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Abstract: Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disease with the
major symptoms comprising loss of movement coordination (motor dysfunction) and non-motor
dysfunction, including gastrointestinal symptoms. Alterations in the gut microbiota composition
have been reported in PD patients vs. controls. However, it is still unclear how these compositional
changes contribute to disease etiology and progression. Furthermore, most of the available studies
have focused on European, Asian, and North American cohorts, but the microbiomes of PD patients in
Latin America have not been characterized. To address this problem, we obtained fecal samples from
Colombian participants (n = 25 controls, n = 25 PD idiopathic cases) to characterize the taxonomical
community changes during disease via 16S rRNA gene sequencing. An analysis of differential compo-
sition, diversity, and personalized computational modeling was carried out, given the fecal bacterial
composition and diet of each participant. We found three metabolites that differed in dietary habits
between PD patients and controls: carbohydrates, trans fatty acids, and potassium. We identified
six genera that changed significantly in their relative abundance between PD patients and controls,
belonging to the families Lachnospiraceae, Lactobacillaceae, Verrucomicrobioaceae, Peptostreptococcaceae,
and Streptococcaceae. Furthermore, personalized metabolic modeling of the gut microbiome revealed
changes in the predicted production of seven metabolites (Indole, tryptophan, fructose, phenylacetic
acid, myristic acid, 3-Methyl-2-oxovaleric acid, and N-Acetylneuraminic acid). These metabolites are
associated with the metabolism of aromatic amino acids and their consumption in the diet. There-
fore, this research suggests that each individual’s diet and intestinal composition could affect host
metabolism. Furthermore, these findings open the door to the study of microbiome–host interactions
and allow us to contribute to personalized medicine.
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1. Introduction

Parkinson’s disease (PD) is a progressive heterogeneous motor movement disease,
primarily characterized by the loss of dopaminergic neurons in the substantia nigra pars
compacta in the midbrain. These cells produce the neurotransmitter dopamine, which
works in the striatum to modulate muscular tone and movement. These alterations lead to
motor impairments such as tremors, rigidity, postural instability, and akinesia [1]. Although
PD is known to primarily affect the basal ganglia, other nigral neurons, neurotransmitters
and neuromodulators are altered; the latter include acetylcholine, glutamate, noradrenaline,
and serotonin [2]. Moreover, the central and peripheral nervous systems are also affected,
causing, in most cases, non-motor symptoms such as gastrointestinal alterations [3].

PD is the second most common neurodegenerative disorder after Alzheimer’s dis-
ease [4]. Globally, it has a prevalence of 100–300 per 100,000 people, and, in Colombia,
PD prevalence is around 212.23 per 100,000 people [5]. Due to the increase in the elderly
population worldwide, the number of people with PD is expected to double by 2030 [6].
Surprisingly, just 10% of the cases of PD are related to genetic background [7], and most
cases are related to environmental factors that remain unknown. In search of the causes
that promote it, additional environmental factors that could drive the development and/or
progression of the disease have been suggested [8]. The gut microbiota has been postulated
as one crucial environmental factor associated with PD-associated neurodegeneration, sug-
gesting an important role in neural development and maintenance [9]. Thus, the microbiota
and its modulators, such as the diet, have been suggested as therapeutic targets. Moreover,
additional studies have also supported the hypothesis that diet impacts the development
of neurodegenerative diseases such as PD [10].

Conversely, in PD patients, gastrointestinal symptoms often precede motor symptoms
for years in the prodromal phase [3]. Braak et al. have suggested that some external
pathological agents could be related to the disease’s etiology, by entering the host through
either respiratory or gastrointestinal routes. According to this hypothesis, these agents
would promote the development of PD [11], by inflammation, oxidative stress and alpha-
synuclein misfolding in central and peripheral nervous systems [9].

To our knowledge, close to 20 cohort studies have described the composition of the PD
gut microbiota compared with healthy controls [10,12–28]. Most of them have been carried
out in North American, European, and Asian populations, but there are still no studies in the
field from regions with different cultural and genetic backgrounds, such as Latin America.
Earlier findings related to taxa associated with the disease are often inconsistent between
different studies, maybe due to diverse causes of variability, such as genetic background
or cultural and dietary differences. Therefore, to evaluate these differences as potential
prognostic approaches and find adequate treatment targets, it is necessary to characterize
the gut microbiome in diverse populations worldwide, including Latin American countries,
where this type of information is lacking. Thus, this work aims to partially fill this gap, by
characterizing a Latin American population microbiome in the context of PD, considering
key aspects such as the diet and its effect on the gut microbiota community complexity.

To understand the complex interactions between environmental conditions and indi-
vidual microbiome characteristics, a variety of approaches are needed. Meta-barcoding
techniques, along with genome-scale metabolic modeling (GSM), hold promise. GSM offers
advantages such as representing cell metabolism and generating plausible hypotheses that
can be modeled for personalized medicine and research [29].

In GSM reconstruction and analysis, biochemical metabolic reaction flux rates can be
predicted under specific input, and as a result, the personalized or general community
microbiota can be simulated. Several gut bacterial reconstructions for humans have been
previously reported and made available at the Assembly of Gut Organisms through Recon-
struction and Analysis (AGORA) database [30], a public resource with growing importance
in gut microbiome modeling. For instance, analysis toolboxes such as constraint-based
reconstruction and analysis (COBRA) [31] using AGORA have been applied to study di-
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verse diseases, including Parkinson’s disease (PD) [28], highlighting the importance of
host–microbiome crosstalk in human health.

Through the characterization of a distinct microbiome from a group of the Colombian
population, the present study aims to advance our understanding of the impact of the in-
testinal microbiota on the development of Parkinson’s disease. By characterizing a distinct
microbiome from a group of the Colombian population, this pioneering PD-microbiome
study in South America employed 16S sequencing and personalized computational mod-
eling of the human microbiome, which integrates patient-specific microbial composition
and diet. Notably, the detailed dietary information for each participant has been instru-
mental in identifying possible metabolic mechanisms by which the microbiome affects
neurodegeneration. Moreover, the study has revealed potential changes in the predicted
production metabolites associated with the metabolism of aromatic amino acids and the
diet, suggesting that these factors may play a role in the development of the disease.

2. Materials and Methods
2.1. Study Subjects

Originally, 56 age (max ± 2 years difference) and sex-matched subjects (31 PD patients,
25 control subjects) were recruited to participate in the study. Six were excluded based on
the inclusion/exclusion criteria, bringing the total number of subjects to 50 (25 PD patients,
25 control subjects); 22 male and 28 female. The study was approved by the ethics committee
of the National University of Colombia and all participants gave informed consent.

