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Abstract: Previous investigations have explored the involvement of wolves in parasitic and viral
diseases, but data on the zoonotic bacteria are limited. The aim of this study was to assess the
occurrence of bacterial zoonotic agents in 16 wolf (Canis lupus italicus) fecal samples collected in a
protected area in Central Italy. Campylobacter spp., Salmonella spp., Yersinia spp., Listeria monocytogenes,
and Shiga Toxin-Producing Escherichia coli (STEC) were investigated by culture, while polymerase
chain reaction (PCR) was employed to detect Coxiella burnetii, Mycobacterium spp., Brucella spp., and
Francisella tularensis. The presence of Extended Spectrum β-Lactamase (ESBL)- and carbapenemase-
producing Enterobacteriaceae was also evaluated, using selective isolation media and detection
of antimicrobial resistance genes. All samples were negative for Campylobacter spp., Salmonella
spp., C. burnetii, Mycobacterium spp., Brucella spp., F. tularensis, and carbapenemase-producing
Enterobacteriaceae. One sample tested positive for Yersinia aldovae and three for Yersinia enterocolitica
BT1A. One L. monocytogenes (serogroup IIa) and one STEC, carrying the stx1 gene, were isolated.
Two ESBL isolates were detected: one Serratia fonticola, carrying blaFONA-3/6 gene, and one Escherichia
coli, carrying blaCTX-M-1 gene. Both ESBL isolates were resistant to different antimicrobials and
therefore classified as multi-drug-resistant. Our data suggest that wolves are potential carriers of
zoonotic bacteria and may contribute to the environmental contamination through their feces.

Keywords: Italian wolf (Canis lupus italicus); zoonosis; Yersinia enterocolitica; Listeria monocytogenes;
Shiga Toxin-Producing Escherichia coli (STEC); antimicrobial resistance

1. Introduction

The wolf (Canis lupus) is an adaptable wild animal species, distributed in many parts
of the world [1]. It was the first domesticated species, but over the centuries, wolves have
posed a constant problem for human populations [2]. In Western Europe, in particular
in Central Italy and Spain, by the 1970s, only few individuals survived [3]. Since then,
conservation and reintroduction programs have been established, leading to a constant
growth in the wolf population [4]. Recent data show the wide spread of this species in
many parts of Italy, with recolonization of several habitats [4]. Currently, the Italian wolf
(Canis lupus italicus) is a protected species in Italy [5], with an estimated population of about
3300 individuals [6].

Wolves are generalist apex predators, mainly preying on wild ungulates [7]; there-
fore, it is plausible that wolves could be exposed to various pathogens and undergo an
accumulation process [8–10]. Many recent studies conducted in Italy support this hypoth-
esis. In particular, most of these surveys were focused on parasites [8,11–20] and viral
agents [12,21–28].

Conversely, only few studies have been carried out to investigate the presence of
bacterial pathogens in the feces of these animals [29–31]. Wolves’ feces may contaminate
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the environment and become sources of pathogens for other animals contributing to the
amplification of the epidemiological scenario of given agents. This amplification can
become a public health issue considering that most of them may cause zoonoses.

In view of the scarce data on bacterial infections in wolves, the aim of the present sur-
vey was to investigate the occurrence of the most important zoonotic bacterial pathogens
in feces, collected from the environment, of wolves living in a national park located
in Central Italy. For this purpose, Listeria monocytogenes, Campylobacter spp., Salmonella
spp., Yersinia spp., Shiga Toxin-Producing Escherichia coli (STEC), Extended Spectrum
β-Lactamase (ESBL)-producing and carbapenemase-producing Enterobacteriaceae were
investigated using traditional bacteriological examinations. In addition, presence of Cox-
iella burnetii, Mycobacterium spp., Brucella spp., and Francisella tularensis was assessed by
molecular investigations.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Foreste Casentinesi National Park, located in the
Northern Italian Apennines, between the Tuscany and Emilia-Romagna regions, and
covering an area of about 36,000 hectares of woodland. The park is the home of many
animal species, such as wild ungulates, small mammals, wild birds, amphibians, and
reptiles. About 100 wolves have been estimated to be present throughout the park [32].
The park is a protected area with decreased anthropic pressure. However, medium-size
towns and small villages are present, as well as some extensive or semi-extensive breeding
of small ruminants, bovine, and swine. The park is frequently visited by tourists for
recreational activities.

