobiomes of HSC transplant rooms are analyzed
and discussed.

2. Materials and Methods
2.1. General Description of the HSC Transplant Area at HJM

The HSC transplant area at HJM is a controlled area that was built on a total surface
area of 138 m2. This area is divided into two care areas: one for HSC donors of 34 m2

(room A), with three beds, and another area for recipients of 38 m2. The remaining area
is for the reception, lock chamber, bathroom, and control site. The HSC recipient area is
subdivided into three single rooms of 12.71 m2 each (rooms B, C, and D). Room D is the
only room with ten pascals of positive pressure provided by the presence of an air handler
unit coupled to a high-efficiency particle arresting (HEPA) filter.
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The HSC transplant area has the necessary infrastructure for patient care according
to the recommendations reported by Inkster et al. (2022), such as air filtration and hourly
air changes (ACH) (room D only), room sealing with sanitary finishing, and epoxy-coated
floors, among others [25]. Figure 1 shows the aerial-view map of the HSC transplant
area at HJM, and Table 1 shows the infrastructure characteristics per room in the HSC
transplant area.
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Figure 1. Aerial map of the HSC transplant area at HJM. (A) Donor room. (B–D) Recipient rooms.

Table 1. Infrastructure by room (donors and recipients) in the HSC transplant rooms at HJM.

Characteristic Unit
Donor Room Recipient Rooms

A B C D

Dimensions m2 34 12.7 12.7 12.7
Positive pressure Pa No No No Yes
HEPA filtration 0.3 mm No No No Yes

Air changes AC/h 0 0 0 10
Sanitary sealing

Non applicable

No Yes Yes Yes
Epoxy floor coating Yes Yes Yes Yes

Shared bathroom between patients No Yes Yes Yes
Single washbasin Yes Yes Yes Yes

2.2. Determination of Air Quality Parameters (PM, Temperature, and Relative Humidity)

The PM concentrations per m3 were measured annually (bimonthly) in the four rooms
of the transplant area (A, B, C, and D). For this purpose, an ExTech VPC300 optical particle
counter (OPS) (FLIR Commercial Systems Inc., Wilsonville, OR, USA), previously calibrated
inside a type II laminar flow hood, was used. The device was configured to quantify
airborne PM of 1.0, 2.5, and 10.0 µm during a sampling interval of 20 s according to the
manufacturer’s conditions (per triplicate). The analysis conditions were implemented
identically as in the quantification of the bacterial and fungal aerobiomes (in terms of
floor height and time). Finally, the temperature (◦C) and relative humidity (RH) (%) were
simultaneously recorded (per triplicate) with a calibrated thermohygrometer.
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2.3. Annual Analysis of the Aerobiome in the HSC Transplant Rooms at HJM

The quantification of the aerobiome in the HSC transplant rooms at HJM was
carried out for one year, namely “January to December 2023” (bimonthly), at a fixed time
(10:00 a.m.), considering the greatest influx of health personnel. For the quantification
of the airborne microbiological load of fungi and Gram-negative and Gram-positive
bacteria, the collision method was used with the Air Ideal 3P sampler (bioMérieux,
Lyon, France), according to the manufacturer’s conditions, using a set of solid culture
media for each room (A, B, C, and D). These were potato dextrose agar (PDA; plus
chloramphenicol (30 µg/mL) and streptomycin (30 µg/mL)), Mannitol Salt a, and
MacConkey agar, for the presumptive identification of fungi, Gram-positive bacteria,
and Gram-negative bacteria, respectively.

For this purpose, the air sampler was programmed for 1000 L air sample aspiration
volumes, equivalent to 1 m3, as follows. With the doors closed, the air sampler was placed
1.5 m above ground level in the central part of each room and switched on, and the operator
immediately left the sampling point. After sampling, the culture media were immediately
enclosed and incubated aerobically at 37 ◦C for 48 h and 28 ◦C for 72 h, as the growing
conditions for bacteria and fungi, respectively. Bacterial and fungal colonies were counted
and reported as CFU/m3 of air sampled; finally, all colonies were isolated on the same
culture media to obtain pure cultures for identification as follows.