The patients’ diagnosis was made by an experienced movement disorder specialist
neurologist using the Webster Rating as an impairment scale for Parkinson’s disease, as well
as data obtained from having access to their clinical histories. The exclusion criteria used
were as follows: (1) regular use of probiotics or antibiotics during the last 3 months before
sample collection, (2) secondary Parkinsonism, (3) familial Parkinson, (4) gastrointestinal
primary diseases, (5) other neurological or psychiatric alterations, and (6) changes in dietary
habits. For the controls, the exclusion criteria were as follows: (1) regular use of probiotics
or antibiotics the last 3 months before the sample collection, (2) gastrointestinal primary
diseases, (3) neurological or psychiatric alterations, and (4) changes in dietary habits.

2.2. Nutritional Data

A registered dietitian nutritionist developed a complete nutritional assessment adapted
to the investigation’s purposes on all 50 subjects (25 cases and 25 controls) through a home
visit from June 2018 to February 2019. This evaluation included a malnutrition screening
test with the Ferguson screening tool [30], nutritional history, anthropometric evaluation,
food pattern, and nutritional intake.

We evaluated the food intake with two 24 h recalls of the multiple steps, designed by
the United States Department of Agriculture (USDA). The food pattern of the last six months
was identified using a qualitative food frequency questionnaire, modified according to the
National Survey of Nutritional Situation 2005 and 2010 [31], the Dietary Guidelines for
Americans, and risk tracer nutrients concerning microbiota composition and Parkinson’s
disease. Every food was coded and analyzed using the Colombian Food Composition
Table—2015 [32] and the Food Composition Lists of the USDA [33], Finland [34], and
Germany [35], comprising 60 nutrients. Additionally, we evaluated the food frequency
questionnaire according to the periodicity on a 10-point scale endorsed by USDA [36].

In the anthropometric assessment, weight, height, or height estimation by knee heel
height with the equation developed for Chumlea [37] was used. We assessed the muscle
mass using the arm and calf circumferences and fat mass using the triceps skinfold cir-
cumference. The analysis added BMI stratification by the cut-off point for adults [38] and
older adults [39]. The estimation of muscle and fat mass was measured according to the
cut-off points established in the Third National Health and Nutrition Examination Survey
(NHANES) [40] and Frisancho [41] for arm muscle circumference.
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Additionally, we contrasted the intake of nutrients following the established dietary rec-
ommendations of the Colombian Resolution 3803 of 2016 [42], “Recomendaciones de Ingesta
de Energía y Nutrientes (RIEN)”, which is the adaptation of the Dietary Reference Intakes
(DRI) [43]. The intake value of each nutrient was compared against the following values:
adequate macronutrient distribution range (AMDR), estimated average requirement (EAR), rec-
ommended dietary allowances (RDA), adequate intake (AI), or tolerable upper intake level (UL),
to establish whether the intake of each nutrient was in deficit or exceeded the recommended
value. Only those nutrients reported in the recommendations were taken for analysis.

2.3. Sample Collection and DNA Extraction

Fecal samples were obtained by all 50 participants. Samples were collected at home,
following physician indications, into sterile disposable containers. The fecal samples
were collected in the morning hours, frozen, and stored at −20 ◦C for further processing
(maximum 3 days later). The ZymoBIOMICS DNA Miniprep Kit (Zymo Research, Irvine,
CA, USA) was used according to the manufacturer’s instructions and the in-house DNA
extraction protocol refinement. After extraction (three technical replicates per sample), DNA
samples were quantified using Nanodrop ND-1000 (Thermo Fisher Scientific, Wilmington,
DE, USA) and Qubit Invitrogen (Life Technologies, Carlsbad, CA, USA), and the integrity
of the DNA was evaluated by 0.8% agarose gel electrophoresis.

2.4. 16S rRNA Gene Amplicon and Sequencing

The DNA extracts were transferred to 96-well plates. Library preparation and sequenc-
ing were performed by The University of Iowa (United States) sequencing services (Iowa
State University DNA Facility). The hypervariable regions of the bacterial 16S rRNA gene
V4-V5 were amplified using the universal 16S forward primer (515F: GTGYCAGCMGC-
CGCGGTAA) and the reverse primer (926R:CCG CAA TTTTTTTT). The DNA libraries
were then multiplexed for sequencing on the Illumina MiSeq platform (2 × 250 paired-ends)
in a single flow cell lane.

2.5. Bioinformatics and Statistical Analysis

The already demultiplexed data were obtained. All raw sequence data generated
in this study have been deposited in the National Center for Biotechnology Information
NCBI under BioProject accession number PRJNA975118. The replicates in each sample
were concatenated and subsequently filtered using prinseq-lite-0.20.4 program [44]. Bases
below Q-score 24 were cut off at the start and the end of the reads. After processing, the
unique sequences and abundances were obtained, the chimeras were filtered, and biological
sequences were predicted into zero-radius operational taxonomic units (zOTUs) using the
unoise3 algorithm part of the Usearch program [45,46]. Sequences with less than 400 bp were
removed from the raw data. Taxonomic assignments were obtained using the Ribosomal
Database Project RDP training set v16 at an 80% confidence level.

Since the highest taxonomic level was the genus, the specific species of Streptococcus
were identified using a direct BLAST analysis between zOTU31 and zOTU59 and the
NCBI’s nucleotide database. BLAST analysis indicates that zOTU31 shares a 100% identity
with the Streptococcus thermophilus strain TMPC 45524 16S ribosomal RNA gene, partial
sequence (ID: ON358420.1).

Statistical assessment and data visualization were performed using R (version 4.1.0),
code available in Github repository: https://github.com/ljforeror/Parkinson_Microbiome
(accessed on 1 December 2023). To consider significant comparisons, p-values < 0.05, or
adjusted p-values < 0.05 were taken into account. To evaluate potentially confounding
clinical variables, we used either Student’s t-test, the Wilcoxon signed rank test, or Fisher’s
exact test, depending on the type and distribution of each variable. Data were plotted by
means of ggplot2 (v. 2_3.3.5).

The structure and composition analysis of the bacterial community was performed
using the R package phyloseq [47] (v. 1.36.0). The library size of each sample was normal-
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ized using rarefying to even sequence depth and exclusion taxa present in less than 20%
of all samples. Bacterial diversity and richness were also analyzed using phyloseq with
alpha diversity indices (observed richness, Shannon index, and inverse Simpson index).
A Wilcoxon rank-sum test was used to evaluate alpha diversity differences.

To evaluate beta diversity, phyloseq (v. 1.36.0) was also used with Bray–Curtis dissimi-
larity. Distance measures, as an unweighted unique fraction metric and weighted Unifrac,
were used for unconstrained ordination on genus proportions between the PD and control
groups. The command ANOSIM (analysis of similarities) and Adonis (permutational
multivariate analysis of variance using distance matrices) were run, with the parameter
perm = 9999, implemented in vegan (v. 2.5–7) [48]. Data were plotted using non-metric
multidimensional scaling (NMDS) in the R package ggplot2 (v. 2_3.3.5).

