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Abstract: The Yucatan aquifer sustains the people living in the Mayan forest and its associated fauna.
Human activities threaten water quality and the environmental services associated with it. To assess
the eukaryotic microalgae community structure as a bioindicator of water quality, we employed a
combined approach of microscopic and shotgun metagenomics to identify specific genera associated
with shifts in physicochemical parameters in three permanent lagoons located in Campeche, Mexico.
We could identify highly complex and diverse communities independent of human activity intensity,
harboring an average of 362 genera at each lagoon. Of those, 85 were affected by alkalinity, carbonates,
water hardness, and cyanuric acid levels. Some genera, like Nannochloropsis and Thraustotheca, showed
significant negative correlations with lead concentration. The functional annotation of genes revealed
these communities’ highly diverse metabolic capabilities and the pending work for extensive genomic
characterization of rare clades.

Keywords: microalgae diversity; water quality; bioindicator; functional genomics; rare microalgae

1. Introduction

The current scenario of contamination of wetlands in the tropics has generated interest
in knowing the specific causes that negatively or positively influence the state of health
of aquifers [1]. The use of physicochemical parameters as the sole input to determine the
health of water bodies is insufficient to evaluate the effects of human activities since it is not
possible to show the impact that various factors can have on the biological communities that
depend on it, such as microbial communities, including bacteria, microalgae, and zooplank-
ton [2]. Moreover, ecosystem deterioration affects the rest of the organisms, including those
species that feed people [3,4]. In addition to the physicochemical parameters, microbial
communities emerge as a relevant indicator of some specific taxa, like Diatoms, and can be
sensitive to changes in the environment, like variations in pH, organic matter, or dissolved
oxygen, altering the reproduction of these microorganisms or causing teratologies [5,6].
Changes in the microalgae population structure due to disturbances in their habitat give
them a widely recognized value as bioindicators of water health. Some genera present in
continental water bodies that are suitable bioindicators belong to the microalgae genera
Chlorella, Scenedesmus, Ankistrodesmus, Cosmarium, and Coelastrum, in addition to Diatoms
such as Navicula [7] and several genera of cyanobacteria like, Aphanizomenon, Chroococcus,
Cuspidothrix, Cyanodyction, Dolichospermum, and Microystis [8–10].

Usually, microscopic observation is employed to identify and quantify microorganisms.
However, this technique has limitations due to its low sensitivity and specificity [11]. On
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the other hand, recent emerging tools, such as metabarcoding, have been used to elucidate
microalgal community structure [11,12]. Unfortunately, microalgae are too diverse. When
choosing a genetic marker, the results can be biased because only specific groups can be
identified [13]; in contrast, if a universal marker is selected, information can be obtained
from highly conserved regions. There is a risk of confusing taxa at the species or even genus
level [14]. As an alternative, shotgun sequencing allows the obtainment of information on
the entire genome, with which the communities’ taxonomic structure and functionality can
be elucidated. However, existing databases for groups such as eukaryotic microalgae are
limited for freshwater taxa, being more robust for saltwater species [15]. Although both
identification methods (microscopy and metabarcoding or metagenomics) have advantages,
the combined use of both approaches is very useful in complementing and providing more
significant information on microalgal community structure [16].

To assess the diversity and abundance of eukaryotic microalgae that could be used as
perturbation indicators, we combined microscopic and shotgun metagenomic analysis to
evaluate three permanent water bodies in a karstic environment in the Yucatan Peninsula,
Mexico. In this region, continental karstic wetlands predominate, such as natural sinkholes
(locally known as “cenotes” from the Mayan “tzonot”), rivers, and permanent and temporary
lagoons [17]. Unfortunately, anthropogenic activity in this region has deteriorated their
hydrological, biological, and ecological functions [18]. Most lagoons, cenotes, or rivers in
this region present some degrees of anthropogenic impact, ranging from preserved areas
located in protected reserves without visible anthropogenic effects on those affected by
multiple contiguous human settlements with intensive resource exploitation and degraded
surrounding forests by land use change associated with livestock and agriculture [19,20].
These contrasting conditions are particularly interesting as models to evaluate whether
disturbance can affect or favor the presence of eukaryotic microalgae with putative bioindi-
cator characteristics. In this work, we evaluated three lagoons of the Yucatan aquifer with
different degrees of anthropic impact. We determined the diversity and abundance of
eukaryotic microalgae by combining microscopic observation and shotgun metagenomic
DNA sequencing to identify the existing communities in each condition. Finally, we ana-
lyze the effect of physicochemical conditions at each sampling site with the presence or
abundance of each taxonomic group found. According to the impact of anthropization
has shown on eukaryotic microalgae, we expected to detect shifts in taxa sensitive to
eutrophication like Diatoms [21] and other groups like mixotrophs [22].