2.2. Sampling

Samples were collected for 14 consecutive days in April 2022. Only intact feces (with
an evident mucous layer on the surface, still soft, not covered with dust and/or molds),
identified as wolf scat on the basis of their shape, size, and smell [33], were taken; about
10–50 g of feces was collected in sterile 300 mL jars and stored in refrigerated condition. The
samples were sent to the Laboratory of Infectious Diseases of the Department of Veterinary
Science, University of Pisa, and analyzed within 24 h from sampling. Since the collected
samples could not be attributed to known animals, it cannot be excluded that they came
from the same wolves.

2.3. Bacteriological Analyses

Each fecal sample was divided into five smaller portions, in a biosafety cabinet and
using sterile instruments. Each aliquot contained approximately from 1 to 10 g of feces,
depending on the total available amount of the samples. Four aliquots were used for
enrichment cultures to isolate specific pathogens, namely L. monocytogenes, Campylobacter
spp., Yersinia spp., Salmonella spp., Shiga Toxin-Producing Escherichia coli (STEC), Extended
Spectrum β-Lactamase (ESBL)-producing and carbapenemase-producing Enterobacteri-
aceae. All obtained isolates were stored at −80 ◦C in Brain Heart Infusion (BHI, Oxoid Ltd.,
Basingstoke, UK) by the addition of 20% glycerol as cryoprotectant for successive analyses.

The remaining aliquot was used in molecular investigations to detect Coxiella burnetii,
Mycobacterium spp., Brucella spp., and Francisella tularensis.

All polymerase chain reaction (PCR) assays described below were performed using
the EconoTaq PLUS 2x Master Mix (Lucigen Corporation, Middleton, WI, USA) and the
automated thermal cycler SimpliAmp™ Thermal Cycler (Applied Biosystems, Waltham,
MA, USA). The PCR products were analyzed by electrophoresis on 1.5% agarose gel
stained with Ethidium bromide. A 100 bp DNA Ladder Ready to Load (Solis BioDyne,
Tartu, Estonia) was used as a DNA marker.
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2.3.1. Bacteriological Cultures
Listeria monocytogenes

Feces were diluted 1:10 in ONE Broth-Listeria (Oxoid Ltd.) and, after mixing by
stomacher, incubated at 30 ◦C for 24 h. Then, one loopful from each culture was stretched
on Agar Listeria Ottaviani Agosti (ALOA) (Biolife, Milan, Italy) and incubated at 37 ◦C
for 48 h. Suspected colonies were subcultured on Tryptic Soy Agar (TSA) (Biolife) and
initially confirmed as Listeria spp. and suspected L. monocytogenes by Gram staining, cata-
lase, oxidase, CAMP test with Staphylococcus aureus (ATCC 25923) and Rhodococcus equi
(ATCC 6939), and acid production from mannitol, rhamnose and xylose. After DNA ex-
traction from an overnight culture using a commercial kit, DNA Plus Kits (Zymo Research,
Irvine, CA, USA) and following the manufacturer’s instructions, presumptive L. monocy-
togenes isolates were confirmed by PCR assays searching for the genes prs and prfA, as
previously described [34,35]. Moreover, PCR assays were carried out to type the obtained
L. monocytogenes isolate, searching for the genes lmo1118, ORF2819, ORF2110, and flaA that
allow to identify the serogroup [34,36].

Campylobacter spp.

Feces were diluted 1:10 in Bolton Selective Enrichment Broth (Bolton Broth, plus Bolton
Broth Selective Supplement and Laked Horse Blood) (Oxoid Ltd.), mixed by stomacher
and incubated in microaerobic environment (5% oxygen, 10% CO2), for 4 h at 37 ◦C, and
subsequently for 44 h at 42 ◦C. Then, one loopful was subcultured on Campylobacter Blood-
Free Selective Medium (formally “modified Charcoal Cefoperazone Deoxycholate Agar,
mCCDA) (Oxoid Ltd.) and incubated for 48 h at 42 ◦C in microaerobic environment (5%
oxygen, 10% CO2). Specific PCR targeting the gene 23SrRNA was carried out to confirm
the genus Campylobacter for suspected colonies [37].

Yersinia spp.