We evaluated the differential abundance between the PD and control groups by using
the test for differential expression based on a model using the negative binomial distribution
of DESeq2 (v. 1.32.0), by means of the phyloseq package. Comparisons on three taxonomic
levels (zOTU, genus, and family) between PD and control groups were performed.

Clinical and Diet Correlations in Healthy and Parkinson’s Disease Bacterial Compositions

Based on the demographic, anthropometric, and clinical information recorded for both
PD patients and controls, as well as the nutrient quantification performed as described
above, a correlation analysis was performed using RStudio. For this purpose, the data
containing clinical, anthropometric, demographic, and clinical information (age, weight,
alcohol or tobacco consumption, number of stools per week, Bristol scale, disease duration,
Webster scale, severity of phenotype Parkinson’s, and calf perimeter) and the number
of uptake nutrients from the diet in patients and controls were used. We obtained the
correlation values and p-values for the correlation coefficients. The p values obtained were
corrected by the false discovery rate FDR method. The significant correlation between
the clinical, anthropometric, demographic, and clinical variables and the nutrient values
were taken with a significance p-value of <0.5. Finally, for Spearman’s correlation between
dietary information and the most representative zOTU, we followed the mentioned steps.

2.6. Individualized Microbial Community Reconstructions

To predict the functional composition of the gut microbiome from 16S data, we used
PICRUSt (v.2-2.3.0-6). To predict metabolic processes in the microbial community, we
selected the AGORA collection (v.1.02) models, based on the individual composition and
abundance found in the participants in our cohort. The AGORA collection comprises
genome-scale metabolic models of 818 common human gut microbial species.

Thus, we took the 16S rRNA gene-filtered sequences belonging to the zOTUs obtained
and mapped them to their corresponding models contained in the AGORA collection, using
the MicrobiomeAGORA package https://github.com/mucosimmunol/aTNF-AZA/tree/
master/microbial_community_modellings (accessed on 13 May 2023) [49]. We required
a minimum sequence identity of 97% and thus found the closest neighbor based on 16S
sequence information. We also took the diet information for each individual, obtained the
mM (milliMolar) equivalent value [50] for all nutrients, and set it as the input in each of the
personalized in silico microbiota, by constraining the lower bounds of the inflow reactions
of the corresponding metabolites.

In order to model the community behavior of each of the previously identified micro-
biome compositions, we used the R package BacArena v.1.8 [51]. In BacArena, bacteria are
represented by individual genome-scale models, which are placed in grids. Inside each
grid, the models can move randomly, can take and exchange metabolites that are produced
or consumed by other bacteria, or can just accumulate in the environment. We set the size
of the environment to 3600 grid cells where the microbe models can grow with enough
room to reduce the stationary phase. There were 300–500 microbes initially included based
on their relative abundances, as evidenced by previously described bioinformatics 16S
analysis. The simulation was made for each individual sampled, including input compo-

https://github.com/mucosimmunol/aTNF-AZA/tree/master/microbial_community_modellings
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nents extracted from 99% diet data of each participant and 1% of Western diet reported
in Virtual Metabolic Human VHM (to satisfy some model-specific growth requirements).
Each metabolite obtained from the diet was converted to grams, then the weight was di-
vided by molecular weight to obtain mol/L. Finally, they were multiplied by 1000 to obtain
the values in mmol/L. All simulations were performed using ten replicates in parallel and
12 h of bacterial growth. In these individual-specific bacterial gut community models, we
obtained the concentrations (amount of the substances in mM) of metabolic end products at
the end of the simulation. Significant differences between healthy controls and PD patients
were determined using Wilcoxon rank sum tests and generalized linear modeling.

2.7. Software

The simulations and their analysis were performed in the R environment (v.4.1.0 and
v.3.6.1), using the BacArena [52] and sybil (v.2.2.0) packages [53]. The following additional
packages were used: sybilSBML (v.3.1.2), linear programming solver CPLEX (v. 12.7.1), and
the R package cplexAPI (v.1.4.0). For parallel computing, the software parallel, with the
foreach package (v.1.5.2), and doParallel (v.1.0.17) were used.

3. Results
3.1. Clinical and Demographic Characteristics of the Studied Population

The clinical and demographic characteristics of the participants in the study were
compared between groups. They showed significant differences in variables, such as Bristol
stool scales, pramipexole medication, calf perimeter, and alcohol habits. The increased calf
perimeter in controls compared to PD patients indicates that PD patients have a loss of
muscle mass [41]. PD participants took anti-Parkinson medication, and they did not have
special diets or infectious diseases. Some participants had pre-diabetes, but just two had
metformin prescribed as treatment (Table 1).

Table 1. Demographic and clinical parameters comparison between Parkinson’s patients and
control subjects.

Variables Control Subjects
(% (n)/Median [IQR])

Parkinson’s Patients
(% (n)/Median [IQR]) p. Adjusted Test

Demographics
Sex 30 (15) 28 (14) 1 Fisher

Smoke 16 (8) 30 (15) 0.526 Fisher
Alcohol 10 (5) 34 (17) 0.012 Fisher

Weight (kg) 68.7 [17.4] 62.2 [17.2] 0.265 Wilcoxon

Medication
Levodopa/carbidopa 0 36 (18) 5.33 × 10−5 Fisher

Pramipexole 0 12 (6) 0.156 Fisher
Phenobarbital 0 2 (1) 1 Fisher

Rotigotine 0 6 (3) 1 Fisher
Mirapex 0 4 (2) 1 Fisher

Metformin 0 4 (2) 1 Fisher

Disease related variables
Stools per week 7 [4] 7 [3] 0.677 Wilcoxon

Bristol scale 4 [1] 3 [1] 0.001 Wilcoxon
Webster scale 0 11 [5] 9.413 × 10−8 Wilcoxon
Calf perimeter 37.1 [3.8] 35.5 [3.5] 0.013 Wilcoxon

Statistically significant p-values are marked in bold font. IQR: interquartile Range, n: number of participants.

