Herpesviridae and Atypical Bacteria Co-Detections in Lower Respiratory Tract Samples of SARS-CoV-2-Positive Patients Admitted to an Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Patients and Samples
2.2. Total Nucleic Acid Isolation and (rt)RT-PCR
2.3. Data Analysis
3. Results
3.1. Sample Type Structure
3.2. Clinical Data Analysis of SARS-CoV-2-Positive Patients
3.3. Overall Results of SARS-CoV-2, Herpesviruses, and Atypical Bacteria Detection in Lower Respiratory Tract Samples
3.4. Ct Value Distribution Analysis of Detected Herpesviruses and Atypical Bacteria
3.5. Combination of Co-Detections of Herpesviruses and Atypical Bacteria in SARS-CoV-2-Positive Patients
3.6. Detailed Analysis of Herpesviruses Co-Detections in LRT Samples
3.6.1. Temporal Delay between SARS-CoV-2 Infection and Herpesvirus Co-Detections
3.6.2. Comparison of BAL and TA Samples for Detection of HSV-1, EBV, and CMV
3.6.3. Clinical and Laboratory Data Correlation Analysis for Herpesvirus Co-Detection Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Ethics Approval
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Detailed Description of Methods
Appendix A.1. Total Nucleic Acid Isolation
Appendix A.2. (rt)RT-PCR
Appendix A.3. SARS-CoV-2 rtRT-PCR
Appendix A.4. VZV, EBV, CMV, HSV-1, and HSV-2 RT-PCR
Appendix A.5. Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila/spp. RT-PCR
Appendix B
Clinical Criteria for Evaluation of Severe Disorder of the Immune System
* Cause of ID: Acquired/Iatrogenic/Drug-Induced | Congenital ID |
---|---|
HPSCT (<12 months) | |
GvHD | XLA |
HIV-infection < 200 CD4/mm3 | IFN |
Induction chemotherapy in pediatric leukemia | IgE sy |
Chemotherapy | CVID |
Solid organ transplantation | CGD |
Immunosuppressive medications * | Wiskott–Aldrich syndrome |
References
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069, Erratum in JAMA 2021, 325, 1113. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Nseir, S.; Rodriguez, A.; Martin-Loeches, I. Ventilator-associated pneumonia in critically ill patients with COVID-19 infection: A narrative review. ERJ Open Res. 2022, 8, 00046-2022. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Athar, M.M.T.; Amini, M.J.; Hajishah, H.; Siahvoshi, S.; Jalali, M.; Jahanbakhshi, B.; Mozhgani, S. Reactivation of herpesviruses during COVID-19: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2437. [Google Scholar] [CrossRef] [PubMed]
- Luyt, C.-E.; Burrel, S.; Mokrani, D.; de Chambrun, M.P.; Luyt, D.; Chommeloux, J.; Guiraud, V.; Bréchot, N.; Schmidt, M.; Hekimian, G.; et al. Herpesviridae lung reactivation and infection in patients with severe COVID-19 or influenza virus pneumonia: A comparative study. Ann. Intensive Care 2022, 12, 87. [Google Scholar] [CrossRef]
- Chen, J.; Song, J.; Dai, L.; Post, S.R.; Qin, Z. SARS-CoV-2 infection and lytic reactivation of herpesviruses: A potential threat in the postpandemic era? J. Med. Virol. 2022, 94, 5103–5111. [Google Scholar] [CrossRef] [PubMed]
- Riccò, M.; Ferraro, P.; Peruzzi, S.; Zaniboni, A.; Ranzieri, S. SARS-CoV-2-legionella co-infections: A systematic review and meta-analysis (2020–2021). Microorganisms 2022, 10, 499. [Google Scholar] [CrossRef]
- Oliva, A.; Siccardi, G.; Migliarini, A.; Cancelli, F.; Carnevalini, M.; D’andria, M.; Attilia, I.; Danese, V.C.; Cecchetti, V.; Romiti, R.; et al. Co-infection of SARS-CoV-2 with Chlamydia or Mycoplasma pneumoniae: A case series and review of the literature. Infection 2020, 48, 871–877. [Google Scholar] [CrossRef]
- Frutos, M.C.; Origlia, J.; Vaulet, M.L.G.; Venuta, M.E.; García, M.G.; Armitano, R.; Cipolla, L.; Madariaga, M.J.; Cuffini, C.; Cadario, M.E. SARS-CoV-2 and Chlamydia pneumoniae co-infection: A review of the literature. Rev. Argent. Microbiol. 2022, 54, 247–257. [Google Scholar] [CrossRef]