2. Materials and Methods
2.1. Study Sites and Physicochemilcal Parameters Determination

For this work, we evaluated three lagoons in Mexico’s southern part of the Yucatan
Peninsula. This region is a karstic ecosystem harboring an underground aquifer. Lagoons in
this region are primarily shallow, fed by runoff seasonal rain (1200 to 1800 mm y−1) lasting
from June to November. A semi-deciduous tropical forest covers the land surface with a
dominant Aw climate, where more than 500K ha (30% surface) has been declared natural
reserves. The three lagoons considered in this study are permanent, suffering seasonal
variations no higher than 20% in depth and extension [23]. Sampling take place in October
2023 in the Mocu lagoon, in the Champotón Municipality (area voluntarily designated for
conservation since 2018 considered pristine) (18.78 N; 90.50 W); in the X-Canha lagoon,
located in the Hopelchén municipality (semi-disturbed, area destinated to recreation situated
in the buffer area of the Calakmul reserve) (19.10 N; 89.29 W); and the Silvituc lagoon,
located at the Escárcega municipality (disturbed, area, primarily devoted to agriculture with
patches of tropical forest) (18.64 N; 90.27 W) (Figure 1). A total of 12 composite samples
were collected for this study. Each composite sample corresponded to a mix of seven inde-
pendent water samples. Sampling was performed at two representative sampling points in
each lagoon: the dock and the lagoon centroid next to the dock. At each sampling point,
two samples were taken, one at the surface and the other at the bottom. Approximately
3.5 L of water was collected from each sampling site using seven consecutive 500 mL
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aliquots obtained using a Van Dorn bottle directly transferred to a sterile plastic container.
Between samples, the Van Dorn bottle was sanitized using 0.1 N HCl and rinsed three
times with sterile water. Each composite sample was used for microscopic observation and
metagenomic analysis. One liter of sample was also collected to measure chlorophyll-a
concentration (see next section). The collected samples were labeled, wrapped in aluminum
foil, placed inside black bags, and placed in ice for immediate transportation to the labora-
tory. Transparency at the evaluated depth was measured with a Secchi disk. Additionally,
some physicochemical parameters were measured three times in situ such as temperature,
pH (Instrument Cat. HI98127, Hanna instruments Woonsocket RI, USA); dissolved oxygen
(Instrument Cat. DO9100 Rcyago, Shenzhen Yage Technology Limited, Shenzhen, China);
conductivity, salinity, total dissolved solids (TDS) (Instrument Cat. EC500 Extech, Nashua,
NH, USA), for continuous values, we employed a parametric t test to determine significant
differences (p < 0.05). Water hardness, total alkalinity, fluoride, cyanuric acid, carbonates,
free and total chlorine, bromide, nitrates, nitrites, iron, chrome, lead, copper and mercury
were determined using commercial test strips (Varify Co. San Diego, CA, USA). For strip-
determined values, three independent determinations were taken and the concentration
range was obtained according the color reference, for these values a non-parametric test
(Kuskal–Wallis) was applied to determine differences between samples (p < 0.05), using
a zero value for those samples with non-detectable levels. Finally, the online calculator
of photic zone depth and attenuation coefficient was employed to determine those val-
ues (https://iim.unah.edu.hn/grupos/giica/calculadora-zeu/ (accessed on 2 June 2024)).
The Pearson correlation test was employed to determine statistical significances within
physicochemical parameters and relative abundance of found taxa (p < 0.05).
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Figure 1. Sampling sites. The location of visited lagoons is shown on the left map, including the
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and shape of the lagoons. The arrow’s base in the lagoons corresponds to the dock location, and the
tip corresponds to the inner sampling point.
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2.2. Chlorophyll-A Determination