2.4. Bacterial Aerobiome Identification by Mass Spectrometry MALDI-TOF

Only pure bacterial isolates were identified by the direct analysis of whole bacterial
cells using matrix-assisted laser desorption/ionization-time of flight mass spectrom-
etry (MALDI-TOF MS). For this purpose, all bacterial strains were streaked in LB
agar and incubated overnight at 37 ◦C, and single colonies were subjected to iden-
tification by using a Bruker MALDI Biotyper (Bruker Daltonik, Bremen, Germany),
according to the manufacturer’s instructions. The criterion found to best match with
the identification protocol was bacterial strains with score values above 2.0 (down to 3)
for high-confidence identification. With the taxonomic assignment information of
the isolates, plots of the relative abundance versus taxonomic diversity and seasonal
heat maps of the taxonomic diversity (per room) versus bimonthly period of analysis
were constructed.

2.5. Macro- and Microscopic Identification of the Fungal Aerobiome

Representative colonies of the aerial fungal load were chosen for axenic cultures on
PDA agar. These cultures were incubated aerobically for 7 days at 28 ◦C for the description
of the macro- and microscopic morphology using the method reported by Johnson and
Borman (2010) [26]. To describe the macroscopic morphology, aspects such as the texture,
colonial surface, color of the obverse/reverse, and presence of diffusible pigments were identi-
fied. The microscopic identification at 1000× total magnification of the mycelium and typical
and asexual reproductive structures (hypha, conidiophore, microconidium, dicthyoconidium,
vesicle, phialide, and metula) was performed using lactophenol cotton blue.

2.6. Molecular Typing of Gram-Negative Bacteria (ESKAPE) by ERIC-PCR

Gram-negative bacteria (only ESKAPE bacteria) were subjected to molecular typing
by ERIC-PCR, by using the primers ERIC1R (5′-ATGTAAGCTCCTGGGGGGATTCAC-3′)
and ERIC2 (5′-AAGTAAGTGACTGGGGGGTGAGC-3′), according to Versalovic et al.,
1991 [27]. The total reaction volume was 50 µL and consisted of 1× PCR buffer, 20 nM
MgCl2, 25 mM dNTPs, 100 pM of each primer, Taq DNA polymerase (2 U), and 300 ng
of genomic DNA. The cycling conditions were as follows: pre-denaturation at 95 ◦C for
7 s, denaturation at 90 ◦C for 30 s, annealing at 58 ◦C for 1 min, and extension at 65 ◦C for
8 min, with a final extension at 68 ◦C for 16 min at the end for 30 cycles. Genetic profiles
were run in 1 X TBE buffer, pH 8.3, and separated in horizontal electrophoresis in 1.5%
agarose gels, visualized, photographed under UV illumination, and analyzed by intra-gel
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pattern comparison. To confirm the reproducibility of the ERIC-PCR assays, these were
performed three times. The Tenover criteria were used to establish the clonal relationships
between isolates with the same genus and species [28]. Finally, the graphical relationships
were analyzed through a distance matrix by using a linear semilogarithmic method. The
dendrograms were constructed using the UPGMA algorithm, with the Dice similarity index.
Genomic similarity was confirmed with a bootstrap test of 1000 repetitions using the Past4
program (Version 4.09).

2.7. Statistical Analysis and Vester Matrix Construction

Significant differences between the variables analyzed were evaluated by using
ANOVA and Tukey’s post hoc test for the concentrations of 1.0, 2.5, and 10.0 mg/m3;
the temperature and relative humidity (RH); and the bacterial and fungal microbiological
loads. Significant differences between the variables were established when the p-value
was <0.05. Additionally, the SPSS v.27.0.1.0 and XLSTAT 2023 statistical software programs
were used for the analysis and graphical representation. Finally, a Vester matrix was
constructed to classify microbiological problems in the HSC transplant area according to
their degree of causality. For this purpose, 24 situations were identified that could impact
various outcomes of microbiological contamination. Causality was assessed individually
and as a group by various health professionals, including 4 microbiologists, 4 oncologists,
4 hematologists, 4 epidemiologists, 4 nurses, and 4 cleaning assistants. With the results
of causality (0, 1, 2, and 3), those that occurred most frequently were considered to have
causality closest to reality and were transferred to the matrix to be categorized as active,
passive, critical, or indifferent problems [29].