3.2. Nutritional Analysis
3.2.1. Dietary Requirements

Fifty percent of the participants presented with an inadequate consumption of protein,
31% presented with an inadequate consumption of fat, and 27% of carbohydrates. Within
their nutritional diagnosis, it is noteworthy that 35% of the participants presented with
excess weight, 23% with nutritional risk, and 42% with some degree of malnutrition
(Supplementary Tables S1 and S2).
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3.2.2. Clinical Correlations in Parkinson’s Disease and Dietary Metabolites

To provide an additional indication about the dietary contributors to clinical charac-
teristics related to an increased risk of PD, a correlation analysis was performed between
10 clinical, anthropometric, and demographic variables and 65 quantified nutrients in
samples from our cohort of PD patients and controls. We obtained 11 significant correlation
coefficient (rs) values of nutrients against one or more clinical variables. Interestingly, the
level of carbohydrates presented a negative correlation with three clinical variables: disease
duration (rs = −0.64), Webster’s scale (the quantification of motor manifestations) [54]
(rs = −0.62), and PD severity scale (rs = −0.63). In addition, we found that the uptake
of trans fatty acids (defined as the products of the hydrogenation of unsaturated oils or
biohydrogenation in the stomach of ruminant animals, which increase the ratio of low-
density lipoprotein LDL cholesterol) [55] showed a positive correlation with the Webster
score (rs = 0.62) and with the PD severity (rs = 0.56) (Figure 1C, Supplementary Table S3).
Based on the non-normality assumption, a Wilcoxon test was used to compare the dietary
intake between the two groups (patients and controls), as shown in Table 2. We found that
PD patients have a significantly increased intake of trans fatty acids, and a significantly de-
creased intake of carbohydrates and potassium (Figure 1, Supplementary Tables S5 and S6).
This was in concordance with the variables cluster found in the principal component analy-
sis (PCA) in each group studied (Figure 1B).
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Figure 1. Dietary metabolites consumption between PD patients and controls: (A) box plots for the
dietary metabolites consumed for the two study groups. Differences across the two study groups
are significant (p < 0.05); (B) principal components analysis of dietary metabolites consumed by
50 participants dot and triangle indicates the phenotype (Healthy and Patient), ellipse colors purple
and pink represent the phenotype, and a larger size of dot and triangle represents the centroid;
and (C) heatmap representing the correlation analysis performed between clinical variables and
nutritional data.
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Table 2. Analysis of similarities (Anosim) and permuted multivariate analysis of variance (Adonis)
of zOTUs between PD patients and controls.

Distance Adonis_R Adonis_p-Value Anosim_R Anosim_p-Value

Braycurtis 0.026 0.1224 0.019 0.1944
Uwunifrac 0.033 0.0083 0.059 0.016
Wunifrac 0.039 0.0924 0.083 0.0052

Statistically significant p-values are marked in bold font.

3.2.3. Principal Component Analysis of Dietary Uptake

After analyzing the dietary data by means of principal component analysis (PCA),
we found that the first principal component (PC1) is determined by the number of amino
acids, protein, and some minerals in the diet (Figure 1B). PC2 corresponds to a diet rich in
carbohydrates, caffeine, some vitamins, some fatty acids, and a few minerals. Finally, PC3
is represented mainly by trans fatty acids, vitamin B, ascorbic acid, thiamine, cholesterol,
and a few vitamins and fatty acids. Hereby, dimension 1 seems to explain the variability
shown on the PCA better than the other two dimensions. The group of metabolites close to
potassium, magnesium, caffeine, and others represented in the biplot by close vectors seem
to be characteristic of the healthy group, while the patients seem to be represented by trans
fatty acids and amino acids (Figure 1, Supplementary Figures S2 and S3).

3.3. Species Richness, Alpha Diversity, and Beta Diversity

From three replicates of 50 fecal samples, including healthy and patient samples, and
after filtering, we obtained an average of 1,401,450 reads per sample, and the library size was
rarefied to 41,007 reads per sample (90% of sample abundance with fewer reads) by random
subtraction (Supplementary Figure S4). There were 932 zOTUs, 180 genera, 75 families, and
11 phyla obtained from the 16S rRNA gene amplicon data. The top phylum abundances
were similar between PD patients and healthy controls (Supplementary Figure S5).

We analyzed within-community microbial diversity using α-diversity analysis. We cal-
culated observed-species, Shannon, and Simpson indices but did not find any difference
between controls and patients (p-value < 0.5) by Wilcoxon rank-sum test (Figure 2A). Hence,
there is no general difference in diversity between PD patients and healthy individuals,
hinting at differences in the composition of microbiomes which are associated with PD.

Hence, we evaluated beta diversity to identify compositional differences between
the two populations using Bray–Curtis, weighted, and unweighted Unifrac (Figure 2B,D,
Supplementary Figure S6). We observed significant dissimilarities between patients and
healthy controls based on weighted and unweighted Unifrac, by analysis of similarities
(Anosim) and permutational multivariate analysis of variance (Adonis); despite this, the
effect size (R value) was still small and the explained variability was ~2–8% only (Table 2,
Supplementary Table S7).

3.4. Differential Abundance Analysis of Gut Microbiota between Parkinson’s Disease Patients
and Controls

We evaluated the differential abundance between the PD and control groups by means
of DEseq2 [56]. The differential abundance testing method is based on a model using the
negative binomial distribution on taxonomic levels (zOTUs, genus, family, and phylum).
This analysis suggested that some taxa were differing significantly between PD patients and
controls (one phylum, two families, and six zOTUs) (Supplementary Tables S7–S10), with
more than 0.1% relative abundance. In the differential abundance analysis, the zOTUs that
were significantly decreased in PD were zOTU75 (genus: Lactobacillus) and zOTU31 (genus:
Streptococcus). The zOTUs significantly increased in PD were as follows: zOTU11 (genus:
Akkermansia); zOTUs35 (genus: Clostridium Cluster XlVa); zOTU59 (genus: Streptococcus);
and zOTU66 (genus: Intestinibacter).
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Figure 2. Alpha diversity and beta diversity differential abundance analysis of gut microbiota
between PD patients and controls: (A) estimators of α diversity, observed species, Shannon, and
Simpson indices in patients with PD and healthy controls. There are no significant differences
between the groups; (C) abundance of families (each point represents the abundance of every zOTUs
associated); (B,D) The composition of the samples was compared using the UniFrac distances with
the normalized abundances. Weighted Unifrac considers the abundance of the species, whereas
unweighted Unifrac only considers the information regarding the presence and absence of species.

3.5. Inferred Functional Microbiota Profiling

In order to predict the functional alterations of the microbes in feces, PICRUSt2 [57]
was applied to estimate the metaCyc pathway abundances, using the 16s rRNA gene
sequencing data in PD and healthy groups. To identify functional abundance with signif-
icant differences between PD and healthy groups, DESeq2 [56] was used. We identified
differences in aerobic respiration I (cytochrome c) (PWY-3781), sucrose biosynthesis I (from
photosynthesis) (SUCSYN-PWY), sucrose biosynthesis III (PWY-7347), catechol degra-
dation III (ortho-cleavage pathway) (PWY-5417), aromatic compounds degradation via
β-ketoadipate (PWY-5431), catechol degradation I (PWY-5415); and catechol degradation to
beta-ketoadipate (CATECHOL-ORTHO-CLEAVAGE-PWY) (Figure 3 and Supplementary
Table S12); all of the pathways were found to be more abundant in the PD microbiome.
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3.6. Microbiota Modeling