Feces were diluted 1:10 in Peptone Sorbitol Bile (PSB) broth (Biolife), mixed by stom-
acher and incubated at 4 ◦C for 21 days. Subsequently, one loopful from each sample
was stretched on Cefsulodin Irgasan Novobiocin (CIN) agar (Biolife) and incubated at
30 ◦C for 24 h. Suspected colonies were screened with Triple Sugar Iron (TSI) agar (Biolife)
and for urease activity with Urea Broth (Oxoid Ltd.); Yersinia species were identified with
API20E (Biomerieux, Marcy l’Etoile, France). Yersinia enterocolitica isolates were successively
characterized on the basis of biochemical tests to distinguish the biotype, as previously
described [38]. The isolates were analyzed with singular PCR assays to detect the following
virulence genes: ail, virF, ystA, ystB and inv. DNA analyzed in PCR was extracted from
overnight culture with a commercial kit, DNA Plus Kits (Zymo Research, Irvine, CA, USA),
following manufacturer’s instructions; primers and PCR protocols previously reported by
other authors were adopted [39–41].

Salmonella spp.

Feces were diluted 1:10 in Buffered Peptone Water (BPW) (Biolife) and, after mixing
by stomacher, incubated at 37 ◦C for 24 h. Subsequently, 1 and 0.1 mL from BPW were sub-
cultured in Selenite Broth (Biolife) and Rappaport Vassiliadis Broth (Biolife), respectively;
Selenite Broth was incubated at 37 ◦C for 24 h, whereas Rappaport Vassiliadis Broth was
incubated at 41.5 ◦C for 24 h. After incubation, 1 loopful from each broth was cultured
on both Salmonella Shigella (SS) agar (Biolife) and Brilliant Green Agar (BGA) (Biolife)
and incubated at 37 ◦C for 24 h. Suspected colonies were evaluated with conventional
biochemical tests (TSI, urease, o-nitrofenil-β-D-galattopiranoside (ONPG), indole, Voges-
Proskauer (VP), Lisyne decarboxylases and malonate) and confirmed as Salmonella spp. by
PCR detection of invA gene [42].
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Shiga Toxin-Producing Escherichia coli (STEC)

One loopful from BPW, after incubation, was cultured on Tryptone Bile X-glucuronide
(TBX) agar (Biolife) and incubated at 42 ◦C for 24 h. Three distinct colonies were selected
and subcultured on Tryptone Soy Agar (TSA) (Biolife) to be confirmed as E. coli by Api20E
(Biomerieux). Identified isolates were tested for the presence of the genes stx1 and stx2,
coding Shiga-toxin 1 and Shiga-toxin 2, respectively, with PCR, using primers and protocol
previously described [43].

Extended Spectrum β-Lactamase- and Carbapenemase-Producing Enterobacteriaceae

After incubation in BPW as previously described, one loopful from each sample was
stretched on both ChromArt ESBL AGAR (Biolife) and ChromArt CRE AGAR (Biolife);
both media were incubated at 37 ◦C for 48 h. From each medium, 1 to 3 colonies different
in color, size and morphology were subcultured on Violet Red Bile Glucose Agar (VRBGA)
(Biolife), and glucose fermenting isolates were tested for oxidase production. Oxidase
negative isolates were further identified at species level with API20E (Biomeriux).

Enterobacteriaceae isolated on ChromArt ESBL AGAR were tested for the presence
of the antimicrobial resistance genes blaTEM, blaSHV, blaCTX-M, whereas Enterobacteriaceae
isolated on ChromArt CRE AGAR were tested to detect the antimicrobial resistance genes
blaNDM, blaKPC, blaOXA-48, blaIMP, blaVIM. After DNA extraction from overnight cultures
using the commercial kit, DNA Plus Kits (Zymo Research, Irvine, CA, USA), PCR assays
were carried out using primers and protocols previously described by other authors [44–46].

The positive PCR products were sequenced (BMR Genomics, Padova, Italy), and the
obtained sequences were compared with a gene bank database using Basic Local Alignment
Search Tool (BLAST) and FASTA (https://www.ebi.ac.uk/Tools/sss/fasta/, accessed on
30 September 2023).

All primers and conditions of the PCR assays employed to characterize the bacterial
isolates are reported in Table 1.