3. Results
3.1. HEPA Pressure and Positive Filtration Impacts the Standard Air Quality Parameters

To determine the impact of HEPA filtration and positive pressure in the transplant
room, the annual quantification (mg/m3) of particulate matter (PM1.0, 2.5, and 10 µm)
was performed. The results revealed that, in those rooms where HEPA filtration was not
available (rooms A, B, and C), the maximum PM10, PM2.5, and PM1.0 levels of 37, 24, and
15 µg/m3, respectively, were detected. The minimum PM levels were at magnitudes of 3, 2,
and 3 µg/m3 for PM10, PM2.5, and PM1.0, respectively. The ANOVA and Tukey’s post
hoc analysis demonstrated significant differences for all particles analyzed between donor
room A and recipient rooms B and C versus recipient room D (Figure 2).

Figure 2A–G show the results of the PM10, PM2.5, and PM1.0 µm quantification
from the HSC transplant rooms at HJM and the Tukey’s post hoc analysis and ANOVA
for the statistical comparison of the PM levels between the rooms. Simultaneously
with these determinations, measurements of the ambient temperature and RH were
performed. The results revealed average maximum temperature and RH values of
27 ± 0.4 ◦C and 57.2 ± 0.2%, respectively. Conversely, the minimum values of these
same parameters were between 21.8 ± 0.3 ◦C and 44.8 ± 0.1%. Interestingly, these
maximum and minimum values were directly related to the seasonality for warm
months and cold months (B3 “May–June”) and (B4 “July–August”); however, regarding
room D, it was the room with the lowest temperature and RH values during the study
period. Figure 2H,I show the results of the temporal analysis of the temperature and
RH in the HSC transplant area at HJM.
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quantification (A–D) and Tukey’s post hoc and ANOVA tests for the comparison of the PM lev-
els between rooms (E–G). Temperature (◦C) and relative humidity (RH%) in the HSC transplant
rooms (H,I). * Statistically significant (p ≤ 0.05).

3.2. Seasonal Behavior of Aerobiome Load

The seasonal analysis of the cultivable bacterial and fungal aerobiomes of the HSC
transplant rooms showed the maximum microbiological loads with peaks in the months of
spring (May/June) and summer (July/August), with average viable counts of 1.0 × 102 ± 22.6,
2.2 × 102 ± 22.6, and 72.5 ± 38.9 CFU/m3 for rooms A (donors), B, and C (recipients). This
seasonal behavior of the loads was not detected in room D (for recipients), which had HEPA
filtration and positive pressure.

The lowest microbiological loads were identified in the two-month periods at the
extremes of the year, in winter (January/April) and autumn (October/December). The
highest peak bacterial loads were represented by Gram-positive bacteria, followed by
fungi and Gram-negative bacteria. Figure 3 shows the seasonal analysis (bimonthly) of the
aerobiome microbiological loads that were analyzed in the HSC transplant rooms at HJM
from January to December 2023.
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3.3. Significant Differences in Bacterial Aerobiome Load Between Rooms

Because the recipient rooms (B, C, and D) and the donor room (D) presented micro-
biological loads with seasonal behavior (Figure 3), an ANOVA and Tukey’s post hoc test
were performed to determine the existence of significant differences in bacterial microbio-
logical contamination between the rooms. The results revealed the presence of significant
differences between rooms B and D for receivers (p = 0.0197).