One liter of water per sample was filtered at atmospheric pressure using a vacuum
pump in the dark using fiberglass filters (Whatman 47 Ø mm/0.7 µm, Whatman plc.
Maidstone, UK), where all possible moisture was extracted. They were then cut to place
them in 15 mL Falcon tubes, where 10 mL of 90% (v/v) acetone was added to each filter
and shaken for 1 min with the help of vortex and refrigerated at 4 ◦C in the dark for 24 h.
Subsequently, the samples were centrifuged at 3000 g for 30 min. Using a spectrophotometer
(Thermo Scientific™ Multiskan GO™ with SkanltTM Software for Microplate Readers. v1.0
2017 Whaltham, MA, USA), the absorbance was measured at 664 nm and 750 nm before
acidifying followed by a determination at 666 nm and 750 nm 90 s after acidifying with
100 µL of 0.1 N HCl. The data obtained were applied to the following formula to obtain the
concentration of chlorophyll-a [25]:

Clα(µg/L) =
A ∗ K(Abs664b − Abs666a)V Acet

Vf ∗ t

where
A: Chlorophyll-a absorbance coefficient = 11.0
K: Rate that expresses the correction for acidification = 2.43
664b: Absorbance at 664 nm before acidifying
666a: Absorbance at 666 nm after acidifying
V Acet: Volume of acetone used in the extraction (mL)
Vf: Volume of filtered water in L
t: Optical cell path in cm

2.3. Microscopic Observations

The samples were centrifuged at 20,000× g for 20 min (100Y rotor cat. 75,004 Thermo
Scientific with Fiberlite™ F15-6, Whaltham. MA, USA), and part of the recovered biomass
(100 µL) was used for microscopic observation (Carl ZEISS, mod. Primo Star with ZEN
2.5 blue edition Software, Oberkochen, Germany) at 100×, where dilutions of 1:10,000
were made. An amount of 10 µL was placed on a slide for observation with the help of
the microscope at 100×, using a catalog of freshwater microalgae to review phenotypic
characteristics and identify the microalgae [26–28]. Based on identification, a qualitative
incidence table was generated for further analysis (Supplementary File S1).

2.4. Metagenomic Analysis

A measurement of 100 mg of biomass from each sample obtained from pellets from
the previous section was used for DNA extraction, following the working sequence of
the Zymo Plant/Seed Miniprep Cat kit #D6020 following the manufacturer’s instructions.
Subsequently, a spectrophotometer was used to measure quality and concentration (Thermo
Scientific™ Multiskan Go™ with Skanlt Software for Microplate Readers Version 1.0 2017)
and agarose agar 0.8% for integrity. After passing all quality tests, the samples were
sent to an external Shallow Shotgun Metagenomic Illumina-based Sequencing service at a
Novogene Corporation.

2.5. Bioinformatic and Statistical Analysis

The sequences received as *.fastq files were processed on the KBase platform [29]
(http://www.kbase.us/ (accessed on 2 June 2024)), using paired library objects to assemble
reads using metaSPADES v3.15.3 [30] (available online: https://github.com/ablab/spades
(accessed on 2 June 2024)). Taxonomic assignation was performed using Kaiju v1.9.0 [31]
(http://kaiju.binf.ku.dk/ (accessed on 2 June 2024)), employing the NCBI database for
Eukaryotes + Prokaryotes. After eukaryotic microalgae taxa filtering, gene annotation
was performed by EggNOG mapper v2.1.9 [32] using the DIAMOND algorithm [33]
(https://github.com/eggnogdb/eggnog-mapper/wiki/ (accessed on 2 June 2024)). To

http://www.kbase.us/
https://github.com/ablab/spades
http://kaiju.binf.ku.dk/
https://github.com/eggnogdb/eggnog-mapper/wiki/
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obtain ecological indices, ordination analysis, Kruskal–Wallis, and hypothesis tests, we
employed the PAST v4.17 and Infostat v2020 software [34].