We aimed to gain a deeper functional understanding of the differences in microbiome
metabolism between patients and controls and identify which microbial metabolites may
be altered in PD, due to changes in the microbial community structure. We predicted the
secreted metabolic end products of 50 simulated personalized in silico microbiota communi-
ties, using personalized diets from each participant to better represent individual biological
conditions (Supplementary Table S13). The microbial communities were simulated using
the individual-based modeling framework BacArena, which combines FBA (flux balance
analysis) and individual modeling of the bacteria to study microbial metabolism and
complex dynamics between interacting organisms [51]. Thus, the simulation can predict
interactions and the production of metabolites, to identify signals of metabolic differences
between PD and control phenotypes.
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3.6.1. Microbial Differences between Healthy Controls and PD Patients

The 16S rRNA sequence from each of the participants was mapped to AGORA. A total
of 272 microbial strains from this resource were present in our participants. From these,
we took the most abundant (with a relative abundance larger than 2%) microorganisms
in each individual microbiota to be included in the simulation (147 microbial strains);
thus, for our simulations, the microbiota with the smallest number of reconstructions
contained 16 models and the largest had 52 models out of the total 147. Considering the
overall abundance of species from the 16S data, on average, 64.1% of reads matched with
species from the AGORA resource. Some genera included in the models were different
compared with the 16S data (strains’ metabolic reconstructions). This can be explained by
the patients and controls potentially having more diverse microbes than those reported in
the database, or perhaps the resolution of the 16S regions does not allow the identification
of the corresponding strains, which can lead to a lower abundance or different genera
present in the simulation of each individual.

Performed simulations suggest that microorganisms can co-exist stably as a commu-
nity, based on the in silico simulation in BacArena. Organisms included at the beginning
of the simulation remained present after 12 h of growth. At the end of the simulation, the
grid was populated with an average of 3534.95 (12 h) microbes, with a percentage of grid
occupation of 98%.

3.6.2. Extracellular Metabolites Concentration at 12 h Simulation between Healthy Controls
and Parkinson’s Disease Patients

Based on simulation results, we evaluated whether there are metabolic differences
between healthy and PD patients using different statistical tests. We compared the concen-
tration of the final metabolites using generalized linear models (GLM) and the Wilcoxon
test (Supplementary Tables S14 and S15). We were able to identify 134 common metabolites
across all simulations. Based on this metabolite set, we observed the following seven
significantly increased metabolites and one decreased metabolite in the healthy group
before multiple testing corrections were carried out: phenylacetic acid (pac), indole (in-
dole), L-Tryptophan (trp_L), D-Fructose (fru), myristic acid (ttdca), 3-Methyl-2-oxovaleric
acid (3mop), N-Acetylneuraminic acid (acnam) (Figure 4 and Supplementary Table S14).
We could not identify significant changes in the predicted metabolite concentrations after
multiple testing corrections were carried out (Supplementary Table S15).

Each of the metabolites identified as differentially produced in the simulation are
present in each model at different concentrations. Indole, tryptophan, fructose, phenylacetic
acid, 3-Methyl-2-oxovaleric acid and N-Acetylneuraminic acid were found to be higher
in the healthy phenotype simulation, while myristic acid was found to be higher in the
PD phenotype simulation (Figure 4). Apart from these metabolites, common short-chain
fatty acids SCFAs were identified without significant differences. The median acetate
concentration was higher in the healthy models than in the PD models. The median
butyrate concentration was higher in the PD models. Finally, propionate concentrations
were higher in the healthy models (Supplementary Figure S6).
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Figure 4. Violin plot of the significant differential metabolic metabolites between PD patients and
controls simulations: phenylacetic acid concentration in mM at 12 h simulation in each participant
belonging to each group of PD patients (purple) and controls (pink). Indole concentration in mM
at 12 h simulation in each participant belonging to each group, PD patients (purple) and controls
(pink). L-Tryptophan concentration in mM at 12 h simulation in each participant belonging to each
group PD, patients (purple) and controls (pink). Fructose concentration in mM at 12 h simulation
in each participant belonging to each group of PD patients (purple) and controls (pink). Myristic
acid concentration in mM at 12 h simulation in each participant belonging to each group of PD
patients (purple) and controls (pink). 3-Methyl-2-oxovaleric acid concentration in mM at 12 h
simulation in each participant belonging to each group of PD patients (purple) and controls (pink).
N-Acetylneuraminic acid concentration in mM at 12 h simulation in each participant belonging to
each group of PD patients (purple) and controls (pink).

3.6.3. Bacterial Reconstructions Producing or Consuming the Differential Metabolites in
the Simulation between the Patient and Control Phenotypes

Since we had the exchange fluxes of each metabolite that is associated with PD,
we identified which microorganisms are related to their consumption or production
(Supplementary Tables S16 and S17). The values of the uptake and secretion fluxes (con-
sumption and production) of each microbial reconstruction for each metabolite were
assessed on each phenotype (healthy or PD) (Figure 5, Supplementary Figures S8–S10).
We found that Bacteroides and Desulfovibrio were largely responsible for the production of
myristic acid. Likewise, Bacteroides are involved in the production of indole and pheny-
lacetic acid. Bacteria of the Bifidobacterium genus were producers, although of low amounts,
of fructose, but the biggest amount of fructose is uptaken from many genus of Acidaminococ-
cus, Akkermansia, Alistipes, Bacteroides, and others (Figure 5, Supplementary Figure S8).
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4. Discussion

PD is a progressive heterogeneous motor movement disorder, characterized by the loss
of dopaminergic neurons in the substantia nigra in the striatum. These alterations lead to
motor impairments [1]. The gastrointestinal tract and the brain share a bidirectional signaling
route, called the microbiota–gut–brain axis. With the advancement of high-throughput
sequencing methods, the relationship between the gut microbiota and its influence on
human physiology has been explored extensively. More recently, the gut microbiota has also
been shown to have an integral role in neurodegeneration [58].

Several studies have characterized the gut bacterial composition in PD patients and
healthy controls [10,12–28]. Here, we present the first characterization of the microbiomes
of Parkinson patients from the Latin American population, which have been neglected
in previous microbiome studies about microbial composition and its influence on disease
development.

To address this gap, fecal matter was obtained from Colombian participants. Analy-
sis of differential composition, diversity, and personalized computational modeling was
carried out, given the individualized diet and fecal bacterial composition of the partici-
pants. We found three dietary metabolites and six genera that significantly changed in
their relative abundances between PD patients and healthy controls, belonging to the
families of Lachnospiraceae, Peptostreptococcaceae, Verrucomicrobioaceae, Lactobacillaceae, and
Streptococcaceae. The personalized metabolic modeling of gut microbiomes revealed an
increased concentration of seven metabolites, suggesting that the diet and the intestinal
bacterial composition of each participant could affect the metabolism of the host and, thus,
influence the development of the disease.