No differences between rooms A, B, and C were identified. In microbiological terms,
it was observed that the degree of bacterial contamination was similar between rooms
without HEPA filtration and positive pressure. Figure 4A shows the results of the ANOVA
and Tukey’s post hoc test for the statistical comparison of the bacterial aerobiome, and
Figure 4B summarizes the findings of the bacterial identification by mass spectrometry of
the culturable aerobiome in the HSC transplantation area at HJM.
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3.4. Clinically Important Taxonomic Diversity of Bacterial Aerobiome

To elucidate the taxonomic diversity and relative abundance (%) of the culturable
bacterial aerobiome in the HSC transplant area, the mass spectrometry identification of all
isolates per m3 from the four rooms (A, B, C, and D) was performed during the study period
(Figure 4B). The results revealed the significant diversity of the clinically relevant bacterial
genera and species in the four rooms analyzed (A = 9 genus and 16 species, B = 9 genus
and 15 species, C = 9 genus and 11 species, and D = 8 genus and 13 species).

The aerobiome was mainly represented by Gram-positive bacteria, where the genus
Staphylococcus spp. showed the highest relative abundance, with S. warneri, S. haemolyticus,
S. saprophyticus, and S. epidermidis species being the most prevalent. Within this bacterial
group (Gram-positive), Enterococcus faecalis, a bacterium belonging to the ESKAPE group,
was identified. Alternatively, four bacterial genera of Gram-negative bacteria were identi-
fied, where three of them also belonged to the ESKAPE group (Escherichia coli, Enterobacter
cloacae, and E. hormaechei).

Regarding the differences in the taxonomic diversity and relative abundance of the
aerobiome between areas, it was identified that S. haemolyticus was present with abundances
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of 0.20, 0.40, and 0.33 in rooms A, B, and C, respectively, being rooms without HEPA
filtration and positive pressure. In contrast, the relative abundance of S. saprophyticus
increased gradually in each of the areas (A = 0.082, B = 0.096, C = 0.291), being higher in
the room with HEPA filtration and positive pressure (D = 0.345).

The rest of the bacterial genera and species present in the aerobiome showed het-
erogeneous relative abundances in each of the rooms analyzed. Finally, S. saprophyticus,
Aerococcus viridans, and E. coli (ESKAPE bacteria) were present in all four rooms, regardless
of the type of use (for donors or recipients). Figure 4B summarizes the bacterial identifica-
tion findings by mass spectrometry (MALDI-TOF MS) of the culturable aerobiome in the
HSC transplant area (donor and recipient rooms) at HJM.

3.5. Seasonal Transition of the Bacterial Aerobiome in the HSC Transplant Area

As part of the analysis of the bacterial aerobiome, a longitudinal follow-up study
of the behavior of the bacterial aerobiome per m3 of the HSC transplant area during the
study period was carried out. For this purpose, heat maps were created of each of the
rooms analyzed, using the information on the relative abundance and taxonomic diversity
per m3 identified by mass spectrometry. The results revealed that species of the genus
Staphylococcus showed a reduction in relative abundance during the bimonthly course of
the study period. Species such as S. warneri, S. haemolitycus, S. equorum, and S. saprophyticus
showed this behavior in the donor (A) and recipient (B and D) rooms (Figure 5).
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Regarding room C, no seasonal transition (upward or downward) of this bacterial
genus was observed. In the case of Aerococcus viridans, in addition to being identified in all
four rooms, only in receiving room C did it show an increase in relative abundance during
the study period.

Two members of the ESKAPE group (E. faecalis and E. coli) were detected in a timely
manner from the second to the fourth bimester analyzed, without any change in relative
abundance; only E. coli was detected at two different times (bimesters 3 and 6) in room B
for recipients. Interestingly, the ESKAPE member Enterobacter hormaechei was detected in
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the donor room (A), with an increase in relative abundance towards the warmer months of
the year (bimesters 1, 3, and 4).

Figure 5 shows the heat maps of the seasonal behavior of the bacterial aerobiome of
the HSC transplant area at HJM during January to December 2023 (distributed according
to bimonthly analysis).