3. Results
3.1. Physicochemical Differences Among Lagoons

We determined water physicochemical parameters to evaluate the water quality at
each water body. The lagoons are shallow, with a maximum depth of 2.5 m; temperate,
averaging water temperatures of 30.9 ◦C; and alkaline, with pH values between 7.5 and
8.5. Besides these apparent similarities, statistical differences were found between the
lagoons for all evaluated parameters (p < 0.05) (Tables 1 and 2). Concerning the depth
in the column water where samples were taken, the samples from the surface showed
differences for de X-Canchá lagoon only for chlorophyll-a content; however, neither photic
layer nor attenuation coefficient values show any correlation with chlorophyll-a content
(R = 0.15, R = 0.04, respectively). According to our data, we could not detect a pattern in
physicochemical values that correlates to the expected differences in the anthropization
gradient (Table 3).

Table 1. Water quality in sampling sites. DO: dissolved oxygen; TDS: total dissolved solids. Values
correspond to the average value of three repetitions. Superscript letters at the right of numbers
represent the differences in significance levels (p < 0.05).

Lagoon Parameters/
Sampling Site

Tr
an

sp
ar

en
cy

(m
)

D
ep

th
(m

)

Te
m

pe
ra

tu
re

(◦
C

)

pH

D
O

(m
g

L
−

1 )

C
on

du
ct

iv
it

y
(m

S)

Sa
li

ni
ty

(p
pm

)

T
D

S
(m

g
L
−

1 )

C
hl

or
op

hy
ll

-a
(m

g
L
−

1 )

Mocú Dock-Surface 1.3 bc 1.4 ab 32.5 d 8.5 d 6.4 cd 2.17 e 1002 c 1570 e 4.65 ab

(Pristine) Center-Surface 1.4 c 2.5 c 31.8 cd 7.9 bcd 6.2 bcd 1.06 cde 643 c 663 cde 6.42 abcd

Center-Bottom 1.4 c 2.5 c 31.8 cd 7.9 bcd 6.2 bcd 1.13 de 624 bc 695 de 5.67 abc

X-Canhá
(Semi- Dock-Surface 0.5 ab 0.5 ab 29.5 a 8.3 d 6.6 d 0.30 bcde 144 bc 186 bcde 11.09 e

perturbed) Bank-Surface 0.4 a 0.4 a 30.8 b 8.2 cd 6.4 cd 0.25 abcd 116 ab 170 abcd 3.00 a

Silvituc Dock-Surface 1.2 bc 1.6 abc 30.3 ab 7.5 ab 3.1 a 0.24 abc 120 abc 76 a 7.22 abcde

(Perturbed) Bank-Surface 0.4 a 0.4 a 29.8 ab 7.3 a 3.8 ab 0.22 a 116 ab 158 ab 9.04 bcde

Center-Surface 0.7 abc 2.0 bc 31.5 c 7.8 abc 5.4 abc 0.24 ab 114 a 185 abcde 9.57 de

Center-Bottom 0.7 abc 2.0 bc 30.5 abc 7.8 abc 5.4 abc 0.26 abcde 116 ab 168 abc 9.51 cde

Table 2. Water quality in sampling sites. Discrete values obtained from color strip tests. See Methods.
ND. Not detectable.
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Table 2. Cont.
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X-Canhá
(Semi- Dock-Surface ND a ND a ND a 250 ab ND a ND a 10 b ND a 1.5 ab ND a ND a
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Table 3. Photic zone and Attenuation coefficient.