2.3.2. Antimicrobial Susceptibility Test

All obtained bacterial isolates were submitted to the disc diffusion test to evaluate
their antimicrobial susceptibility, following the line guide by Clinical Laboratory Standard
Institute (CLSI) [47]. The following antimicrobials (Oxoid) were tested for L. monocyto-
genes: ampicillin (2 µg), meropenem (10 µg), erythromycin (5 µg), and trimethoprim-
sulfamethoxazole (1.25/23.75 µg); the results were interpreted according to European
Committee on Antimicrobial Susceptibility Testing (EUCAST) [48]. The isolates belonging
to Enterobacteriaceae were tested with the following antimicrobials (Oxoid): ampicillin
(10 µg), amoxicillin-clavulonate (20/10 µg), cefoxitin (30 µg), cefotaxime (30 µg), ceftio-
fur (30 µg), imipenem (10 µg), ertapenem (10 µg), aztreonam (30 µg), chloramphenicol
(30 µg), tetracycline (30 µg), enrofloxacin (5 µg), ciprofloxacin (5 µg), gentamicin (10 µg),
amikacin (30 µg), and trimethoprim-sulfamethoxazole (1.25/23.75 µg); the results were
read according to CLSI [49]. Yersinia spp. isolates were tested with the same antimicrobials
used for Enterobacteriaceae but not against ampicillin and amoxicillin-clavulonate, due to
their intrinsic resistance.

https://www.ebi.ac.uk/Tools/sss/fasta/
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Table 1. Primers and related information for the PCR assays employed to characterize the bacterial strains isolated from fecal samples.

Application Gene Primers Sequences Amplicons
(bp)

Annealing
Temperature ◦C Ref.

Listeria monocytogenes confirmation and typing

prs
PRS_1 GCTGAAGAGATTGCGAAAGAAG

370 53 [34]
PRS_2 CAAAGAAACCTTGGATTTGCGG

prfA
LIP1 GATACAGAAACATCGGTTGGC

274 53 [35]
LIP2a GTGTAATCTTGATGCCATCAGG

lmo0737
LMO0737_1 AGGGCTTCAAGGACTTACCC

691

53 [34]

LMO0737_2 ACGATTTCTGCTTGCCATTC

lmo1118
LMO1118_1 AGGGGTCTTAAATCCTGGA

906
LMO1118_2 CGGCTTGTTCGGCATACTTA

ORF2819
ORF2819_1 AGCAAAATGCCAAAACTCGT

471
ORF2819_2 CATCACTAAAGCCTCCCATTG

ORF2110
ORF2110_1 AGTGGACAATTGATTGGTGAA

597
ORF2110_2 CATCCATCCCTTACTTTGGAC

flaA
FlaA-F TTACTAGATCAAACTGCTCC

538 61 [36]
FlaA-R AAGAAAAGCCCCTCGTCC

Campylobacter spp. confirmation 23S rRNA
23SF TATACCGGTAAGGAGTGCTGGAG

650 59 [37]
23SR ATCAATTAACCTTCGAGCACCG

Yersinia enterocolitica virulence genes detection

ail
9A GTTTATCAATTGCGTCTGTTAATGTGTACG

454

60 [40]
10A CTATCGAGTTTGGAGTATTCATATGAAGCG

virF
11A AAGGTTGTTGAGCATTCACAAGATGG

700
12A TTTGAGTGAAATAAGACTGACTCGAGAACC

inv
invF TGCCTTGGTATGACTCTGCTTCA

1114 63 [41]
invR AGCGCACCATTACTGGTGGTTAT

ystA
ystAF ATCGACACCAATAACCGCTGAG

79

61 [39]
ystAR CCAATCACTACTGACTTCGGCT

ystB
ystBF GTACATTAGGCCAAGAGACG

146
ystBR GCAACATACCTCACAACACC
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Table 1. Cont.

Application Gene Primers Sequences Amplicons
(bp)

Annealing
Temperature ◦C Ref.

Salmonella spp. confirmation invA
invAF GTTGTACCGTGGCATGTCTG

930 50 [42]
invAR GCCATGGTATGGATTTGTCC

Shiga Toxin-Producing Escherichia coli (STEC)
detection

stx1
stx1F ATAAATCGCCATTCGTTGACTAC

180

60 [43]
stx1R GAACGCCCACTGAGATCATC

stx2
stx2F GGCACTGTCTGAAACTGCTCC

255
stx2R TCGCCAGTTATCTGACATTCTG

Extended Spectrum β-Lactamase genes detection

blaTEM
blaTEMF GCACGAGTGGGTTACATCGA

310 60 [45]
blaTEMR GGTCCTCCGATCGTTGTCAG

blaSHV
SHV-F TTCGCCTGTGTATTATCTCCCTG

854 50

[44]
SHV-R TTAGCGTTGCCAGTGYTCG

blaCTX-M
CTX-F ATGTGCAGYACCAGTAARGTKATGGC

593 60
CTX-R TGGGTRAARTARGTSACCAGAAYCAGCGG

Carbapenemase genes detection

blaNDM
NDM-F GGTTTGGCGATCTGGTTTTC

621

52 [46]