4.1. Six Zero-Radius Operational Taxonomic Units Changed Significantly in Their Relative
Abundances between Parkinson’s Disease Patients and Controls

In our study, we found six significant differences between PD patients and healthy
controls at the zOTU level, with a relative abundance over 0.1%. One of those zOTUs
corresponds to the family Verrucomicrobioaceae, genus Akkermansia (zOTU11), and was
increased in PD patients. This is an organism that has been described as differentially
abundant also in recent studies of Parkinson’s disease. Akkermansia muciniphila has fre-
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quently been observed to increase in abundance in PD patients and in levodopa-naive PD
patients [10,12–14,17,24,26,28,59,60].

This bacteria is a dominant human gut mucus colonizer that can produce mucin-
degrading enzymes and uses the mucin as a carbon and nitrogen source [61]. Through
the fermentation of mucin, it can produce sulfate and acids like acetic and propionic
acids [62]. It has also been shown that, in the absence of dietary fiber, the abundance
of A. muciniphila increases and could promote pathogen susceptibility [63]. It has been
suggested that changes in intestinal mucin composition might facilitate the access of anti-
gens and pathogens and increase inflammation [64]. Although we were not able to find
any significant difference between groups in predicting functional abundances (metabolic
pathways abundances using PICRUSt2) related to sulfur metabolism, this organism has
been previously shown to have a role in sulfur metabolism identified before in PD pa-
tients [65]. Sulfur derivatives could, under conditions of dysbiosis, have detrimental effects
on the colon, in addition to increased gut permeability, immune stimulation, and altered
metabolism of SCFAs, and could also promote inflammation [28]. However, the explicit
role of A. muciniphila in the context of PD remains to be elucidated. Thus, it has been
suggested that it is important to explore diverse strain effects [59], and how diverse factors
like medication [14] and diet [66] can be related to the function of this bacteria within the
microbial community, in the gut and the context of PD.

Several studies of PD have reported a decrease in bacterial families like Ruminococcaceae
and Lachnospiraceae, which include the genus Faecalibacterium and Roseburia. These bacterial
families are butyrate producers [67]. This study identified an increased abundance of the
family Lachnospiraceae, genus Clostridium Cluster XlVa (zOTUs35) in the PD group. It is
a producer of butyrate in mucous membranes [68]. Butyrate is one of the most common
SCFAs produced by gut bacteria, is related to different biological pathways, including
energy homeostasis, oxidative stress, neural signaling, anti-inflammatory effects, glucose
and lipid metabolism, and epigenetic modulation [69,70]. In mice susceptible models,
butyrate can induce PD phenotype [58]. Nevertheless, the observation of the increased
prevalence of the Clostridium Cluster XlVa genus in the PD population could be attributed
to non-related medical conditions not taken into account during other studies, such as
host genotype, variation among bacterial strains, diet, and lifestyle [71]. In the latter
case, for instance, it has been shown that Clostridium Cluster XlVa abundance is elevated
in patients suffering from depression [72]. It is therefore possible that our results for
Clostridium XIVa could be a result of some other unknown condition. Thus, more research
and characterization of gut dysbiosis and its role in various disease conditions are necessary.

Variations in etiological factors and the choice of analysis can translate into different
outcomes when applied to data with underlying multi-variable dependencies involving
patients and diseases from different populations. For instance, a decreased abundance
of Lactobacillus of the family Lactobacillaceae (zOTU75) in PD patients was observed in
our study. This is consistent with a study performed on Chinese PD patients [20,24]
and one study with a cohort from Finland [17]. But the opposite was found in other
PD studies [14,16,18,19,21,23,28,73]. In PD, one of the reasons that causes an increased
abundance of Lactobacillus is the use of the drug levodopa [60]. The capacity of many
Lactobacillus species to metabolize catecholamines may impact levodopa treatment, and the
medication promotes its proliferation [74].

In our study, we observed a reduction in Lactobacillus, even though most patients
in the cohort (18 patients) were under levodopa–carbidopa treatment. In one study, it
was suggested that the increase in Lactobacillus in healthy controls could correlate with
genetic, regional, and dietary differences, like the consumption of a diet enriched with
Lactobacillus [17,20,24,75]. However, in our study, we did not observe the consumption of
probiotics within the cohort. A possible explanation for the reduced levels of Lactobacillus
could be associated with the relationship of bacteria of this genus with the regulation of
genes involved in the tight junctions. Therefore, this could compromise the permeability of
the barrier, which has also been associated with PD [24,76].



Microorganisms 2024, 12, 325 15 of 25

We also found an increased abundance of zOTU59 and a decreased abundance
of zOTU31, both belonging to the genus Streptococcus from the family Streptococcaceae.
This genus is a putative pathobiont that increases in PD [22,27,28]. It is reported that
cadaverine is increased in PD patients and associated with Lewy body (LB) formation [77].
Like other polyamines (putrescine and spermidine), it has toxic effects in mice, promoting
motility dysfunction and inflammation [1,78,79].

Streptococcus thermophilus is a Gram-positive bacteria that has been reported as a
probiotic due to its beneficial effects in the host [80]. Additionally, it was shown that the
water-soluble exopolysaccharide (EPS-1) has protective effects on acute mouse colitis by
mitigating colonic epithelial cell injury, alleviating intestinal inflammation, and improving
the mucosal barrier function [81]. In this regard, the decreased abundance of that zOTU
in the PD population may be related to negative effects on the barrier permeability of the
colon in PD patients.

With respect to zOTU59, we were able to find a 100% identity with the Streptococ-
cus lutetiensis strain 2709 16S ribosomal RNA gene, partial sequence (ID: MT611722.1).
S. lutetiensis is part of the Streptococcus bovis/Streptococcus equinus complex (SBSEC), a
non-enterococcal group in the D Streptococcus spp. complex [82]. Although they have been
described as strains that are safe and part of the diet [82], S. lutetiensis strains have also been
reported in children with diarrhea in China. The genome annotation of S. lutetiensis has
revealed the presence of pathogenic islands and virulence genes such as sortase (srtA), as-
sociated with adhesion and host colonization [83,84]. Therefore, the decreased abundances
of zOTU31 and increased abundancies of zOTU59 in our study are confounding, and the
exact role of these organisms in PD remains to be elucidated.

Finally, regarding zOTU66, we found Intestinibacter of the family Peptostreptococcaceae
to be increased in PD patients, contrary to what has been previously reported [58,85].
Moreover, in a study on major depressive disorder and sleep quality, Coprococcus and
Intestinibacter were shown to be associated with sleep quality, independent of the severity of
depression [86]. The increased abundances can also be explained by differences in genetic
makeup [87], geography [85], diet, and other diseases and/or disorders that could alter gut
microbial composition [86]. In a study with a population from 50 to 80 years old, it was
found that Peptostreptococcaceae abundance increased with the decreasing quality of life.
Thus, its abundance could be detrimental to health [88]. Additionally, its increase has also
been found in diverse diseases, such as type 2 diabetes mellitus [89].