Lagoon Parameters/Sampling
Site

Photic Zone Depth
(m)

Attenuation
Coefficient

Mocú Dock-Surface 6.9188 0.6656
(Pristine) Center-Surface 7.3462 0.6269

Center-Bottom 7.3462 0.6269

X-Canhá (Semi- Dock-Surface 6.5785 0.7
perturbed) Bank-Surface 5.0044 0.9202

Silvituc Dock-Surface 5.0044 0.9202
(Perturbed) Bank-Surface 3.3998 1.3545

Center-Surface 3.8999 1.1808
Center-Bottom 3.3998 1.3545

3.2. Microscopic Identification of Microalgal Communities

Our data revealed the presence of 8 phyla, 16 classes, 27 orders, 47 families, and
62 genera (Supplementary File S1) distributed in distinct communities in each lagoon
sampled. Of the 62 genera identified in our samples, 35 were found in the Mocú lagoon
(Shannon H’ = 3.89), 13 in the X-Canhá lagoon (Shannon H’ = 2.97), and 46 in the Silvituc
lagoon (Shannon H’ = 4.07). Seven genera (Anabaena, Asterocapsa, Chlamydomonas, Cos-
marium, Dictyococus, Gomphosphaeria, and Leptolyngbya) were identified in all the lagoons
(Figure 2a). Differences were also found between sampling areas, where 43 genera were
found exclusively on the surface samples. In contrast, only Frustulia was exclusive from
the depth bottom samples, resulting in 21 genera present in surface and bottom samples.
Clustering analysis based on Bray–Curtis similarity did not show any grouping pattern
by lagoon or depth (Figure 2b), and even an ordaining analysis by NMDS showed sepa-
rated polygons (Figure 2c). The PERMANOVA test did not reveal significant differences.
However, the SIMPER test revealed that 15 genera (Ankistrodesmus, Tetraedron, Oocystis,
Anabaena, Arthrospira, Leptolyngbya, Surirella, Phacus, Pandorina, Chlamydomonas, Ulnaria,
Merismopedia, Klebsormidium, Euglena, and Cosmarium) out of 62, are responsible for 50.91%
of the sample differences. A photographic compilation of representative genera per lagoon
is presented in Figure 3.
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3.3. Metagenomic Identification of Microalgal Communities

We obtained shallow sequence data (available through the BioProject PRJNA1162095;
https://www.ncbi.nlm.nih.gov/bioproject/1162095 (accessed on 4 September 2024) (pub-
licly available upon publication) processing yielded 79.16 million reads, equivalent to
11.87 Gpb, averaging 150 pb per read, and a quality score mean of 36.11 on the Phread
scale. Once the taxonomic assignation concluded, those taxa representing eukaryotic mi-

https://www.ncbi.nlm.nih.gov/bioproject/1162095
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croalgae were filtered, yielding 28 phyla, 72 classes, 211 orders, 318 families (or equivalent
clades), and 518 genera. Of these 518 genera, only 10 were detected also by microscopy
(Chlamydomona, Chlorella, Chlorococcum, Desmodesmus, Dictyococus, Euglena, Glaucocystis,
Peridinium, Scrippsiella, and Vischeria). Our metagenomic-derived data revealed the pres-
ence of 315 genera in the Mocú lagoon (Shannon H’ = 5.46; Simpson 0.992), 184 genera
in the X-Canhá lagoon (Shannon H’ = 4.94; Simpson 0.989), and 438 genera in the Silvituc
lagoon (Shannon H’ = 5.59; Simpson 0.993). (Supplementary File S2). Rarefaction analysis
of microalgae genera revealed that our sampling effort in the Silvituc lagoon captured
88% of the expected taxa, 71% in the Mocú lagoon, and 42% in the X-Canhá lagoon (Sup-
plementary File S3). However, using the metagenomic-based approach, we identified
165 genera common to all three lagoons (Figure 4a). The clustering analysis of samples
by Bray–Curtis similarity did not show any grouping by lagoon site or sampling point,
separating only the sample obtained in the Silvituc lagoon, center-bottom (Figure 4b). The
relative abundance of microalgae revealed that 49.87% of the obtained genera belong to
unknown eukaryotic taxa, whereas at the phylum level, the unknown OTUs are reduced
to 0.79%. Except for one sample from the Silvituc lagoon, all samples showed a similar
microalgal community dominated by genera Euglena, Symbiodinium, Desmodesmus, Chlorella,
Hydrodictyon, Volvocaceae, Nannochloropsis, Cryptomonas, Ankistrodesmus, and Eustigmato-
phyceae (Figure 4c). The Silvituc sample obtained from the bottom was the most contrasting
with respect to the other samples; in this case, the microalgal community was widely
dominated by Ptilothamnion, Thraustotheca, Haramonas, Micromonas, and Cryptomonas, even
though the biodiversity indices remain high (Shannon H’ = 4.27; Simpson = 0.97). For
all samples, however, the genera below 1% of microalgae relative abundance averaged
52.04% ± 5.78% (standard deviation) of the total diversity. The PERMANOVA test did not
show significant differences between lagoons or sampling sites. However, NMDS analysis
of samples yielded a clear ordination of samples by lagoon site (Figure 4d). SIMPER test
revealed that 70 out of 518 genera (Supplementary File S4) are responsible for 50% of the
differences between the lagoons. Following these criteria, only the common genera Euglena,
Tetraedron, and Vischeria detected with both microscopy and metagenomics, were included
in the SIMPER list.