3.6. No Significant Difference in Fungal Aerobiome Between Rooms

Regarding the fungal aerobiome loads, the ANOVA and Tukey’s post hoc test revealed
the absence of significant differences between the microbiological loads per m3 of the
aerobiome between the areas analyzed (p > 0.05). In microbiological terms, the degree of
fungal contamination per m3 was similar between the areas, regardless of the room type
(with or without HEPA filtration and positive pressure).

Figure 6A shows the results of the ANOVA and Tukey’s post hoc test for the statistical
comparison of the fungal aerobiome, and Figure 6B shows representative microphotographs
of the macro- and microscopic identification findings for the filamentous fungal genera of
the culturable aerobiome in the HSC transplant area at HJM.
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Figure 6. Fungal aerobiome of the HSC transplant rooms. (A) ANOVA and Tukey’s post hoc test for
fungal aerobiome. (B) Macro- and microscopic identification of fungi in the aerobiome of the HSC
transplant area at HJM. The colonial morphology (front and back): Alternaria sp., Cladosporium sp.,
Aspergillus fumigatus, and Penicillium spp. Sexual reproductive structures at 1000× total magnifica-
tion. H = Hypha, Co = Conidiophore, Mc = Microconidium, Dc = Dicthyoconidium, V = Vesicle,
Ph = Phialide, M = Metula.

3.7. Fungal Aerobiome Reveals Filamentous Fungi Involved in Nosocomial Fungemia

The macro- and microscopic analysis of the most frequent morphotypes of the filamen-
tous fungi that were isolated in the rooms of the HSC transplant ward revealed the presence
of clinically important genera involved in cases of fungemia and/or invasive mycosis in
transplant patients, such as Aspergillus fumigatus, Alternaria spp., Cladosporium spp., and
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Penicillium spp. This was due to the observation of characteristic asexual reproductive
structures of the isolates. The four fungal genera were homogeneously distributed in the
four rooms. Figure 5B shows the morphological identification of filamentous fungi from
the HSC transplant area at HJM during January to December 2023.

3.8. Molecular Typing of ESKAPE Members in the Aerobiome by ERIC-PCR

The profiles of the intergenic products obtained by end point-PCR for E. cloacae and
E. hormaechei isolated from the aerobiome revealed that the sizes of the amplicons ranged
from slightly more than ≈280 bp to about ≈1600 bp. The intergenic region diversity
(six different amplicons) showed that the seven isolates of E. hormaechei (n = 4) and E. cloacae
(n = 3) were grouped into two unique clonal groups. In the case of the seven isolates of
E. coli from the aerobiome, it revealed that the sizes of the amplicons ranged from slightly
more than ≈100 bp to about ≈1400 bp and were grouped into a single clonal group.

Therefore, it is concluded that three clonal groups were identified, distributed across
three Gram-negative bacterial genera from the ESKAPE group. The spatial distribution
of these ESKAPE group clones (by room in the HSC transplant area) is shown in the heat
maps in Figure 5. In Figure 7, the clonal dispersion dendrograms for E. coli, E. hormaechei,
and E. cloaceae in the HSC transplant rooms at HJM are shown.
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Figure 7. Genomic diversity (clonal dispersion) by dendrogram construction of ESKAPE bacteria
detected in aerobiome in HSC transplant rooms of the Hospital Juárez de México. Escherichia coli (A),
Enterobacter hormaechei (B), and E. cloaceae (C). PA (Pseudomonas aeruginosa as internal control).