4.2. Dietary Intake, Bacterial Composition, and Parkinson’s Disease

The comparison of the intake of nutrients between groups showed that dietary items
like trans fatty acids seem to be taken up more in PD patients, and we also established a
significant positive correlation involving the number of trans fatty acids and the severity of
PD clinical manifestations, the years of illness and the Webster score (rs = 0.56, 0.44, 0.56).
An increased uptake of trans fatty acids in the gut can result in alterations in the composition
and biodiversity of the gut microbiota, induce inflammation, and alter the innate immunity
of the intestinal tract [90]. Carbohydrates, on the other hand, as an important component
of the diet, are one of the factors that affect the composition and metabolic function of
the gut microbiota [91]. There was a decreased uptake of carbohydrates in the PD group,
and there was a negative correlation between carbohydrate intake and PD severity, years
of illness, and Webster score (rs = −0.63, −0.64, −0.62) in our cohort. The carbohydrates
include sugars, starches, and dietary fibers [92]. Although long-term habits can determine
the members of the microbiota, acute dietary changes, mostly in macronutrients and fiber,
can significantly induce changes [93,94].

Even though our findings support the notion of an influence of decreased carbohydrate
intake on PD progression, as opposed to the effect associated with the increased uptake
of trans fatty acid, it is important to state that the evidence regarding the appropriate
carbohydrate/fat ratio for PD is still inconclusive and conflicting [95]. For example, low-
carbohydrate, high-fat diets are claimed to have positive effects on brain function [96]. Early
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evidence indicates that dietary manipulation may influence motor and cognitive symptoms
in Parkinson’s disease. On one hand, a high-fat, high-protein diet may facilitate the passage
of the dopamine precursors tyrosine and tryptophan into the brain and trigger an insulin-
sensitive rise in brain dopamine [97,98]. However, the carbohydrate polymers that are not
hydrolyzed by the endogenous enzymes and absorbed in the human small intestine [94]
are instead metabolized by the gut bacteria in the large intestine. Through the fermentation
of these fibers as an energy source, products like SCFAs and gases (H2, and CO2) are
generated, which have been shown to benefit aspects of human health [99] like epithelial
cell integrity, immune function, glucose homeostasis, lipid metabolism and regulation of
appetite [100,101].

In our cohort, the PD patients showed a smaller intake of potassium compared with
healthy controls, which, based on other studies, may be related to the impaired intestinal
barrier and may alter the cellular signaling in the basal ganglia. Recently, a study of mice
reported that a low potassium diet could increase intestinal permeability, which may result
in bacterial translocation [102]. Additionally, changes in potassium could influence the
regulation of K(+) channels and are important for cellular signaling in the basal ganglia;
therefore, impairments in potassium could also have a relation with PD disease [103–105].

4.3. Metabolism of Aromatic Amino Acids Pathways Was Increased in Parkinson’s Disease
Patients’ Microbiota

In our study, the functional abundance prediction analysis showed an increase in
abundance of metabolic pathways in PD. In the first place we found aerobic respiration,
which could be associated with aerobic facultative organisms in the gut. Bacteria such as
the Enterobacteriaceae class are present in the gut at low levels, due to respiratory acceptor
restriction (e.g., oxygen); however, under dysbiosis, the gut metabolism may change due
to an increase in the oxygen levels in the gut, increasing the abundance of members of
Enterobacteriaceae pathogens and generating inflammatory responses [106]. Other metabolic
pathways, such as sucrose biosynthesis I (SUCSYN-PWY) and sucrose biosynthesis III
(PWY-7347), in the PD cohort are involved in the generation of sucrose by glycerone
phosphate and 3-phosphoglycerate, and the sucrose biosynthesis III pathway uses fructose-
6-phosphate and UDP-α-D-glucose (an intermediate product of SUCSYN-PWY) to produce
sucrose, uridine diphosphate, and phosphate [107].

Additionally, pathways related to aromatic compounds and catechol degradation
were increased in abundance in PD patients—catechol degradation III (ortho-cleavage
pathway, PWY-5417), aromatic compounds degradation via β-ketoadipate (PWY-5431), Cat-
echol degradation I (PWY-5415) and catechol degradation to β-ketoadipate (CATECHOL-
ORTHO-CLEAVAGE-PWY). To our knowledge, this is the first study that shows an as-
sociation between these pathways and PD, although a study performed in the Chinese
population found less prevalence of these metabolic pathways based on long-term diet
quality [108].

Aromatic amino acid catabolism can generate a repertoire of aromatic by-products,
some of which can be neurotransmitters and some of which can be harmful [109]. Bac-
terial species belonging to the Clostridium cluster XIVa, Lactobacillus, and Lachnospiraceae
can metabolize aromatic amino acids like tyrosine to produce phenol and p-cresol [109].
These metabolites are associated with the loss of the structural integrity of intestinal ep-
ithelial cells and the consequently reduced stability of the gut epithelium [109]. Moreover,
several species of the genus Clostridium are able to metabolize tyrosine and phenylala-
nine to yield phenolic metabolites, which can be used by other gut bacteria to produce
p-cresol [110,111].

4.4. Personalized Metabolic Modeling of the Gut Microbiomes Revealed Parkinson’s Disease-
Associated Microbial Metabolites

The gut microbiota is part of human metabolism, due to a continuous interchange of
substrates between the host and the microorganisms that are living in the gut. Metabolic
modeling can show the functional and metabolic activities as a result of a change in the
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environment. We observed potential signals in the concentrations of indole, tryptophan,
fructose, phenylacetic acid, 3-Methyl-2-oxovaleric Acid and N-Acetylneuraminic acid
in PD.

Dietary tryptophan is the principal substrate for a diverse group of bacteria that are
involved in the generation of indole derivatives in the gut (e.g., Clostridium spp., Bacteroides,
and Lactobacillus) [112]. The healthspan benefits of indoles in organisms like Caenorhabditis
elegans and others have been reported [113]. Indoles produced by the microbiota seem
also to influence the age of onset and rate of progression of other neurodegenerative
diseases, such as Alzheimer’s disease AD [114]. Moreover, indole and its derivatives are
signaling molecules involved in the crosstalk with the host. Indole has been associated with
intestinal immune homeostasis and barrier function by activating AhR and promoting the
expression of IL-10 [115]. Additionally, these indole components influence the production
of incretin through voltage-gated Ca2+, decreasing Adenosine triphosphate ATP regulation
in L cells [116]. Thus, a diet rich in amino acids could promote the production of indole,
and diets rich in sugar suppress its production and function in the gut [117].