3.4. Correlation Analysis

To identify those taxa representatives susceptible to environmental variations associ-
ated with sampling sites, microbial eukaryotic communities, including microalgae, were
analyzed by Pearson correlation (Figure 5). Those genera (15 identified by microscopy and
70 with metagenomics) contributing up to 50% to the differences between lagoons obtained
by SIMPER were considered in this analysis. We found that most detected genera inversely
correlated with alkalinity, cyanuric acid, carbonate, and lead concentrations. However,
significant correlations were found for Nannochloropsis and Trebouxia that correlated neg-
atively with lead concentrations. Significant positive correlations were more common,
being nitrites, nitrates, and chlorine factors that correlated positively with genera like
Auxenochlorella, Chamydomona, Chlorella, Desmodesmus, Dictyopteris, Euglena, Hydrodyction,
Merisimopedia, Synura, and Volvocaceae. The pH and the dissolved oxygen concentrations
were negatively correlated with the presence of Ankistrodesmus and Arthrospira genera,
whereas water hardness appears to significatively affect the presence of genera Merismope-
dia, Surinella, and Tetraedron.
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3.5. Functional Analysis

To unveil the metabolic capabilities of sampled microalgal communities, EggNOG-
derived functional annotation, we obtained 70 functions clustered by ortholog gene function
(COGs), resulting in 17 functional categories (Figure 6). The more abundant cluster accumu-
lated 26.8% of functions classified in the S category corresponding to unknown functions,
followed by 8.1% assigned to the O category, corresponding to post-translational modifica-
tion, protein turnover, and chaperone functions, followed by COGs K, transcription, and
G, carbohydrate metabolism and transport with 7.3% each. Samples showing higher func-
tional diversity were those collected in the Mocú lagoon with 15 COGs, whereas samples
from the X-Canhá lagoon showed only 5 COGs. The sample from the bottom of the Silvituc
lagoon was represented exclusively by COG functions involved in translation mechanisms
with specific functions related to ribosomal protein S31e, translation–initiation factor 2, and
eukaryotic translation–initiation factors.
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4. Discussion
4.1. Physicochemical Properties in Sampled Lagoons

Maintaining good water quality in continental freshwater bodies has become a priority
for maintaining healthy ecosystems. Excessive dry or rainy seasons associated with global
climate change and human population growth increase the pressure on these bodies,
contributing to the freshwater crisis. Karstic ecosystems are particularly vulnerable to
those impacts due to the permeability and connectivity of underground aquifers, which are
prone to transport contaminants from relatively long distances. Of particular interest in
rural areas are those anthropic contaminants linked to agriculture and livestock activities.
Fertilizers and heavy metals derived from agrochemicals contribute to eutrophication.
The model site we chose for this work, the Campeche State in Mexico, harbors the most
extensive natural reserves, both in number and size. In this region, we sampled three
permanent lagoons with different degrees of perturbance. Our data, however, showed
that physicochemical values did not entirely reflect the expected behavior. We found
transparency, salinity, total dissolved solids, bromide, iron, and lead levels similar to an
aquifer considered contaminated; these values for the Mocú lagoon, which is surrounded
by at least 10 Km of highly conserved forest, would be susceptible to receive inputs from
the closest biggest city (Escárcega city, ≈30,000 habitants, 28 Km away), or the closest
semi-intensive monoculture area (Justicia Social locality, ≈6500 Ha, 26 Km away).