- Zha, L.; Shen, J.; Tefsen, B.; Wang, Y.; Lu, W.; Xu, Q. Clinical features and outcomes of adult COVID-19 patients co-infected with Mycoplasma pneumoniae. J. Infect. 2020, 81, e12–5. [Google Scholar] [CrossRef]
- Gayam, V.; Konala, V.M.; Naramala, S.; Garlapati, P.R.; Merghani, M.A.; Regmi, N.; Balla, M.; Adapa, S. Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID-19 and Mycoplasma pneumoniae in the USA. J. Med. Virol. 2020, 92, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Westblade, L.F.; Simon, M.S.; Satlin, M.J. Bacterial coinfections in coronavirus disease 2019. Trends Microbiol. 2021, 29, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Fuest, K.E.; Erber, J.; Berg-Johnson, W.; Heim, M.; Hoffmann, D.; Kapfer, B.; Kriescher, S.; Ulm, B.; Schmid, R.M.; Rasch, S.; et al. Risk factors for Herpes simplex virus (HSV) and Cytomegalovirus (CMV) infections in critically-ill COVID-19 patients. Multidiscip. Respir. Med. 2022, 17, 815. [Google Scholar] [CrossRef] [PubMed]
- Gatto, I.; Biagioni, E.; Coloretti, I.; Farinelli, C.; Avoni, C.; Caciagli, V.; Busani, S.; Pecorari, M.; Gennari, W.; Guaraldi, G.; et al. Cytomegalovirus blood reactivation in COVID-19 critically ill patients: Risk factors and impact on mortality. Intensive Care Med. 2022, 48, 706–713. [Google Scholar] [CrossRef]
- Saade, A.; Moratelli, G.; Azoulay, E.; Darmon, M. Herpesvirus reactivation during severe COVID-19 and high rate of immune defect. Infect. Dis. Now 2021, 51, 676–679. [Google Scholar] [CrossRef]
- Simonnet, A.; Engelmann, I.; Moreau, A.-S.; Garcia, B.; Six, S.; El Kalioubie, A.; Robriquet, L.; Hober, D.; Jourdain, M. High incidence of Epstein–Barr virus, cytomegalovirus, and human–herpes virus-6 reactivations in critically ill patients with COVID-19. Infect. Dis. Now 2021, 51, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Le Balćh, P.; Pinceaux, K.; Pronier, C.; Seguin, P.; Tadié, J.-M.; Reizine, F. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Crit. Care 2020, 24, 530. [Google Scholar] [CrossRef] [PubMed]
- Paparoupa, M.; Aldemyati, R.; Roggenkamp, H.; Berinson, B.; Nörz, D.; Olearo, F.; Kluge, S.; Roedl, K.; de Heer, G.; Wichmann, D. The prevalence of early- and late-onset bacterial, viral, and fungal respiratory superinfections in invasively ventilated COVID-19 patients. J. Med. Virol. 2022, 94, 1920–1925. [Google Scholar] [CrossRef]
- Brooks, B.; Tancredi, C.; Song, Y.; Mogus, A.T.; Huang, M.-L.W.; Zhu, H.; Phan, T.L.; Zhu, H.; Kadl, A.; Woodfolk, J.; et al. Epstein–Barr virus and human herpesvirus-6 reactivation in acute COVID-19 patients. Viruses 2022, 14, 1872. [Google Scholar] [CrossRef]
- Xie, Y.; Cao, S.; Dong, H.; Lv, H.; Teng, X.; Zhang, J.; Wang, T.; Zhang, X.; Qin, Y.; Chai, Y.; et al. Clinical characteristics and outcomes of critically ill patients with acute COVID-19 with Epstein–Barr virus reactivation. BMC Infect. Dis. 2021, 21, 955. [Google Scholar] [CrossRef]
- Gold, J.E.; Okyay, R.A.; Licht, W.E.; Hurley, D.J. Investigation of long COVID prevalence and its relationship to Epstein–Barr virus reactivation. Pathogens 2021, 10, 763. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Buetti, N.; Houhou-Fidouh, N.; Patrier, J.; Abdel-Nabey, M.; Jaquet, P.; Presente, S.; Girard, T.; Sayagh, F.; Ruckly, S.; et al. HSV-1 reactivation is associated with an increased risk of mortality and pneumonia in critically ill COVID-19 patients. Crit. Care 2021, 25, 417. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Di Bella, S.; Dettori, S.; Brucci, G.; Zerbato, V.; Pol, R.; Segat, L.; D’agaro, P.; Roman-Pognuz, E.; Friso, F.; et al. Reactivation of herpes simplex virus type 1 (HSV-1) detected on bronchoalveolar lavage fluid (BALF) samples in critically ill COVID-19 patients undergoing invasive mechanical ventilation: Preliminary results from two Italian centers. Microorganisms 2022, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Seeßle, J.; Hippchen, T.; Schnitzler, P.; Gsenger, J.; Giese, T.; Merle, U. High rate of HSV-1 reactivation in invasively ventilated COVID-19 patients: Immunological findings. PLoS ONE 2021, 16, e0254129. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Belmonte, M.J.P.-P.; Sánchez-Casado, M.; Gallego, F.J.M.; Pinilla, R.P.; Hernando, C.G.; Borrachero, I.P. Herpes simplex virus type 1 (HSV-1) over-infection in patients with acute respiratory distress syndrome secondary to COVID-19 pneumonia: Impact on mortality. Med. Clin. 2023, 160, 66–70. [Google Scholar] [CrossRef]