NDM-R CGGAATGGCTCATCACGATC

blaKPC
KPC-F CGTCTAGTTCTGCTGTCTTG

798
KPC-R CTTGTCATCCTTGTTAGGCG

blaOXA-48
OXA-F GCGTGGTTAAGGATGAACAC

438
OXA-R CATCAAGTTCAACCCAACCG

blaIMP
IMP-F GGAATAGAGTGGCTTAAYTCTC

232
IMP-R GGTTTAAYAAAACAACCACC

blaVIM
VIM-F GATGGTGTTTGGTCGCATA

390
VIM-R CGAATGCGCAGCACCAG
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2.3.3. Molecular Detection of Pathogens

DNA was extracted from approximately 150 mg of each fecal sample using a commer-
cial kit, Quick-DNA Fecal/Soil Microbe Miniprep Kit (Zymo Research, Irvine, CA, USA),
following the manufacturer’s instructions, and stored at −20 ◦C.

To detect a 687 bp portion of the gene IS1111a of C. burnetii, the primers Trans-1 and
Trans-2, along with the protocol proposed by Berri et al. [50], were utilized.

The presence of bacteria belonging to the Mycobacterium genus was assessed using the
primers MycogenF and MycogenR, which allowed for the amplification of 1030 bp portion
of the 16SrDNA [51].

In order to detect Brucella spp. DNA, a PCR with the primers B4 and B5, targeting a
223 bp fragment of the gene bcsp31 was performed [52].

Lastly, the presence of F. tularensis was evaluated using the primers TUL4–435
and TUL4–863, which allowed the amplification of a 400 bp fragment of the gene
TUL4 [53].

Primers and PCR conditions of the employed protocols are reported in Table 2.

Table 2. Primers and related information for the PCR assays employed for the detection of pathogenic
bacteria in fecal samples.

Pathogen Gene Primers Sequences Amplicons
(bp)

Annealing
Temperature

◦C
Ref.

Coxiella
burnetii

IS1111
Trans-1 TATGTATCCACCGTAGCCAGT

687 64 [50]Trans-2 CCCAACAACACCTCCTTATTC

Mycobacterium spp. 16SrDNA
MycogenF AGAGTTTGATCCTGGCTCAG

1030 62 [51]MycogenR TGCACACAGGCCACAAGGGA

Brucella spp. bcsp31 B4 TGGCTCGGTTGCCAATATCAA
223 60 [52]B5 CGCGCTTGCCTTTCAAGGTCTG

Francisella
tularensis

TUL4
TUL4–435 TCGAAGACGATCAGATACCGTCG

400 55 [53]TUL4–863 TGCCTTAAACTTCCTTGCGAT

3. Results

A total of 16 distinct wolf fecal samples were collected and analyzed. Of these, 7
(43.75%; 95% CI: 19.44.00–68.06%) samples were positive for at least one of the investigated
bacteria, and among them, 1/16 (6.25%) sample was positive to two different pathogens (L.
monocytogenes and Y. enterocolitica) (Table 3).

No samples were positive for Salmonella spp., Campylobacter spp., and carbapenemases-
producing Enterobacteriaceae. One strain of L. monocytogenes was isolated (sample 1), and
the subsequent molecular characterization revealed that it belonged to the IIa serogroup
having the genes lmo0737 and flaA.

Four Yersinia spp. isolates were obtained: one Yersinia aldovae (sample 2) and three
Yersinia enterocolitica Biotype 1A (samples 1, 6, 7). PCR detected no virulence genes in Y.
enterocolitica isolates.

A total of 48 E. coli strains were isolated, three from each fecal sample; among them,
one strain (sample 12) tested positive for the gene stx1, categorizing it as belonging to the
pathotype STEC.

Listeria monocytogenes and all Yersinia spp. and E. coli isolates were susceptible to the
tested antimicrobials.
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Table 3. Results of bacteriological and molecular analyses conducted on wolf fecal samples.

Sample
Number

Listeria
monocytogenes

Campylobacter
spp.