3.9. Vester Matrix Construction for Microbiological Situations in the Transplant Area

A Vester matrix was constructed to classify different situations according to their
degree of causality and determine which ones resulted in microbiological problems in the
HSC transplant area at HJM. Twenty-four main controversial situations were identified
(Figure 8A). Additionally, the degree of causality of the microbiological findings was ana-
lyzed by the type of pathogen, whether it was multidrug-resistant (MDR) or non-MDR,
and the clonal dispersion of the microorganisms. The results revealed that, of the contro-
versial situations (24/100%), nine critical problems (37.5%), one passive problem (4.1%),
zero active problems (0%), and fourteen indifferent problems (58.3%) were identified, with
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contamination by external microorganisms (P1) being the most relevant critical problem,
followed by the contamination of medical equipment (P9) and cross-contamination between
patients (P3). In contrast, bacterial (including MDR) and fungal microbiological problems
(P11-P24) were grouped as indifferent problems; however, they were closely related to
the critical problems as they were the result of the indifferent problems. Figure 8A shows
the Vester matrix with the 24 controversial situations that could impact the microbiolog-
ical characteristics of the HSC transplant area at HJM, and Figure 8B shows the spatial
distribution of the passive, critical, indifferent, and active problems.
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4. Discussion

Opportunistic infections in oncology patients are a challenge in hospital settings, as
they pose significant risks to the patients who suffer from them, with the depletion of the
immune system being the main factor of susceptibility. Even when the HSC transplantation
procedure is successful, poor air quality and microbiological control can exacerbate the
inherent risk of this medical procedure, allowing the spread of opportunistic pathogens
of bacterial and/or fungal origin and consequently the development of infections. These
microorganisms, which, under normal conditions, would not cause disease, can cause
life-threatening infections in immunocompromised patients.

Therefore, it is crucial to implement strict airborne microbiological surveillance and
control measures in the areas where patients are kept in order to minimize exposure to
airborne contamination and consequently reduce the incidence of opportunistic infections
and thus increase the chances of recovery.

Subsequently, the objective of the present study was the seasonal characterization of
the aerobiome in the HSC transplant area at HJM, to relate the microbiological findings
to the infrastructure of this area and to possible weaknesses in the operability of the
health personnel, which could have an impact on the characteristics of the aerobiome. As
observed in Figure 1 and Table 1, the area coded as “room D” was the only room with
HEPA filtration and positive pressure infrastructure. These features showed a positive
impact in this area, with the lowest levels of PM > 1.0, 2.5, and 10 µm (Figure 2A–G).
High-efficiency HEPA filtration has been recognized as one of the best alternatives in
reducing PM, including infectious bioaerosols, in various environments, such as domestic
environments and areas in and around schools [30–32]. Concerns about the negative impact
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of PM and the development of chronic degenerative diseases and the need for its reduction
in the hospital environment have already been described [33,34].

An important aspect to consider is that HEPA filtration systems are designed to reduce
the PM load (including bacteria, spores, etc.); however, it is not a system that promotes
zero microbiological contamination rates. A relevant finding is shown in Figure 3, where
the seasonal influence on the fluctuations in the microbial load can be identified; this may
indicate that certain periods have the most favorable conditions for microbial growth,
such as the temperature and RH, which showed upward behavior in the hot months
(Figure 2H,I). These results provide insights into the dynamics of microbial loads, high-
lighting the importance of more rigorous monitoring and control, such as the immediate
implementation of improved hygiene practices and environmental control in those months
where the conditions are most favorable for microbial growth.

This information can be crucial as it confirms that filtration systems act as barriers to
microbiological contamination. This can be seen in Figure 4A, where it is shown that, even
though significantly different rates (p = 0.0197) of airborne contamination were detected in
the controlled room (D) compared to uncontrolled areas, it could be detected and quantified
during the study period. In contrast, the findings for the fungal load showed no significant
differences between these same areas, even with the presence of HEPA filtration and
positive pressure in room D (Figure 6A), suggesting the homogeneous distribution of these
microorganisms in the hospital environment, regardless of seasonality and the influence
that the temperature and RH may have on their presence and abundance, as fungal spores
are known to be resistant to factors such as the temperature, humidity, water availability,
and others. The influence of seasonality on the behavior of the bacterial and fungal loads
(Figures 3 and 5) has already been reported in a previous work investigating the aerobiome
in hospital environments. Nuñez and García (2023) characterized the hospital aerobiome to
determine seasonal trends and the impact on window opening [35]. This work highlighted
the complex taxonomic composition and relative abundance of the bacterial load in the
autumn and summer months, where it is speculated that factors such as the ambient
temperature may influence the changes in the taxonomic diversity and relative abundance
of the aerobiome.