Moreover, salinity levels in the Mocú lagoon may suggest saline water intrusion from
the coast (60.55 Km away). This is consistent with the permanent counter-flow movement of
seawater intrusion in the north side of the Yucatan Peninsula up to 80 Km away [28,29] and
would explain the presence of lead due to the permanent high-scale petroleum-extracting
activities in the Campeche Bay (≈70 Km away from the coastline). However, no seawater
intrusion was previously detected in the southern Campeche state [35]. On the other hand,
the “Nortes” events, locally called the windy and punctual rainy storms linked to cold



Microorganisms 2024, 12, 2368 13 of 17

air waves coming from the north and hitting the coastline during January and February,
could indeed affect lagoons relatively close to the coast, by altering the halocline in the
underground aquifer. “Nortes” then may also explain the seawater intrusion in the Mocú
lagoon [36].

In contrast, the Silvituc lagoon, surrounded by human settlements, has a low salinity
presence that discards seawater intrusion. Previous work on this lagoon has demonstrated
high sulfate levels associated with rain and runoff [35]. In summary, the surrounding
conservation state of forest coverture appears to be unrelated to all water quality parameters,
even though contrasting conditions were found between sampled lagoons, which may
modulate microalgae community structure in these sites. This means that the different
degrees of the anthropization state of the surrounding environment in sampled lagoons
did not impact water quality. This could suggest that human impact in these zones is low
enough to be neutralized or removed by the natural water the interchange process.

4.2. Eukaryotic Microalgal Communities

Our study identifies 570 genera (or equivalent clade) of eukaryotic microalgae in the
sampled lagoons. This is, by far, the highest number of taxa previously identified in this
region. The high diversity index values obtained reveal that the three sites harbor a vast
diversity of taxa. Our rarefaction analysis results reflected the existing potential for more
profound studies in this region as a source of novel microalgae, as the identified genera
ranged only 50% of OTUs belonging to these eukaryotic clades, and our effort covered
only an average of 67% of the expected genera taxa present on these sites. In addition
to the different successes in taxa capturing, our data reveal the consistent microalgae
community structure, except for the sample obtained from the bottom of the Silvituc lagoon,
even though this site showed a microalgae richness similar to the rest of the samples
and that the physicochemical levels were similar in this sampling site. In this case, the
community structure shift may be due to an elusive factor such as competing bacteria,
predatory microorganisms, or some taxa-specific deleterious factor. Beyond this particular
case, the eukaryotic microalgae community did not reflect any pattern in response to the
surrounding environment anthropization. This is congruent with our physicochemical
analysis results, which support the idea that these lagoons are resilient enough to human
impact in these zones.

An increasing number of microalgae taxa are being identified and recorded on in-
ternational databases, fueled mainly by the rising interest in biotechnology models [37].
Even karstic environments are often dominated by Chlorophyceae, Trebouxiophyceae, ex-
Diatomophyceae (Bacillariophyta phylum) families [12,38,39]; these and other less common
taxa become interesting for bioprospection, particularly as bioindicators for anthropic
activities [40]. Interestingly, most of the genera contributing to >50% of differences between
lagoons by SIMPER analysis responded negatively to the presence of alkalinity, cyanuric
acid, carbonates, and lead. In general, high alkalinity and carbonates are common in karstic
aquifers, inhibiting the growth of several microalgae genera [9,35], which suggests that the
abundance of these taxa may infer the differences in water quality in sampled lagoons.