Yersinia
spp.

Salmonella
spp. STEC ESBL CRE Coxiella

burnetii
Mycobacterium

spp.
Brucella

spp.
Francisella
tularensis

1 + − + − − − − − − − −
2 − − + − − − − − − − −
3 − − − − − − − − − − −
4 − − − − − − − − − − −
5 − − − − − − − − − − −
6 − − + − − − − − − − −
7 − − + − − − − − − − −
8 − − − − − − − − − − −
9 − − − − − − − − − − −
10 − − − − − − − − − − −
11 − − − − − − − − − − −
12 − − − − + − − − − − −
13 − − − − − + − − − − −
14 − − − − − − − − − − −
15 − − − − − − − − − − −
16 − − − − − + − − − − −

Total 1 0 4 0 1 2 0 0 0 0 0

Legend: STEC: Shiga Toxin-Producing Escherichia coli; ESBL: Extended Spectrum β-Lactamase-producing Enterobacteriaceae; CRE: carbapenemase-producing Enterobacteriaceae;
+: Positive; −: negative.
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Two ESBL isolates were detected and characterized. The first isolate (sample 13) was
classified as Serratia fonticola, and it tested positive for blaCTX-M. The PCR product showed
a 87.37% identity with the blaFONA-3/6 gene. The second isolate (sample 16) was classified
as E. coli and tested positive for blaCTX-M. Sequence analyses showed a 100% identity with
blaCTX-M-1 gene. The ESBL S. fonticola isolate was resistant to ampicillin and amoxicillin-
clavulonate (penicillins class), cefoxitin, cefotaxime, and ceftiofur (cephalosporins class),
and aztreonam (monobactams class), whereas the ESBL E. coli strain was resistant to
ampicillin (penicillins class), cefoxitin, cefotaxime, and ceftiofur (cephalosporins class),
aztreonam (monobactams class), and tetracycline (tetracyclines class). Both isolates can be
classified as multi-drug-resistant (MDR) [54].

The DNA of C. burnetii, Mycobacterium spp., Brucella spp., and F. tularensis was not
detected in any of the analyzed samples.

4. Discussion

In recent years, there has been a growth in the number of wolves on Italian territory;
wolves are increasingly present in forest areas, but not rarely they are sighted even near
inhabited centers. Considering the difficulty in collecting biological samples from these
animals, the role of wolves in the epidemiology of some pathogens has not been fully
elucidated. In particular, studies have been carried out on parasitic and viral agents, but
little information on bacterial pathogens has been obtained. Bacteria belonging to different
species may be excreted in feces becoming responsible for environmental contamination.
Wolf feces on forest areas’ soil may be a direct source of infection for other animals, such
as small mammals, birds, reptiles, amphibians, insects, but also hunting dogs, wild boars,
and wild ruminants. In addition, mainly after abundant rainfall, fecal material can run off,
amplifying the concern of microbial dissemination.

The present investigation did not detect relevant pathogens, such as Campylobacter
spp., Salmonella spp., F. tularensis, C. burnetii, Brucella spp., and Mycobacterium spp. These
findings may be attributed to the low circulation of the agents in the sampling area, despite
the absence of related studies in the existing literature. Moreover, the fecal shedding of
these bacteria usually is discontinuous, mainly in clinically healthy animals, and as other
routes of excretion are possible; other biological samples should be investigated. Wild
animals can be carriers, usually asymptomatic, of these pathogens [55–60], and infections
in wolves have been reported for Salmonella spp. [61], F. tularensis [62], Brucella spp. [63],
Mycobacterium bovis [64], and Mycobacterium caprae [65].

On the other hand, our investigation found zoonotic bacteria, such as Y. enterocolitica
and L. monocytogenes, less investigated in wildlife, but able to infect other animals.

Listeria monocytogenes causes severe human infection characterized by a relevant pro-
portion of hospitalized patients and mortality [66]. Pigs and cattle are the main reservoirs
among domestic animals [66,67], but wild animals can harbor the pathogen as well. The
role of wildlife in the epidemiological cycle of L. monocytogenes remains a topic of on-
going investigation [67], and there are no data in the available literature regarding the
occurrence of L. monocytogenes in wolves. The strain cultured in our survey belongs to
the serogroup IIa, which includes serotypes 1/2a and 3a, frequently found in human and
animal infections [68].