Regarding aerobiome characterization, while the taxonomic diversity analysis revealed
bacteria predominantly from the coagulase-negative staphylococci (Figure 4B), which are
considered to be environmental bacteria, seven of the ten species identified have been
reported as opportunistic pathogens in patients with HSC transplants (Table 2).

We speculate that the heterogeneity in the presence and absence of species such as
S. warneri, S. equorum, and S. epidermidis in the analyzed areas arises from multifactorial
contamination events that could be influenced by various causes; however, the predom-
inance of S. epidermidis in “room D” provides indications of contamination by bacteria
from entirely biological (skin) sources. In contrast, the ESKAPE group of bacteria has been
recognized as one of the main microbiological problems in hospital centers, mainly where
critical patients are cared for.

During the COVID-19 pandemic, the ESKAPE group was identified as the group
of microorganisms that led to the worsening of patients, as they generated co-infections
with the SARS-CoV-2 virus and formed some of the bacterial contaminants on surfaces
and/or medical devices [14,21,36]. In a worldwide report by the Antimicrobial Resistance
Collaborators, a systematic analysis was provided for the 2019 Global Burden of Disease
Study, where global mortality was associated with 33 bacterial pathogens, with the ESKAPE
group being the main one, ranking among the top ten infectious bacterial agents causing
death in susceptible patients. In particular, E. coli, the genus Enterobacter, and E. faecalis were
ranked second, seventh, and ninth, respectively [37]. The microbiological findings of these
three members of the ESKAPE bacteria, together with the clonal spread of Gram-negative
bacilli in the rooms of HSC recipients, could reflect one of the most important exogenous
contamination health problems in transplant areas in this work (Figure 7 and Table 2).
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Table 2. Summary of opportunistic infections in patients with HSC transplantation reported in the
scientific literature and compared with the findings of the present work.

Pathogen Genus Species Infections in HSC Transplant Patients References

Gram-Positive

Staphylococcus

S. warneri Bacteremia, oral disbiosis, oral mucositis [38–40]
S. haemolyticus Bacteremia, meningitis, oral mucositis [38,39,41]

S. equorum Surgical site in liver transplant patients [42]
S. saprophyticus Bacteremia [43]
S. epidermidis Bacteremia [18]
S. ureilyticus Non-reported NA *

S. hominis Bacteremia [44]
S. capitis Bacteremia [18]
S. arlettae Non-reported NA *
S. borealis Non-reported NA *

Enterococcus E. faecalis Bacteremia, enteric mucositis [45–47]

Micrococcus M. luteus Catheter-related septic shock [48]

Aerococcus A. viridans Non-reported NA *

Kocuria K. rhizophila Catheter-related bacteremia [49]

Bacillus
B. pumilus

Non-reported NA *

B. mojavensis

Lactobacillus L. curvatus

Lacticaseibacillus L. paracasei

Cytobacillus C. oceanisediminis

Metabacillus M. halosaccharovorans

Priestia
P. endophytica
P. megaterium

Gram-Negative

Enterobacter
E. hormaechei Rectal and intestinal colonization [50,51]

E. cloacae Gut and urinary tract
infections, bacteremia [52–55]

Escherichia E. coli Bacteremia, gastrointestinal colonization [56–58]

Acinetobacter A. Iwoffii Bacteremia, colitis, pneumonia [59–61]

Shewanella S. putrefaciens Bacteremia [62,63]

Pseudomonas P. putida Bacteremia [61,64]

Fungi

Alternaria Alternaria spp.
Cutaneous phaeohyphomycosis,

cutaneous alternariosis, fungal infection
(brain, sinus, and skin)

[65–67]

Cladosporium Cladosporium spp. Invasive mold infections [68,69]

Aspergillus A. fumigatus
Rhino-cerebral, cutaneous and

pulmonary aspergillosis, disseminated,
and gastrointestinal

[70,71]

Penicillium Penicillium spp. Invasive fungal infection, pulmonary
fungal infection [72,73]

* NA: Non-applicable.