- Bruno, J.; Ragozzino, S.; Quitt, J.; Siegemund, M.; Labhardt, N. Severe acute respiratory syndrome coronavirus 2, primary varicella zoster virus coinfection, and a polymicrobial ventilator-associated tracheobronchitis in an adult immunocompetent male: A case report. J. Med. Case Rep. 2022, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Di Bella, S.; Lovecchio, A.; Ball, L.; De Maria, A.; Vena, A.; Bruzzone, B.; Icardi, G.; Pelosi, P.; Luzzati, R.; et al. Herpes simplex virus 1 (HSV-1) reactivation in critically ill COVID-19 patients: A brief narrative review. Infect. Dis. Ther. 2022, 11, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, E.; Cozzi-Lepri, A.; Santoro, A.; Bacca, E.; Lancellotti, G.; Menozzi, M.; Gennari, W.; Meschiari, M.; Bedini, A.; Orlando, G.; et al. Herpes simplex virus re-activation in patients with SARS-CoV-2 pneumonia: A prospective, observational study. Microorganisms 2021, 9, 1896. [Google Scholar] [CrossRef]
- Busnadiego, I.; Abela, I.A.; Frey, P.M.; Hofmaenner, D.A.; Scheier, T.C.; Schuepbach, R.A.; Buehler, P.K.; Brugger, S.D.; Hale, B.G. Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease. PLoS Biol. 2022, 20, e3001709. [Google Scholar] [CrossRef]
- Martinez-Reviejo, R.; Tejada, S.; Adebanjo, G.A.; Chello, C.; Machado, M.C.; Parisella, F.R.; Campins, M.; Tammaro, A.; Rello, J. Varicella-zoster virus reactivation following severe acute respiratory syndrome coronavirus 2 vaccination or infection: New insights. Eur. J. Intern. Med. 2022, 104, 73–79. [Google Scholar] [CrossRef]
- Kalantar, K.L.; Moazed, F.; Christenson, S.C.; Wilson, J.; Deiss, T.; Belzer, A.; Vessel, K.; Caldera, S.; Jauregui, A.; Bolourchi, S.; et al. Metagenomic comparison of tracheal aspirate and mini-bronchial alveolar lavage for assessment of respiratory microbiota. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L578–L584. [Google Scholar] [CrossRef] [PubMed]
- Reckziegel, M.; Weber-Osel, C.; Egerer, R.; Gruhn, B.; Kubek, F.; Walther, M.; Wilhelm, S.; Zell, R.; Krumbholz, A. Viruses and atypical bacteria in the respiratory tract of immunocompromised and immunocompetent patients with airway infection. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1581–1592, Erratum in Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 339. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, I.; Bingold, T.; Keppler, O.T.; Pullmann, B.; Reinheimer, C.; Berger, A. Detection of herpesvirus EBV DNA in the lower respiratory tract of ICU patients: A marker of infection of the lower respiratory tract? Med. Microbiol. Immunol. 2013, 202, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Luyt, C.-E.; Combes, A.; Deback, C.; Aubriot-Lorton, M.-H.; Nieszkowska, A.; Trouillet, J.-L.; Capron, F.; Agut, H.; Gibert, C.; Chastre, J. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am. J. Respir. Crit. Care Med. 2007, 175, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Jong, E.A.-D.; Groeneveld, A.J.; Pettersson, A.M.; Koek, A.; Vandenbroucke-Grauls, C.M.; Beishuizen, A.; Simoons-Smit, A.M. Clinical correlates of herpes simplex virus type 1 loads in the lower respiratory tract of critically ill patients. J. Clin. Virol. 