Yersinia enterocolitica, isolated from 18.75% of the analyzed samples, is confirmed to be
present in wildlife, even though non-virulent strains are the most frequently detected [69–73].
There are no available data on wolves as carriers of Yersinia spp. in the literature; therefore,
our results cannot be compared to other epidemiological situations. Three isolates of
our study were classified as Y. enterocolitica Biotype 1A; this is a non-virulent biotype
previously found in wild animals and environment [74]. However, the virulence potential
of Y. enterocolitica Biotype 1A was recently re-evaluated, because it has been associated
with cases of human infections [41,75]. The isolation of Y. aldovae, species not related to
human or animal infections, is not surprising because it is commonly isolated from aquatic
ecosystems and soil [76].
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The detection of one STEC strain is interesting because, to the best of our knowledge,
this is the first report of this pathotype in wolves. STEC are bacteria responsible for severe
human diseases, such as hemorrhagic colitis in adults and hemolytic uremic syndrome in
children [77]. Bovine are identified as the main reservoirs [78], although wildlife, mammals
and birds, have been proven to harbor this E. coli pathotype [77,79,80].

Two strains, one E. coli and one S. fonticola, resulted as ESBL-producing bacteria with
blaCTX-M-1 and blaFONA genes, respectively. Gonçalves and colleagues (2012) registered
a prevalence of 5.5% ESBL-producing E. coli in fecal samples of Iberian wolves (Canis
lupus signatus) in Portugal and detected some relative resistance genes, including the gene
blaCTX-M-1, which is known as one of the most commonly detected ESBL genes in Europe [9].
Serratia fonticola is an environmental bacterium rarely associated with human infections [81]
and intrinsically resistant to penicillins and cephalosporins due to the presence in the
chromosome of the ESBL resistance gene blaFONA [82,83]. The detection of two (12.5%)
ESBL-producing Enterobacteriaceae strains in a small number of analyzed samples shows
that these bacteria are circulating, as also highlighted by previous studies that found these
microorganisms in humans and domestic and wild animals [84,85]. Currently, the spreading
of ESBL- and carbapenemase-producing bacteria represent a relevant concern because
Extended Spectrum beta-lactams and carbapenems are antimicrobials commonly used in
human medicine, mainly for the treatment of highly drug-resistant bacteria [86,87]. No
carbapenemase-producing Enterobacteriaceae were detected in the present investigation.
This finding is quite in agreement with previous surveys that found low percentage of
carbapenem-resistant bacteria in wildlife [88]. Conversely, some studies have reported high
rate of detection in wildlife, especially in seagulls (15.9% in Australia and 19.4% in France),
and wild boars (0.6–13.4% in Algeria) [89].

Antimicrobial resistance was found only in the two ESBL strains. These isolates were
resistant to antimicrobials belonging to different classes, and therefore, they were classified
as MDR. This finding showed that a single bacterial strain can harbor resistance to several
antimicrobials [90] and suggested that animals, such as wild species, never treated with
antibiotics, may acquire resistant bacteria from the environment.

5. Conclusions

The small number of samples that it was possible to collect does not allow for clarifica-
tion of the role of wolves in the epidemiological cycles of the investigated pathogens. The
negative results could be related to the absence of the searched pathogens in the sampling
area and do not exclude wolves as susceptible animals. On the other hand, the detection of
bacteria, such as L. monocytogenes, Y. enterocolitica, STEC, and ESBL-producing E. coli, sug-
gests that wolves can be infected by them and consequently contribute to their spreading
in the environment. Moreover, the detection of MDR bacteria and of bacteria harboring
resistance genes showed that these animals may contribute to the antimicrobial resistance
issue. The examined fecal samples were collected directly from the ground where wolves
had placed them; therefore, the detection of antimicrobial-resistant bacteria highlights
the importance of the environmental contamination. In fact, the finding of these zoonotic
bacteria does not suggest wolves as a direct source of infection for humans, but shows that
the fecal contamination contributes to the dissemination of agents which could indirectly
infect people.

The present study, although carried out on a small number of samples, is the first
focused on a large number of zoonotic bacterial pathogens; the results are preliminary
but suggest, also from a One Health perspective, monitoring wolf populations in order
to increase the knowledge about the bacterial circulation in wildlife and their role in
the environmental contamination. In addition, metagenomic analyses could be useful to
provide unbiased detection of all the pathogenic and nonpathogenic microflora present in
the analyzed samples.
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