The clonal spread of the ESKAPE group bacteria has already been reported at the
HJM in other critical patient care areas, the most important being the ICU for COVID-19
patients. In this context, Loyola-Cruz et al. (2023) and Durán-Manuel et al. (2021) identified
the clonal spread of Acinetobacter baumannii MDR and Pseudomonas aeruginosa MDR/XDR
in patients with ventilator-associated pneumonia (VAP) and as microbiological contam-
ination in medical devices in the ICU, and this problem was exposed with an emphasis
on the importance of adopting good practices in patient management and cleaning and
disinfection protocols [14,74]. As shown in Figure 4B, even though the frequency of the
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airborne isolation of these microorganisms in the transplant area was low, their isolation
has clinical relevance due to the possibility of their clonal spread on surfaces and medical
devices and in patients. Finally, the mycological findings and their clinical relevance are
summarized in Table 2. In recent years, filamentous fungi such as Alternaria spp. and
Cladosporium spp. have been considered as emerging pathogens in transplant patients,
causing life-threatening skin and invasive infections [66,68].

The fungus A. fumigatus is particularly relevant due to its high production of enzymes
with proteolytic activity, which gives it an enormous capacity to cause a variety of serious
infections, such as pulmonary mycosis to disseminated infections [75]. This is why the
early detection and treatment of fungal infections is critical due to the high mortality
associated with them. It is important to mention that, during the study period, eleven HSC
transplants were performed in room D, where two cases of post-transplant opportunistic
mycoses were detected (18%). These cases were represented by two male patients aged
17 and 53 years, with mucositis and pneumonia caused by Candida spp. and Aspergillus
fumigatus, respectively, with ALL and multiple myeloma being the oncohematological
pathologies associated with these two cases. The above discussion highlights two needs:
infrastructure to control these parameters in all areas of care and mainly changes that
impact the management of critically ill patients by healthcare personnel. For this reason, a
risk matrix was generated, which detected critical problems that could directly influence
microbiological contamination in these areas, considering various controversial situations,
such as the relaxation of entry protocols to controlled areas, the inappropriate use or reuse
of personal protection equipment (PPE), failures in the ventilation system, contamination
by visitors, etc. (Figure 8). This tool facilitated an understanding of the controversial
situations in this area in a simple and practical way (Figure 8A). We identified that, even if
an area has positive pressure infrastructure and other microbiological control features, as
shown in Table 1, these will be of low impact if the active problems (P1-P6 and P8-P10) are
not immediately addressed.

This is in accordance with the results shown in the problem distribution map in
Figure 8B. It is important to mention that the indifferent problems may be underestimated
under the definition that they are those that are not exclusively related to the critical
problems, as they may be the outcomes of the situations that give rise to active problems.
Therefore, the fundamental purpose of this type of research is to encourage adherence to all
activities that could lead to exogenous microbiological contamination in controlled areas,
rather than merely proposing that positive pressure and filtration infrastructure is the only
way to ensure microbiologically “clean” critical areas. As mentioned, transplantation is a
complex medical procedure; however, these medical efforts can be hampered by bacterial
and fungal infections, so the air in the rooms where these procedures are performed should
be subject to surveillance. Alternatively, the seasonal variability in the degree of microbi-
ological contamination highlights the need to implement more rigorous environmental
control strategies during periods of increased risk.

5. Conclusions

This study shows the importance of monitoring and controlling the aerobiome in HSC
transplant rooms to minimize the risk of nosocomial infections, where the implementation
of measures such as HEPA filtration and the maintenance of positive pressure in critical
areas is essential to improve clinical outcomes and reduce the morbidity and mortality
associated with infections in immunocompromised patients.
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