In the diet from the healthy group, an increase in protein consumption was evident,
although not significantly, and, therefore, a high consumption of amino acids are available
for bacterial metabolism. This is reflected in the computational modeling, with an increase
in the metabolism of aromatic amino acids, such as tryptophan and its derivatives, such as
phenyl acetic acid and indole. The latter interacts with the intestinal epithelium, promoting
the expression of anti-inflammatory cytokines and also the maintenance of tight-junction
proteins [118]. Tryptophan metabolism and its modulation by the intestinal microbiota seem
to play an important role in gut–brain communication; for example, it has been reported
that serotonin synthesis, the kynurenine pathway, and microbial degradation pathways
modulate physiology and enteric signaling regarding the generation of anti-inflammatory
mediators and the availability of tryptophan, so that they can enter the brain [119,120].
For example, butyrate, which can enter the circulation, allows for the communication of
the availability of tryptophan to the brain, inhibiting pathways degrading tryptophan to
kynurenine, and, by this mechanism, increasing the generation of serotonin, in addition
to its role in maintaining the gastrointestinal barrier with the compounds generated as
indole [118]. According to this, tryptophan metabolism appears to play an important role
in the microbiota–gut–brain axis.

Phenylacetic acid is one of the main products of the fermentation of aromatic amino
acids, like phenylalanine produced by the phenylpropanoid pathway [110]. The main
bacterial products are phenylacetic acid, phenylpropanoic acid, and benzoic acids [121].
The organisms involved in its production are species such as Bacteroides, Eubacterium, and
Clostridium [110]. Phenylacetic acid is involved in the gut–liver axis and its concentration
and increased levels of circulating BCAAs are associated with steatosis progression [122].

Fructose concentration was found to be increased in healthy phenotype simulations;
this could suggest that fructose intake is simply higher in the control group. However,
studies have shown that the increase in fructose is detrimental in excess. Sedentary habits
and a diet high in fat and sugar, such as the Western diet, have been heavily associated,
with high-fructose corn syrup, with obesity, diabetes, and others [123]. Fructose is an
important nutrient that is metabolized in synergy with glucose. In the normal diet, it is
present in fruits, and the liver is the major site of its metabolism after passing through the
gut [124]. Fructose can modulate the phosphorylation of tyrosine pp185 on the insulin
receptor; thus, insulin resistance and an increase in glucose are affected [125]. Additionally,
high-fructose corn syrup can affect dopamine DA release, which is important in mesolimbic
and nigrostriatal regions.

On the other hand, in the gut, excess dietary fructose consumption has been reported
to be associated with a pro-colitis effect that can be explained by changes in the composition
and metabolic function of gut microbiota [126]. However, the source of fructose seems
to have an impact on the composition of the microbiome. A fructose fruit diet increases
the abundance of the phylum Firmicutes (Faecalibacterium, Anaerostipes, and Erysipelato-
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clostridium) and decreases the abundance of the phylum Bacteroidetes (Parabacteroides).
Alternatively, diets rich in high-fructose corn syrup reduced the abundance of Firmicutes
and the genus Ruminococcus and increased the abundance of Bacteroidetes. The increased
abundance of Bacteroidetes was correlated with plasma cholesterol and LDL levels [127].
This suggests that diets containing fructose from fruit sources modulate the composition of
the gut microbiota in a beneficial way and that a high fructose intake, via high-fructose corn
syrup, causes a reduction in beneficial butyrate-producing bacteria, promoting alterations
in the lipid metabolism and gut barrier homeostasis [127].

Myristic acid, which was increased in the Parkinson’s disease phenotype, is found in
dairy dietary sources like butter, coconut, and palm oils [128]. It has been associated with
cardiovascular diseases and with increasing LDL and total cholesterol, in diets beyond 4%
of total energy [129]. Additionally, this saturated fatty acid induces ceramide synthesis via
CerS5 and, consequently, increases autophagy in cardiomyocytes [130]. In mice and primary
mouse hepatocytes, myristic acid, together with palmitic acid, increased the production of
ceramide and cholesterol levels, inflammation, and fibrosis. These fatty acids are involved
in de novo ceramide production and Parkinson’s disease [131].

Additionally, N-Acetylneuraminic acid and 3-Methyl-2-oxovaleric acid concentration
were found to be increased in healthy phenotype simulations. N-Acetylneuraminic acid is
an indispensable part of sialic acid [132]. A major source of sialic acid in the intestine are
mucins, which are the main structural components of the mucous layers lining the gastroin-
testinal tract. In addition, they may also come from dietary sources, such as milk and meat.
These components may have an important role in the intestinal bacterial composition, as
they possess diverse pathways of release, metabolization, and transport of derivatives,
allowing bacterial crosstalk relationships to be established [133]. Thus, alterations in the
homeostatic levels of sialic acid in the intestine have been associated with infections and
inflammation in preclinical models [134], but the underlying mechanisms have not yet
been discovered. A better understanding of the sialic acid derivatives metabolized by
intestinal microbes and their role in signaling would allow us to propose new biomarkers
and therapeutic targets.

3-Methyl-2-oxovaleric acid, a keto acid that is a subclass of organic acids [135], sig-
nificantly increased in response to fruit intake-based keto acids. Keto acids are formed
from the enzymatic deamination of amino acids, carried out in part by gut bacteria [136].
On the other hand, chronically high levels of 3-Methyl-2-oxovaleric acid are associated
with maple syrup urine disease. This is a metabolic disorder caused by a deficiency of
the branched-chain alpha-keto acid dehydrogenase complex, leading to a buildup of the
branched-chain amino acids and their toxic by-products (ketoacids) in the blood and urine.
In maple syrup urine disease, the brain concentration of branched-chain keto acids can
increase and cause neurological damage [137,138].

5. Conclusions

To our knowledge, this is the first study that characterizes the gut bacterial compo-
sition of PD patients and healthy controls from a cohort in the Colombian population
and in Latin America. We were able to identify a group of bacterial families and genera
that are associated with PD, in terms of their abundance, showing that our results are
complementary and also comparable, to some extent, with studies from other populations
around the world.

Our results also reveal some differences in microbiome composition between the
Latin American population and former studies. Therefore we hypothesize that there are
no “global” and “generalized” microbial compositions related to PD for all humans, but
rather they appear to be specific in each population. This emphasizes the importance of the
characterization of specific populations, the Colombian one in our case, to better respond
to local challenges.

According to our analysis, many of the bacterial families and genera associated with
the zOTUS that we have identified as significantly associated with PD status have shown
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an association with gut inflammation in prior studies. We were also able to identify an
induction of aromatic amino acid metabolism in PD patients that could be modulated by
its consumption in the diet and/or levodopa medication, although more statistical power
to identify confounders in our cohort is necessary.

Finally, we were also able to create personalized models of the gut community for
individual patients, which adds to the growing global efforts in the field of personalized
medicine. This also allowed us to identify potential metabolites related to PD that could be
used as potential biological markers of disease. This highlights the importance of holistic
approaches and shows how systems biology could be used in the study of neurodegen-
erative diseases. It is also important to stress the necessity of improving statistical and
computational tools, to integrate data from diverse omics layers, to provide a better under-
standing of the underlying biology and microbiome–host interactions. As a consequence,
this opens venues to use computational modeling as a central component of personalized
therapeutic approaches.
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