2013, 58, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hatton, O.L.; Harris-Arnold, A.; Schaffert, S.; Krams, S.M.; Martinez, O.M. The interplay between Epstein–Barr virus and B lymphocytes: Implications for infection, immunity, and disease. Immunol. Res. 2014, 58, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Reischl, U.; Wolf, H.; Schüller, C.; Arndt, R. Identification of active cytomegalovirus infection by analysis of immediate-early, early and late transcripts in peripheral blood cells of immunodeficient patients. Mol. Cell Probes 1994, 8, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Contou, D.; Claudinon, A.; Pajot, O.; Micaëlo, M.; Flandre, P.L.; Dubert, M.; Cally, R.; Logre, E.; Fraissé, M.; Mentec, H.; et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann. Intensive Care 2020, 10, 119. [Google Scholar] [CrossRef]
- Kolenda, C.; Ranc, A.-G.; Boisset, S.; Caspar, Y.; Carricajo, A.; Souche, A.; Dauwalder, O.; Verhoeven, P.O.; Vandenesch, F.; Laurent, F. Assessment of respiratory bacterial coinfections among severe acute respiratory syndrome coronavirus 2–positive patients hospitalized in intensive care units using conventional culture and BioFire, FilmArray Pneumonia Panel plus assay. Open Forum Infect. Dis. 2020, 7, ofaa484. [Google Scholar] [CrossRef]
Patients, n | 16 | 40 | 44 | 44 | 28 | 19 | 8 | 15 | 1 | 2 | 5 | 2 | 1 | 2 | 1 | 1 |
Consecutive samples per patient, n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Treatment Type | Antiviral Agent | Patients, n (%) |
---|---|---|
Immunosuppressive treatment | 22 (9.6) | |
Antiviral treatment | Acyclovir | 21 (9.2) |
Valganciclovir/ganciclovir | 12 (5.2) | |
Acyclovir + ganciclovir | 1 (0.4) | |
Immunosuppressive + antiviral treatment | 12 (5.2) | |
Mean duration, days (min–max) | ||
Antiviral treatment | Acyclovir | 11 (3–16) |
Valganciclovir/ganciclovir | 25 (6–47) |
Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Patients with Co-Detections, n (%) |
---|---|---|---|---|---|
SARS-CoV-2 | HSV-1 | EBV | 53 (23.1) | ||
SARS-CoV-2 | HSV-1 | EBV | CMV | 48 (21.0) | |
SARS-CoV-2 | EBV | CMV | 28 (12.2) | ||
SARS-CoV-2 | HSV-1 | CMV | 6 (2.6) | ||
SARS-CoV-2 | HSV-1 | EBV | CMV | VZV | 1 (0.4) |
SARS-CoV-2 | HSV-1 | EBV | HSV-2 | 1 (0.4) | |
SARS-CoV-2 | HSV-1 | EBV | VZV | 1 (0.4) | |
SARS-CoV-2 | HSV-1 | Mpn | 1 (0.4) | ||
SARS-CoV-2 | HSV-2 | EBV | Lpn | 1 (0.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grubelnik, G.; Korva, M.; Kogoj, R.; Polanc, T.; Mavrič, M.; Jevšnik Virant, M.; Uršič, T.; Keše, D.; Seme, K.; Petrovec, M.; et al. Herpesviridae and Atypical Bacteria Co-Detections in Lower Respiratory Tract Samples of SARS-CoV-2-Positive Patients Admitted to an Intensive Care Unit. Microorganisms 2024, 12, 714. https://doi.org/10.3390/microorganisms12040714
Grubelnik G, Korva M, Kogoj R, Polanc T, Mavrič M, Jevšnik Virant M, Uršič T, Keše D, Seme K, Petrovec M, et al. Herpesviridae and Atypical Bacteria Co-Detections in Lower Respiratory Tract Samples of SARS-CoV-2-Positive Patients Admitted to an Intensive Care Unit. Microorganisms. 2024; 12(4):714. https://doi.org/10.3390/microorganisms12040714
Chicago/Turabian StyleGrubelnik, Gašper, Miša Korva, Rok Kogoj, Tina Polanc, Matej Mavrič, Monika Jevšnik Virant, Tina Uršič, Darja Keše, Katja Seme, Miroslav Petrovec, and et al. 2024. "Herpesviridae and Atypical Bacteria Co-Detections in Lower Respiratory Tract Samples of SARS-CoV-2-Positive Patients Admitted to an Intensive Care Unit" Microorganisms 12, no. 4: 714. https://doi.org/10.3390/microorganisms12040714
APA StyleGrubelnik, G., Korva, M., Kogoj, R., Polanc, T., Mavrič, M., Jevšnik Virant, M., Uršič, T., Keše, D., Seme, K., Petrovec, M., Jereb, M., & Avšič-Županc, T. (2024). Herpesviridae and Atypical Bacteria Co-Detections in Lower Respiratory Tract Samples of SARS-CoV-2-Positive Patients Admitted to an Intensive Care Unit. Microorganisms, 12(4), 714. https://doi.org/10.3390/microorganisms12040714