The combined strategy for microalgae identification using microscopy and shotgun
metagenomics resulted in exciting evidence. As has been previously reported in works
where a similar approach was employed [41,42], there exists a considerable gap at deeper
taxonomic levels necessary to compare at the phylum (or equivalent clade) level mainly
due to the high similarity of phenotypic characteristics complicating optical identification
of some taxa [43]. These differences have also been assumed by the presence of extracellular
DNA that can only be detected by molecular tools [41]; however, in our case, samples for
microscopic and metagenomic analyses were purified by centrifugation instead of filtration
to avoid the presence of such contaminants and most bacteria and virus. However, the
presence of dead microalgal carcasses, usually discarded for microscopic analysis, could
carry DNA suitable to be detected for the metagenomics approach.
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Climatic change has been evaluated in the Yucatan Peninsula and Central America, and
a consistent increase in temperature in the last 50 years [44] has altered the rainfall regime.
Events like the El Niño–Southern oscillation and the Atlantic multidecadal oscillation cause
a high interannual variability and long-term increase in the rainy season duration [45].
These climatic alterations, plus the strong deforestation rates and anthropization, may
finally disrupt the resilience of microalgae communities, potentially affecting regulatory
ecological mechanisms.

4.3. Correlation Analysis

The existing correlation between physicochemical and microalgae abundance shifts
has been extensively used as a water quality indicator [46]. Classic pollution-tolerant
microalgae classification [47] identified the genera Euglena, Chlamydomonas, Chlorella, and
Ankistrodesmus in the top ten most tolerant genera. These genera have been recently
successfully employed as predictors of environmental health in river ecosystems [48]. In
our case, taxa presence (for microscopic analysis) or the abundance (for metagenomic
analysis) of Euglena, Chlamydomonas, Chlorella, and Ankistrodesmus genera also significantly
correlated to different physicochemical indicators of water quality. However, seasonal
variation in correlation significance has been reported [49], stressing the relevance of future
work considering this variable. Our data come from the end of the dry season, expecting the
highest concentration of pollutants and the highest degree of eutrophication; nevertheless,
suggesting evidence of seawater intrusion in the case of the Mocú lagoon could alter
seasonal responses.

4.4. Functional Analysis

Shotgun sequencing and gene annotation-derived data reveal the metabolic poten-
tial of eukaryotic microalgae communities in the Yucatan aquifer for the first time. To
our knowledge, this is the first report using the metagenomic approach to characterize
eukaryotic microalgal communities. Previous work on the functional assessment of these
clades of microalga comes from axenic cultures of specific genera like Chlamydomonas [50],
Ankistrodesmus, Chlorella, and Scenedesmus [51], and other ten freshwater and seawater
genera compiled at the ALGAEFUN platform [52]. Unfortunately, beyond ITS metabar-
coding markers, there are no genomic data for other genera to ease metagenomic analysis.
This may explain the contrasting number of genera assigned in our samples compared to
the limited number of annotated functions. This situation could be the case of dominant
genera obtained from the bottom of the Silvituc lagoon, as Ptilothamnion, Haramonas, and
Micromonas genera do not have genomic data reported, being limited only to ITS sequences,
which correspond to the translation COG category. More categories were identified for
those samples where genera with a genome sequence are available.

5. Conclusions

This work explores the eukaryotic microalgae community structure in three lagoons
from the Yucatan aquifer. A high diversity of taxa were identified by combining microscopic
and metagenomic approaches, 50% of which had not previously been identified at the
genus level. In addition to the intensity of human activities associated with each particular
lagoon, we could not correlate this environmental intensity use with the physicochemical
parameters prevailing at each lagoon. In future studies, it will be necessary to include
other parameters like biochemical oxygen demand and total suspended solids. Even some
taxa of microalgae communities responded to varying parameters such as alkalinity, water
hardness, cyanuric acid, carbonates, and lead; most taxa remained unaltered, suggesting
that the resilient capability of the community remains. The most substantial difference in
microalgae communities was found at the sample level, particularly for the community
isolated from the bottom of the Silvituc lagoon, the most apparently perturbed site. We
expected to find more taxonomic diversity in more conserved lagoons, but we could not
find this correlation. Functional gene annotation reveals a similar pattern. Nonetheless,
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more evident differences were found in the diversity of identified COGs between lagoon
origin, resulting in Mocú, the lagoon with more COG diversity. Further work on the
genomics of rare microalgae clades would boost the identification of functional capabilities
of biotechnological interest, such as water quality biomarkers or other applications.
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